mirror of
https://github.com/topjohnwu/ndk-busybox.git
synced 2024-12-11 13:35:00 +00:00
876c121ccb
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2264 lines
48 KiB
C
2264 lines
48 KiB
C
/*
|
|
* Copyright (C) 2017 Denys Vlasenko
|
|
*
|
|
* Licensed under GPLv2, see file LICENSE in this source tree.
|
|
*/
|
|
#include "tls.h"
|
|
|
|
/* The file is taken almost verbatim from matrixssl-3-7-2b-open/crypto/math/.
|
|
* Changes are flagged with //bbox
|
|
*/
|
|
|
|
/**
|
|
* @file pstm.c
|
|
* @version 33ef80f (HEAD, tag: MATRIXSSL-3-7-2-OPEN, tag: MATRIXSSL-3-7-2-COMM, origin/master, origin/HEAD, master)
|
|
*
|
|
* Multiprecision number implementation.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2013-2015 INSIDE Secure Corporation
|
|
* Copyright (c) PeerSec Networks, 2002-2011
|
|
* All Rights Reserved
|
|
*
|
|
* The latest version of this code is available at http://www.matrixssl.org
|
|
*
|
|
* This software is open source; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This General Public License does NOT permit incorporating this software
|
|
* into proprietary programs. If you are unable to comply with the GPL, a
|
|
* commercial license for this software may be purchased from INSIDE at
|
|
* http://www.insidesecure.com/eng/Company/Locations
|
|
*
|
|
* This program is distributed in WITHOUT ANY WARRANTY; without even the
|
|
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
* http://www.gnu.org/copyleft/gpl.html
|
|
*/
|
|
/******************************************************************************/
|
|
|
|
//bbox
|
|
//#include "../cryptoApi.h"
|
|
#ifndef DISABLE_PSTM
|
|
|
|
static int32 pstm_mul_2d(pstm_int *a, int16 b, pstm_int *c);
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
init an pstm_int for a given size
|
|
*/
|
|
int32 pstm_init_size(psPool_t *pool, pstm_int * a, uint32 size)
|
|
{
|
|
//bbox
|
|
// uint16 x;
|
|
|
|
/*
|
|
alloc mem
|
|
*/
|
|
a->dp = xzalloc(sizeof (pstm_digit) * size);//bbox
|
|
//bbox a->pool = pool;
|
|
a->used = 0;
|
|
a->alloc = (int16)size;
|
|
a->sign = PSTM_ZPOS;
|
|
/*
|
|
zero the digits
|
|
*/
|
|
//bbox
|
|
// for (x = 0; x < size; x++) {
|
|
// a->dp[x] = 0;
|
|
// }
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Init a new pstm_int.
|
|
*/
|
|
int32 pstm_init(psPool_t *pool, pstm_int * a)
|
|
{
|
|
//bbox
|
|
// int32 i;
|
|
/*
|
|
allocate memory required and clear it
|
|
*/
|
|
a->dp = xzalloc(sizeof (pstm_digit) * PSTM_DEFAULT_INIT);//bbox
|
|
/*
|
|
set the digits to zero
|
|
*/
|
|
//bbox
|
|
// for (i = 0; i < PSTM_DEFAULT_INIT; i++) {
|
|
// a->dp[i] = 0;
|
|
// }
|
|
/*
|
|
set the used to zero, allocated digits to the default precision and sign
|
|
to positive
|
|
*/
|
|
//bbox a->pool = pool;
|
|
a->used = 0;
|
|
a->alloc = PSTM_DEFAULT_INIT;
|
|
a->sign = PSTM_ZPOS;
|
|
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Grow as required
|
|
*/
|
|
int32 pstm_grow(pstm_int * a, int16 size)
|
|
{
|
|
int16 i;
|
|
pstm_digit *tmp;
|
|
|
|
/*
|
|
If the alloc size is smaller alloc more ram.
|
|
*/
|
|
if (a->alloc < size) {
|
|
/*
|
|
Reallocate the array a->dp
|
|
|
|
We store the return in a temporary variable in case the operation
|
|
failed we don't want to overwrite the dp member of a.
|
|
*/
|
|
tmp = xrealloc(a->dp, sizeof (pstm_digit) * size);//bbox
|
|
/*
|
|
reallocation succeeded so set a->dp
|
|
*/
|
|
a->dp = tmp;
|
|
/*
|
|
zero excess digits
|
|
*/
|
|
i = a->alloc;
|
|
a->alloc = size;
|
|
for (; i < a->alloc; i++) {
|
|
a->dp[i] = 0;
|
|
}
|
|
}
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
copy, b = a (b must be pre-allocated)
|
|
*/
|
|
int32 pstm_copy(pstm_int * a, pstm_int * b)
|
|
{
|
|
int32 res, n;
|
|
|
|
/*
|
|
If dst == src do nothing
|
|
*/
|
|
if (a == b) {
|
|
return PSTM_OKAY;
|
|
}
|
|
/*
|
|
Grow dest
|
|
*/
|
|
if (b->alloc < a->used) {
|
|
if ((res = pstm_grow (b, a->used)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
}
|
|
/*
|
|
Zero b and copy the parameters over
|
|
*/
|
|
{
|
|
register pstm_digit *tmpa, *tmpb;
|
|
|
|
/* pointer aliases */
|
|
/* source */
|
|
tmpa = a->dp;
|
|
|
|
/* destination */
|
|
tmpb = b->dp;
|
|
|
|
/* copy all the digits */
|
|
for (n = 0; n < a->used; n++) {
|
|
*tmpb++ = *tmpa++;
|
|
}
|
|
|
|
/* clear high digits */
|
|
for (; n < b->used; n++) {
|
|
*tmpb++ = 0;
|
|
}
|
|
}
|
|
/*
|
|
copy used count and sign
|
|
*/
|
|
b->used = a->used;
|
|
b->sign = a->sign;
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Trim unused digits
|
|
|
|
This is used to ensure that leading zero digits are trimed and the
|
|
leading "used" digit will be non-zero. Typically very fast. Also fixes
|
|
the sign if there are no more leading digits
|
|
*/
|
|
void pstm_clamp(pstm_int * a)
|
|
{
|
|
/* decrease used while the most significant digit is zero. */
|
|
while (a->used > 0 && a->dp[a->used - 1] == 0) {
|
|
--(a->used);
|
|
}
|
|
/* reset the sign flag if used == 0 */
|
|
if (a->used == 0) {
|
|
a->sign = PSTM_ZPOS;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
clear one (frees).
|
|
*/
|
|
void pstm_clear(pstm_int * a)
|
|
{
|
|
int32 i;
|
|
/*
|
|
only do anything if a hasn't been freed previously
|
|
*/
|
|
if (a != NULL && a->dp != NULL) {
|
|
/*
|
|
first zero the digits
|
|
*/
|
|
for (i = 0; i < a->used; i++) {
|
|
a->dp[i] = 0;
|
|
}
|
|
|
|
psFree (a->dp, a->pool);
|
|
/*
|
|
reset members to make debugging easier
|
|
*/
|
|
a->dp = NULL;
|
|
a->alloc = a->used = 0;
|
|
a->sign = PSTM_ZPOS;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
clear many (frees).
|
|
*/
|
|
void pstm_clear_multi(pstm_int *mp0, pstm_int *mp1, pstm_int *mp2,
|
|
pstm_int *mp3, pstm_int *mp4, pstm_int *mp5,
|
|
pstm_int *mp6, pstm_int *mp7)
|
|
{
|
|
int32 n; /* Number of ok inits */
|
|
|
|
pstm_int *tempArray[9];
|
|
|
|
tempArray[0] = mp0;
|
|
tempArray[1] = mp1;
|
|
tempArray[2] = mp2;
|
|
tempArray[3] = mp3;
|
|
tempArray[4] = mp4;
|
|
tempArray[5] = mp5;
|
|
tempArray[6] = mp6;
|
|
tempArray[7] = mp7;
|
|
tempArray[8] = NULL;
|
|
|
|
for (n = 0; tempArray[n] != NULL; n++) {
|
|
if ((tempArray[n] != NULL) && (tempArray[n]->dp != NULL)) {
|
|
pstm_clear(tempArray[n]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Set to zero.
|
|
*/
|
|
void pstm_zero(pstm_int * a)
|
|
{
|
|
int32 n;
|
|
pstm_digit *tmp;
|
|
|
|
a->sign = PSTM_ZPOS;
|
|
a->used = 0;
|
|
|
|
tmp = a->dp;
|
|
for (n = 0; n < a->alloc; n++) {
|
|
*tmp++ = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Compare maginitude of two ints (unsigned).
|
|
*/
|
|
int32 pstm_cmp_mag(pstm_int * a, pstm_int * b)
|
|
{
|
|
int16 n;
|
|
pstm_digit *tmpa, *tmpb;
|
|
|
|
/*
|
|
compare based on # of non-zero digits
|
|
*/
|
|
if (a->used > b->used) {
|
|
return PSTM_GT;
|
|
}
|
|
|
|
if (a->used < b->used) {
|
|
return PSTM_LT;
|
|
}
|
|
|
|
/* alias for a */
|
|
tmpa = a->dp + (a->used - 1);
|
|
|
|
/* alias for b */
|
|
tmpb = b->dp + (a->used - 1);
|
|
|
|
/*
|
|
compare based on digits
|
|
*/
|
|
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
|
|
if (*tmpa > *tmpb) {
|
|
return PSTM_GT;
|
|
}
|
|
if (*tmpa < *tmpb) {
|
|
return PSTM_LT;
|
|
}
|
|
}
|
|
return PSTM_EQ;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Compare two ints (signed)
|
|
*/
|
|
int32 pstm_cmp(pstm_int * a, pstm_int * b)
|
|
{
|
|
/*
|
|
compare based on sign
|
|
*/
|
|
if (a->sign != b->sign) {
|
|
if (a->sign == PSTM_NEG) {
|
|
return PSTM_LT;
|
|
} else {
|
|
return PSTM_GT;
|
|
}
|
|
}
|
|
/*
|
|
compare digits
|
|
*/
|
|
if (a->sign == PSTM_NEG) {
|
|
/* if negative compare opposite direction */
|
|
return pstm_cmp_mag(b, a);
|
|
} else {
|
|
return pstm_cmp_mag(a, b);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
pstm_ints can be initialized more precisely when they will populated
|
|
using pstm_read_unsigned_bin since the length of the byte stream is known
|
|
*/
|
|
int32 pstm_init_for_read_unsigned_bin(psPool_t *pool, pstm_int *a, uint32 len)
|
|
{
|
|
int32 size;
|
|
/*
|
|
Need to set this based on how many words max it will take to store the bin.
|
|
The magic + 2:
|
|
1 to round up for the remainder of this integer math
|
|
1 for the initial carry of '1' bits that fall between DIGIT_BIT and 8
|
|
*/
|
|
size = (((len / sizeof(pstm_digit)) * (sizeof(pstm_digit) * CHAR_BIT))
|
|
/ DIGIT_BIT) + 2;
|
|
return pstm_init_size(pool, a, size);
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Reads a unsigned char array into pstm_int format. User should have
|
|
called pstm_init_for_read_unsigned_bin first. There is some grow logic
|
|
here if the default pstm_init was used but we don't really want to hit it.
|
|
*/
|
|
int32 pstm_read_unsigned_bin(pstm_int *a, unsigned char *b, int32 c)
|
|
{
|
|
/* zero the int */
|
|
pstm_zero (a);
|
|
|
|
/*
|
|
If we know the endianness of this architecture, and we're using
|
|
32-bit pstm_digits, we can optimize this
|
|
*/
|
|
#if (defined(ENDIAN_LITTLE) || defined(ENDIAN_BIG)) && !defined(PSTM_64BIT)
|
|
/* But not for both simultaneously */
|
|
#if defined(ENDIAN_LITTLE) && defined(ENDIAN_BIG)
|
|
#error Both ENDIAN_LITTLE and ENDIAN_BIG defined.
|
|
#endif
|
|
{
|
|
unsigned char *pd;
|
|
if ((unsigned)c > (PSTM_MAX_SIZE * sizeof(pstm_digit))) {
|
|
uint32 excess = c - (PSTM_MAX_SIZE * sizeof(pstm_digit));
|
|
c -= excess;
|
|
b += excess;
|
|
}
|
|
a->used = (int16)((c + sizeof(pstm_digit) - 1)/sizeof(pstm_digit));
|
|
if (a->alloc < a->used) {
|
|
if (pstm_grow(a, a->used) != PSTM_OKAY) {
|
|
return PSTM_MEM;
|
|
}
|
|
}
|
|
pd = (unsigned char *)a->dp;
|
|
/* read the bytes in */
|
|
#ifdef ENDIAN_BIG
|
|
{
|
|
/* Use Duff's device to unroll the loop. */
|
|
int32 idx = (c - 1) & ~3;
|
|
switch (c % 4) {
|
|
case 0: do { pd[idx+0] = *b++;
|
|
case 3: pd[idx+1] = *b++;
|
|
case 2: pd[idx+2] = *b++;
|
|
case 1: pd[idx+3] = *b++;
|
|
idx -= 4;
|
|
} while ((c -= 4) > 0);
|
|
}
|
|
}
|
|
#else
|
|
for (c -= 1; c >= 0; c -= 1) {
|
|
pd[c] = *b++;
|
|
}
|
|
#endif
|
|
}
|
|
#else
|
|
/* Big enough based on the len? */
|
|
a->used = (((c / sizeof(pstm_digit)) * (sizeof(pstm_digit) * CHAR_BIT))
|
|
/ DIGIT_BIT) + 2;
|
|
|
|
if (a->alloc < a->used) {
|
|
if (pstm_grow(a, a->used) != PSTM_OKAY) {
|
|
return PSTM_MEM;
|
|
}
|
|
}
|
|
/* read the bytes in */
|
|
for (; c > 0; c--) {
|
|
if (pstm_mul_2d (a, 8, a) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
a->dp[0] |= *b++;
|
|
a->used += 1;
|
|
}
|
|
#endif
|
|
|
|
pstm_clamp (a);
|
|
return PS_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
*/
|
|
int16 pstm_count_bits (pstm_int * a)
|
|
{
|
|
int16 r;
|
|
pstm_digit q;
|
|
|
|
if (a->used == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* get number of digits and add that */
|
|
r = (a->used - 1) * DIGIT_BIT;
|
|
|
|
/* take the last digit and count the bits in it */
|
|
q = a->dp[a->used - 1];
|
|
while (q > ((pstm_digit) 0)) {
|
|
++r;
|
|
q >>= ((pstm_digit) 1);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
int32 pstm_unsigned_bin_size(pstm_int *a)
|
|
{
|
|
int32 size = pstm_count_bits (a);
|
|
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
|
}
|
|
|
|
/******************************************************************************/
|
|
void pstm_set(pstm_int *a, pstm_digit b)
|
|
{
|
|
pstm_zero(a);
|
|
a->dp[0] = b;
|
|
a->used = a->dp[0] ? 1 : 0;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Right shift
|
|
*/
|
|
void pstm_rshd(pstm_int *a, int16 x)
|
|
{
|
|
int16 y;
|
|
|
|
/* too many digits just zero and return */
|
|
if (x >= a->used) {
|
|
pstm_zero(a);
|
|
return;
|
|
}
|
|
|
|
/* shift */
|
|
for (y = 0; y < a->used - x; y++) {
|
|
a->dp[y] = a->dp[y+x];
|
|
}
|
|
|
|
/* zero rest */
|
|
for (; y < a->used; y++) {
|
|
a->dp[y] = 0;
|
|
}
|
|
|
|
/* decrement count */
|
|
a->used -= x;
|
|
pstm_clamp(a);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Shift left a certain amount of digits.
|
|
*/
|
|
int32 pstm_lshd(pstm_int * a, int16 b)
|
|
{
|
|
int16 x;
|
|
int32 res;
|
|
|
|
/*
|
|
If its less than zero return.
|
|
*/
|
|
if (b <= 0) {
|
|
return PSTM_OKAY;
|
|
}
|
|
/*
|
|
Grow to fit the new digits.
|
|
*/
|
|
if (a->alloc < a->used + b) {
|
|
if ((res = pstm_grow (a, a->used + b)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
{
|
|
register pstm_digit *top, *bottom;
|
|
/*
|
|
Increment the used by the shift amount then copy upwards.
|
|
*/
|
|
a->used += b;
|
|
|
|
/* top */
|
|
top = a->dp + a->used - 1;
|
|
|
|
/* base */
|
|
bottom = a->dp + a->used - 1 - b;
|
|
/*
|
|
This is implemented using a sliding window except the window goes the
|
|
other way around. Copying from the bottom to the top.
|
|
*/
|
|
for (x = a->used - 1; x >= b; x--) {
|
|
*top-- = *bottom--;
|
|
}
|
|
|
|
/* zero the lower digits */
|
|
top = a->dp;
|
|
for (x = 0; x < b; x++) {
|
|
*top++ = 0;
|
|
}
|
|
}
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
computes a = 2**b
|
|
*/
|
|
int32 pstm_2expt(pstm_int *a, int16 b)
|
|
{
|
|
int16 z;
|
|
|
|
/* zero a as per default */
|
|
pstm_zero (a);
|
|
|
|
if (b < 0) {
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
z = b / DIGIT_BIT;
|
|
if (z >= PSTM_MAX_SIZE) {
|
|
return PS_LIMIT_FAIL;
|
|
}
|
|
|
|
/* set the used count of where the bit will go */
|
|
a->used = z + 1;
|
|
|
|
if (a->used > a->alloc) {
|
|
if (pstm_grow(a, a->used) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
}
|
|
|
|
/* put the single bit in its place */
|
|
a->dp[z] = ((pstm_digit)1) << (b % DIGIT_BIT);
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
|
|
*/
|
|
int32 pstm_mul_2(pstm_int * a, pstm_int * b)
|
|
{
|
|
int32 res;
|
|
int16 x, oldused;
|
|
|
|
/*
|
|
grow to accomodate result
|
|
*/
|
|
if (b->alloc < a->used + 1) {
|
|
if ((res = pstm_grow (b, a->used + 1)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
}
|
|
oldused = b->used;
|
|
b->used = a->used;
|
|
|
|
{
|
|
register pstm_digit r, rr, *tmpa, *tmpb;
|
|
|
|
/* alias for source */
|
|
tmpa = a->dp;
|
|
|
|
/* alias for dest */
|
|
tmpb = b->dp;
|
|
|
|
/* carry */
|
|
r = 0;
|
|
for (x = 0; x < a->used; x++) {
|
|
/*
|
|
get what will be the *next* carry bit from the
|
|
MSB of the current digit
|
|
*/
|
|
rr = *tmpa >> ((pstm_digit)(DIGIT_BIT - 1));
|
|
/*
|
|
now shift up this digit, add in the carry [from the previous]
|
|
*/
|
|
*tmpb++ = ((*tmpa++ << ((pstm_digit)1)) | r);
|
|
/*
|
|
copy the carry that would be from the source
|
|
digit into the next iteration
|
|
*/
|
|
r = rr;
|
|
}
|
|
|
|
/* new leading digit? */
|
|
if (r != 0 && b->used != (PSTM_MAX_SIZE-1)) {
|
|
/* add a MSB which is always 1 at this point */
|
|
*tmpb = 1;
|
|
++(b->used);
|
|
}
|
|
/*
|
|
now zero any excess digits on the destination that we didn't write to
|
|
*/
|
|
tmpb = b->dp + b->used;
|
|
for (x = b->used; x < oldused; x++) {
|
|
*tmpb++ = 0;
|
|
}
|
|
}
|
|
b->sign = a->sign;
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
unsigned subtraction ||a|| >= ||b|| ALWAYS!
|
|
*/
|
|
int32 s_pstm_sub(pstm_int *a, pstm_int *b, pstm_int *c)
|
|
{
|
|
int16 oldbused, oldused;
|
|
int32 x;
|
|
pstm_word t;
|
|
|
|
if (b->used > a->used) {
|
|
return PS_LIMIT_FAIL;
|
|
}
|
|
if (c->alloc < a->used) {
|
|
if ((x = pstm_grow (c, a->used)) != PSTM_OKAY) {
|
|
return x;
|
|
}
|
|
}
|
|
oldused = c->used;
|
|
oldbused = b->used;
|
|
c->used = a->used;
|
|
t = 0;
|
|
|
|
for (x = 0; x < oldbused; x++) {
|
|
t = ((pstm_word)a->dp[x]) - (((pstm_word)b->dp[x]) + t);
|
|
c->dp[x] = (pstm_digit)t;
|
|
t = (t >> DIGIT_BIT)&1;
|
|
}
|
|
for (; x < a->used; x++) {
|
|
t = ((pstm_word)a->dp[x]) - t;
|
|
c->dp[x] = (pstm_digit)t;
|
|
t = (t >> DIGIT_BIT);
|
|
}
|
|
for (; x < oldused; x++) {
|
|
c->dp[x] = 0;
|
|
}
|
|
pstm_clamp(c);
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
unsigned addition
|
|
*/
|
|
static int32 s_pstm_add(pstm_int *a, pstm_int *b, pstm_int *c)
|
|
{
|
|
int16 x, y, oldused;
|
|
register pstm_word t, adp, bdp;
|
|
|
|
y = a->used;
|
|
if (b->used > y) {
|
|
y = b->used;
|
|
}
|
|
oldused = c->used;
|
|
c->used = y;
|
|
|
|
if (c->used > c->alloc) {
|
|
if (pstm_grow(c, c->used) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
}
|
|
|
|
t = 0;
|
|
for (x = 0; x < y; x++) {
|
|
if (a->used < x) {
|
|
adp = 0;
|
|
} else {
|
|
adp = (pstm_word)a->dp[x];
|
|
}
|
|
if (b->used < x) {
|
|
bdp = 0;
|
|
} else {
|
|
bdp = (pstm_word)b->dp[x];
|
|
}
|
|
t += (adp) + (bdp);
|
|
c->dp[x] = (pstm_digit)t;
|
|
t >>= DIGIT_BIT;
|
|
}
|
|
if (t != 0 && x < PSTM_MAX_SIZE) {
|
|
if (c->used == c->alloc) {
|
|
if (pstm_grow(c, c->alloc + 1) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
}
|
|
c->dp[c->used++] = (pstm_digit)t;
|
|
++x;
|
|
}
|
|
|
|
c->used = x;
|
|
for (; x < oldused; x++) {
|
|
c->dp[x] = 0;
|
|
}
|
|
pstm_clamp(c);
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
|
|
*/
|
|
int32 pstm_sub(pstm_int *a, pstm_int *b, pstm_int *c)
|
|
{
|
|
int32 res;
|
|
int16 sa, sb;
|
|
|
|
sa = a->sign;
|
|
sb = b->sign;
|
|
|
|
if (sa != sb) {
|
|
/*
|
|
subtract a negative from a positive, OR a positive from a negative.
|
|
For both, ADD their magnitudes, and use the sign of the first number.
|
|
*/
|
|
c->sign = sa;
|
|
if ((res = s_pstm_add (a, b, c)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
} else {
|
|
/*
|
|
subtract a positive from a positive, OR a negative from a negative.
|
|
First, take the difference between their magnitudes, then...
|
|
*/
|
|
if (pstm_cmp_mag (a, b) != PSTM_LT) {
|
|
/* Copy the sign from the first */
|
|
c->sign = sa;
|
|
/* The first has a larger or equal magnitude */
|
|
if ((res = s_pstm_sub (a, b, c)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
} else {
|
|
/* The result has the _opposite_ sign from the first number. */
|
|
c->sign = (sa == PSTM_ZPOS) ? PSTM_NEG : PSTM_ZPOS;
|
|
/* The second has a larger magnitude */
|
|
if ((res = s_pstm_sub (b, a, c)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
return PS_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
c = a - b
|
|
*/
|
|
int32 pstm_sub_d(psPool_t *pool, pstm_int *a, pstm_digit b, pstm_int *c)
|
|
{
|
|
pstm_int tmp;
|
|
int32 res;
|
|
|
|
if (pstm_init_size(pool, &tmp, sizeof(pstm_digit)) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
pstm_set(&tmp, b);
|
|
res = pstm_sub(a, &tmp, c);
|
|
pstm_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
setups the montgomery reduction
|
|
*/
|
|
int32 pstm_montgomery_setup(pstm_int *a, pstm_digit *rho)
|
|
{
|
|
pstm_digit x, b;
|
|
|
|
/*
|
|
fast inversion mod 2**k
|
|
Based on the fact that
|
|
XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
|
=> 2*X*A - X*X*A*A = 1
|
|
=> 2*(1) - (1) = 1
|
|
*/
|
|
b = a->dp[0];
|
|
|
|
if ((b & 1) == 0) {
|
|
psTraceCrypto("pstm_montogomery_setup failure\n");
|
|
return PS_ARG_FAIL;
|
|
}
|
|
|
|
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
|
x *= 2 - b * x; /* here x*a==1 mod 2**8 */
|
|
x *= 2 - b * x; /* here x*a==1 mod 2**16 */
|
|
x *= 2 - b * x; /* here x*a==1 mod 2**32 */
|
|
#ifdef PSTM_64BIT
|
|
x *= 2 - b * x; /* here x*a==1 mod 2**64 */
|
|
#endif
|
|
/* rho = -1/m mod b */
|
|
*rho = (pstm_digit)(((pstm_word) 1 << ((pstm_word) DIGIT_BIT)) -
|
|
((pstm_word)x));
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* computes a = B**n mod b without division or multiplication useful for
|
|
* normalizing numbers in a Montgomery system.
|
|
*/
|
|
int32 pstm_montgomery_calc_normalization(pstm_int *a, pstm_int *b)
|
|
{
|
|
int32 x;
|
|
int16 bits;
|
|
|
|
/* how many bits of last digit does b use */
|
|
bits = pstm_count_bits (b) % DIGIT_BIT;
|
|
if (!bits) bits = DIGIT_BIT;
|
|
|
|
/* compute A = B^(n-1) * 2^(bits-1) */
|
|
if (b->used > 1) {
|
|
if ((x = pstm_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) !=
|
|
PSTM_OKAY) {
|
|
return x;
|
|
}
|
|
} else {
|
|
pstm_set(a, 1);
|
|
bits = 1;
|
|
}
|
|
|
|
/* now compute C = A * B mod b */
|
|
for (x = bits - 1; x < (int32)DIGIT_BIT; x++) {
|
|
if (pstm_mul_2 (a, a) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
if (pstm_cmp_mag (a, b) != PSTM_LT) {
|
|
if (s_pstm_sub (a, b, a) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
}
|
|
}
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
c = a * 2**d
|
|
*/
|
|
static int32 pstm_mul_2d(pstm_int *a, int16 b, pstm_int *c)
|
|
{
|
|
pstm_digit carry, carrytmp, shift;
|
|
int16 x;
|
|
|
|
/* copy it */
|
|
if (pstm_copy(a, c) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
|
|
/* handle whole digits */
|
|
if (b >= DIGIT_BIT) {
|
|
if (pstm_lshd(c, b/DIGIT_BIT) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
}
|
|
b %= DIGIT_BIT;
|
|
|
|
/* shift the digits */
|
|
if (b != 0) {
|
|
carry = 0;
|
|
shift = DIGIT_BIT - b;
|
|
for (x = 0; x < c->used; x++) {
|
|
carrytmp = c->dp[x] >> shift;
|
|
c->dp[x] = (c->dp[x] << b) + carry;
|
|
carry = carrytmp;
|
|
}
|
|
/* store last carry if room */
|
|
if (carry && x < PSTM_MAX_SIZE) {
|
|
if (c->used == c->alloc) {
|
|
if (pstm_grow(c, c->alloc + 1) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
}
|
|
c->dp[c->used++] = carry;
|
|
}
|
|
}
|
|
pstm_clamp(c);
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
c = a mod 2**d
|
|
*/
|
|
static int32 pstm_mod_2d(pstm_int *a, int16 b, pstm_int *c)
|
|
{
|
|
int16 x;
|
|
|
|
/* zero if count less than or equal to zero */
|
|
if (b <= 0) {
|
|
pstm_zero(c);
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/* get copy of input */
|
|
if (pstm_copy(a, c) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
|
|
/* if 2**d is larger than we just return */
|
|
if (b >= (DIGIT_BIT * a->used)) {
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/* zero digits above the last digit of the modulus */
|
|
for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++)
|
|
{
|
|
c->dp[x] = 0;
|
|
}
|
|
/* clear the digit that is not completely outside/inside the modulus */
|
|
c->dp[b / DIGIT_BIT] &= ~((pstm_digit)0) >> (DIGIT_BIT - b);
|
|
pstm_clamp (c);
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
c = a * b
|
|
*/
|
|
int32 pstm_mul_d(pstm_int *a, pstm_digit b, pstm_int *c)
|
|
{
|
|
pstm_word w;
|
|
int32 res;
|
|
int16 x, oldused;
|
|
|
|
if (c->alloc < a->used + 1) {
|
|
if ((res = pstm_grow (c, a->used + 1)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
}
|
|
oldused = c->used;
|
|
c->used = a->used;
|
|
c->sign = a->sign;
|
|
w = 0;
|
|
for (x = 0; x < a->used; x++) {
|
|
w = ((pstm_word)a->dp[x]) * ((pstm_word)b) + w;
|
|
c->dp[x] = (pstm_digit)w;
|
|
w = w >> DIGIT_BIT;
|
|
}
|
|
if (w != 0 && (a->used != PSTM_MAX_SIZE)) {
|
|
c->dp[c->used++] = (pstm_digit)w;
|
|
++x;
|
|
}
|
|
for (; x < oldused; x++) {
|
|
c->dp[x] = 0;
|
|
}
|
|
pstm_clamp(c);
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
c = a / 2**b
|
|
*/
|
|
int32 pstm_div_2d(psPool_t *pool, pstm_int *a, int16 b, pstm_int *c,
|
|
pstm_int *d)
|
|
{
|
|
pstm_digit D, r, rr;
|
|
int32 res;
|
|
int16 x;
|
|
pstm_int t;
|
|
|
|
/* if the shift count is <= 0 then we do no work */
|
|
if (b <= 0) {
|
|
if (pstm_copy (a, c) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
if (d != NULL) {
|
|
pstm_zero (d);
|
|
}
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/* get the remainder */
|
|
if (d != NULL) {
|
|
if (pstm_init(pool, &t) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
if (pstm_mod_2d (a, b, &t) != PSTM_OKAY) {
|
|
res = PS_MEM_FAIL;
|
|
goto LBL_DONE;
|
|
}
|
|
}
|
|
|
|
/* copy */
|
|
if (pstm_copy(a, c) != PSTM_OKAY) {
|
|
res = PS_MEM_FAIL;
|
|
goto LBL_DONE;
|
|
}
|
|
|
|
/* shift by as many digits in the bit count */
|
|
if (b >= (int32)DIGIT_BIT) {
|
|
pstm_rshd (c, b / DIGIT_BIT);
|
|
}
|
|
|
|
/* shift any bit count < DIGIT_BIT */
|
|
D = (pstm_digit) (b % DIGIT_BIT);
|
|
if (D != 0) {
|
|
register pstm_digit *tmpc, mask, shift;
|
|
|
|
/* mask */
|
|
mask = (((pstm_digit)1) << D) - 1;
|
|
|
|
/* shift for lsb */
|
|
shift = DIGIT_BIT - D;
|
|
|
|
/* alias */
|
|
tmpc = c->dp + (c->used - 1);
|
|
|
|
/* carry */
|
|
r = 0;
|
|
for (x = c->used - 1; x >= 0; x--) {
|
|
/* get the lower bits of this word in a temp */
|
|
rr = *tmpc & mask;
|
|
|
|
/* shift the current word and mix in the carry bits from previous */
|
|
*tmpc = (*tmpc >> D) | (r << shift);
|
|
--tmpc;
|
|
|
|
/* set the carry to the carry bits of the current word above */
|
|
r = rr;
|
|
}
|
|
}
|
|
pstm_clamp (c);
|
|
|
|
res = PSTM_OKAY;
|
|
LBL_DONE:
|
|
if (d != NULL) {
|
|
if (pstm_copy(&t, d) != PSTM_OKAY) {
|
|
res = PS_MEM_FAIL;
|
|
}
|
|
pstm_clear(&t);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
b = a/2
|
|
*/
|
|
int32 pstm_div_2(pstm_int * a, pstm_int * b)
|
|
{
|
|
int16 x, oldused;
|
|
|
|
if (b->alloc < a->used) {
|
|
if (pstm_grow(b, a->used) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
}
|
|
oldused = b->used;
|
|
b->used = a->used;
|
|
{
|
|
register pstm_digit r, rr, *tmpa, *tmpb;
|
|
|
|
/* source alias */
|
|
tmpa = a->dp + b->used - 1;
|
|
|
|
/* dest alias */
|
|
tmpb = b->dp + b->used - 1;
|
|
|
|
/* carry */
|
|
r = 0;
|
|
for (x = b->used - 1; x >= 0; x--) {
|
|
/* get the carry for the next iteration */
|
|
rr = *tmpa & 1;
|
|
|
|
/* shift the current digit, add in carry and store */
|
|
*tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
|
|
|
/* forward carry to next iteration */
|
|
r = rr;
|
|
}
|
|
|
|
/* zero excess digits */
|
|
tmpb = b->dp + b->used;
|
|
for (x = b->used; x < oldused; x++) {
|
|
*tmpb++ = 0;
|
|
}
|
|
}
|
|
b->sign = a->sign;
|
|
pstm_clamp (b);
|
|
return PSTM_OKAY;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Creates "a" then copies b into it
|
|
*/
|
|
int32 pstm_init_copy(psPool_t *pool, pstm_int * a, pstm_int * b, int16 toSqr)
|
|
{
|
|
int16 x;
|
|
int32 res;
|
|
|
|
if (a == b) {
|
|
return PSTM_OKAY;
|
|
}
|
|
x = b->alloc;
|
|
|
|
if (toSqr) {
|
|
/*
|
|
Smart-size: Increasing size of a if b->used is roughly half
|
|
of b->alloc because usage has shown that a lot of these copies
|
|
go on to be squared and need these extra digits
|
|
*/
|
|
if ((b->used * 2) + 2 >= x) {
|
|
x = (b->used * 2) + 3;
|
|
}
|
|
}
|
|
if ((res = pstm_init_size(pool, a, x)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
return pstm_copy(b, a);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
With some compilers, we have seen issues linking with the builtin
|
|
64 bit division routine. The issues with either manifest in a failure
|
|
to find 'udivdi3' at link time, or a runtime invalid instruction fault
|
|
during an RSA operation.
|
|
The routine below divides a 64 bit unsigned int by a 32 bit unsigned int
|
|
explicitly, rather than using the division operation
|
|
The 64 bit result is placed in the 'numerator' parameter
|
|
The 32 bit mod (remainder) of the division is the return parameter
|
|
Based on implementations by:
|
|
Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
|
|
Copyright (C) 1999 Hewlett-Packard Co
|
|
Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*/
|
|
#if defined(USE_MATRIX_DIV64) && defined(PSTM_32BIT)
|
|
static uint32 psDiv64(uint64 *numerator, uint32 denominator)
|
|
{
|
|
uint64 rem = *numerator;
|
|
uint64 b = denominator;
|
|
uint64 res = 0;
|
|
uint64 d = 1;
|
|
uint32 high = rem >> 32;
|
|
|
|
if (high >= denominator) {
|
|
high /= denominator;
|
|
res = (uint64) high << 32;
|
|
rem -= (uint64) (high * denominator) << 32;
|
|
}
|
|
while ((int64)b > 0 && b < rem) {
|
|
b = b+b;
|
|
d = d+d;
|
|
}
|
|
do {
|
|
if (rem >= b) {
|
|
rem -= b;
|
|
res += d;
|
|
}
|
|
b >>= 1;
|
|
d >>= 1;
|
|
} while (d);
|
|
*numerator = res;
|
|
return rem;
|
|
}
|
|
#endif /* USE_MATRIX_DIV64 */
|
|
|
|
#if defined(USE_MATRIX_DIV128) && defined(PSTM_64BIT)
|
|
typedef unsigned long uint128 __attribute__ ((mode(TI)));
|
|
static uint64 psDiv128(uint128 *numerator, uint64 denominator)
|
|
{
|
|
uint128 rem = *numerator;
|
|
uint128 b = denominator;
|
|
uint128 res = 0;
|
|
uint128 d = 1;
|
|
uint64 high = rem >> 64;
|
|
|
|
if (high >= denominator) {
|
|
high /= denominator;
|
|
res = (uint128) high << 64;
|
|
rem -= (uint128) (high * denominator) << 64;
|
|
}
|
|
while ((uint128)b > 0 && b < rem) {
|
|
b = b+b;
|
|
d = d+d;
|
|
}
|
|
do {
|
|
if (rem >= b) {
|
|
rem -= b;
|
|
res += d;
|
|
}
|
|
b >>= 1;
|
|
d >>= 1;
|
|
} while (d);
|
|
*numerator = res;
|
|
return rem;
|
|
}
|
|
#endif /* USE_MATRIX_DIV128 */
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
a/b => cb + d == a
|
|
*/
|
|
int32 pstm_div(psPool_t *pool, pstm_int *a, pstm_int *b, pstm_int *c,
|
|
pstm_int *d)
|
|
{
|
|
pstm_int q, x, y, t1, t2;
|
|
int32 res;
|
|
int16 n, t, i, norm, neg;
|
|
|
|
/* is divisor zero ? */
|
|
if (pstm_iszero (b) == 1) {
|
|
return PS_LIMIT_FAIL;
|
|
}
|
|
|
|
/* if a < b then q=0, r = a */
|
|
if (pstm_cmp_mag (a, b) == PSTM_LT) {
|
|
if (d != NULL) {
|
|
if (pstm_copy(a, d) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
}
|
|
if (c != NULL) {
|
|
pstm_zero (c);
|
|
}
|
|
return PSTM_OKAY;
|
|
}
|
|
/*
|
|
Smart-size inits
|
|
*/
|
|
if ((res = pstm_init_size(pool, &t1, a->alloc)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
if ((res = pstm_init_size(pool, &t2, 3)) != PSTM_OKAY) {
|
|
goto LBL_T1;
|
|
}
|
|
if ((res = pstm_init_copy(pool, &x, a, 0)) != PSTM_OKAY) {
|
|
goto LBL_T2;
|
|
}
|
|
/*
|
|
Used to be an init_copy on b but pstm_grow was always hit with triple size
|
|
*/
|
|
if ((res = pstm_init_size(pool, &y, b->used * 3)) != PSTM_OKAY) {
|
|
goto LBL_X;
|
|
}
|
|
if ((res = pstm_copy(b, &y)) != PSTM_OKAY) {
|
|
goto LBL_Y;
|
|
}
|
|
|
|
/* fix the sign */
|
|
neg = (a->sign == b->sign) ? PSTM_ZPOS : PSTM_NEG;
|
|
x.sign = y.sign = PSTM_ZPOS;
|
|
|
|
/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
|
|
norm = pstm_count_bits(&y) % DIGIT_BIT;
|
|
if (norm < (int32)(DIGIT_BIT-1)) {
|
|
norm = (DIGIT_BIT-1) - norm;
|
|
if ((res = pstm_mul_2d(&x, norm, &x)) != PSTM_OKAY) {
|
|
goto LBL_Y;
|
|
}
|
|
if ((res = pstm_mul_2d(&y, norm, &y)) != PSTM_OKAY) {
|
|
goto LBL_Y;
|
|
}
|
|
} else {
|
|
norm = 0;
|
|
}
|
|
|
|
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
|
n = x.used - 1;
|
|
t = y.used - 1;
|
|
|
|
if ((res = pstm_init_size(pool, &q, n - t + 1)) != PSTM_OKAY) {
|
|
goto LBL_Y;
|
|
}
|
|
q.used = n - t + 1;
|
|
|
|
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
|
|
if ((res = pstm_lshd(&y, n - t)) != PSTM_OKAY) { /* y = y*b**{n-t} */
|
|
goto LBL_Q;
|
|
}
|
|
|
|
while (pstm_cmp (&x, &y) != PSTM_LT) {
|
|
++(q.dp[n - t]);
|
|
if ((res = pstm_sub(&x, &y, &x)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
}
|
|
|
|
/* reset y by shifting it back down */
|
|
pstm_rshd (&y, n - t);
|
|
|
|
/* step 3. for i from n down to (t + 1) */
|
|
for (i = n; i >= (t + 1); i--) {
|
|
if (i > x.used) {
|
|
continue;
|
|
}
|
|
|
|
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
|
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
|
if (x.dp[i] == y.dp[t]) {
|
|
q.dp[i - t - 1] = (pstm_digit)((((pstm_word)1) << DIGIT_BIT) - 1);
|
|
} else {
|
|
pstm_word tmp;
|
|
tmp = ((pstm_word) x.dp[i]) << ((pstm_word) DIGIT_BIT);
|
|
tmp |= ((pstm_word) x.dp[i - 1]);
|
|
#if defined(USE_MATRIX_DIV64) && defined(PSTM_32BIT)
|
|
psDiv64(&tmp, y.dp[t]);
|
|
#elif defined(USE_MATRIX_DIV128) && defined(PSTM_64BIT)
|
|
psDiv128(&tmp, y.dp[t]);
|
|
#else
|
|
tmp /= ((pstm_word) y.dp[t]);
|
|
#endif /* USE_MATRIX_DIV64 */
|
|
q.dp[i - t - 1] = (pstm_digit) (tmp);
|
|
}
|
|
|
|
/* while (q{i-t-1} * (yt * b + y{t-1})) >
|
|
xi * b**2 + xi-1 * b + xi-2
|
|
|
|
do q{i-t-1} -= 1;
|
|
*/
|
|
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1);
|
|
do {
|
|
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1);
|
|
|
|
/* find left hand */
|
|
pstm_zero (&t1);
|
|
t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
|
t1.dp[1] = y.dp[t];
|
|
t1.used = 2;
|
|
if ((res = pstm_mul_d (&t1, q.dp[i - t - 1], &t1)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
|
|
/* find right hand */
|
|
t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
|
t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
|
t2.dp[2] = x.dp[i];
|
|
t2.used = 3;
|
|
} while (pstm_cmp_mag(&t1, &t2) == PSTM_GT);
|
|
|
|
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
|
|
if ((res = pstm_mul_d(&y, q.dp[i - t - 1], &t1)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
|
|
if ((res = pstm_lshd(&t1, i - t - 1)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
|
|
if ((res = pstm_sub(&x, &t1, &x)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
|
|
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
|
|
if (x.sign == PSTM_NEG) {
|
|
if ((res = pstm_copy(&y, &t1)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
if ((res = pstm_lshd (&t1, i - t - 1)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
if ((res = pstm_add (&x, &t1, &x)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
q.dp[i - t - 1] = q.dp[i - t - 1] - 1;
|
|
}
|
|
}
|
|
/*
|
|
now q is the quotient and x is the remainder (which we have to normalize)
|
|
*/
|
|
/* get sign before writing to c */
|
|
x.sign = x.used == 0 ? PSTM_ZPOS : a->sign;
|
|
|
|
if (c != NULL) {
|
|
pstm_clamp (&q);
|
|
if (pstm_copy (&q, c) != PSTM_OKAY) {
|
|
res = PS_MEM_FAIL;
|
|
goto LBL_Q;
|
|
}
|
|
c->sign = neg;
|
|
}
|
|
|
|
if (d != NULL) {
|
|
if ((res = pstm_div_2d (pool, &x, norm, &x, NULL)) != PSTM_OKAY) {
|
|
goto LBL_Q;
|
|
}
|
|
/*
|
|
the following is a kludge, essentially we were seeing the right
|
|
remainder but with excess digits that should have been zero
|
|
*/
|
|
for (i = b->used; i < x.used; i++) {
|
|
x.dp[i] = 0;
|
|
}
|
|
pstm_clamp(&x);
|
|
if (pstm_copy (&x, d) != PSTM_OKAY) {
|
|
res = PS_MEM_FAIL;
|
|
goto LBL_Q;
|
|
}
|
|
}
|
|
|
|
res = PSTM_OKAY;
|
|
|
|
LBL_Q:pstm_clear (&q);
|
|
LBL_Y:pstm_clear (&y);
|
|
LBL_X:pstm_clear (&x);
|
|
LBL_T2:pstm_clear (&t2);
|
|
LBL_T1:pstm_clear (&t1);
|
|
|
|
return res;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
Swap the elements of two integers, for cases where you can't simply swap
|
|
the pstm_int pointers around
|
|
*/
|
|
void pstm_exch(pstm_int * a, pstm_int * b)
|
|
{
|
|
pstm_int t;
|
|
|
|
t = *a;
|
|
*a = *b;
|
|
*b = t;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
c = a mod b, 0 <= c < b
|
|
*/
|
|
int32 pstm_mod(psPool_t *pool, pstm_int *a, pstm_int *b, pstm_int *c)
|
|
{
|
|
pstm_int t;
|
|
int32 err;
|
|
/*
|
|
Smart-size
|
|
*/
|
|
if ((err = pstm_init_size(pool, &t, b->alloc)) != PSTM_OKAY) {
|
|
return err;
|
|
}
|
|
if ((err = pstm_div(pool, a, b, NULL, &t)) != PSTM_OKAY) {
|
|
pstm_clear (&t);
|
|
return err;
|
|
}
|
|
if (t.sign != b->sign) {
|
|
err = pstm_add(&t, b, c);
|
|
} else {
|
|
pstm_exch (&t, c);
|
|
}
|
|
pstm_clear (&t);
|
|
return err;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
d = a * b (mod c)
|
|
*/
|
|
int32 pstm_mulmod(psPool_t *pool, pstm_int *a, pstm_int *b, pstm_int *c,
|
|
pstm_int *d)
|
|
{
|
|
int32 res;
|
|
int16 size;
|
|
pstm_int tmp;
|
|
|
|
/*
|
|
Smart-size pstm_inits. d is an output that is influenced by this local 't'
|
|
so don't shrink 'd' if it wants to becuase this will lead to an pstm_grow
|
|
in RSA operations
|
|
*/
|
|
size = a->used + b->used + 1;
|
|
if ((a == d) && (size < a->alloc)) {
|
|
size = a->alloc;
|
|
}
|
|
if ((res = pstm_init_size(pool, &tmp, size)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
if ((res = pstm_mul_comba(pool, a, b, &tmp, NULL, 0)) != PSTM_OKAY) {
|
|
pstm_clear(&tmp);
|
|
return res;
|
|
}
|
|
res = pstm_mod(pool, &tmp, c, d);
|
|
pstm_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* y = g**x (mod b)
|
|
* Some restrictions... x must be positive and < b
|
|
*/
|
|
int32 pstm_exptmod(psPool_t *pool, pstm_int *G, pstm_int *X, pstm_int *P,
|
|
pstm_int *Y)
|
|
{
|
|
pstm_int M[32], res; /* Keep this winsize based: (1 << max_winsize) */
|
|
pstm_digit buf, mp;
|
|
pstm_digit *paD;
|
|
int32 err, bitbuf;
|
|
int16 bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
|
uint32 paDlen;
|
|
|
|
/* set window size from what user set as optimization */
|
|
x = pstm_count_bits(X);
|
|
if (x < 50) {
|
|
winsize = 2;
|
|
} else {
|
|
winsize = PS_EXPTMOD_WINSIZE;
|
|
}
|
|
|
|
/* now setup montgomery */
|
|
if ((err = pstm_montgomery_setup (P, &mp)) != PSTM_OKAY) {
|
|
return err;
|
|
}
|
|
|
|
/* setup result */
|
|
if ((err = pstm_init_size(pool, &res, (P->used * 2) + 1)) != PSTM_OKAY) {
|
|
return err;
|
|
}
|
|
/*
|
|
create M table
|
|
The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
|
The first half of the table is not computed though except for M[0] and M[1]
|
|
*/
|
|
/* now we need R mod m */
|
|
if ((err = pstm_montgomery_calc_normalization (&res, P)) != PSTM_OKAY) {
|
|
goto LBL_RES;
|
|
}
|
|
/*
|
|
init M array
|
|
init first cell
|
|
*/
|
|
if ((err = pstm_init_size(pool, &M[1], res.used)) != PSTM_OKAY) {
|
|
goto LBL_RES;
|
|
}
|
|
|
|
/* now set M[1] to G * R mod m */
|
|
if (pstm_cmp_mag(P, G) != PSTM_GT) {
|
|
/* G > P so we reduce it first */
|
|
if ((err = pstm_mod(pool, G, P, &M[1])) != PSTM_OKAY) {
|
|
goto LBL_M;
|
|
}
|
|
} else {
|
|
if ((err = pstm_copy(G, &M[1])) != PSTM_OKAY) {
|
|
goto LBL_M;
|
|
}
|
|
}
|
|
if ((err = pstm_mulmod (pool, &M[1], &res, P, &M[1])) != PSTM_OKAY) {
|
|
goto LBL_M;
|
|
}
|
|
/*
|
|
Pre-allocated digit. Used for mul, sqr, AND reduce
|
|
*/
|
|
paDlen = ((M[1].used + 3) * 2) * sizeof(pstm_digit);
|
|
paD = xzalloc(paDlen);//bbox
|
|
/*
|
|
compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times
|
|
*/
|
|
if (pstm_init_copy(pool, &M[1 << (winsize - 1)], &M[1], 1) != PSTM_OKAY) {
|
|
err = PS_MEM_FAIL;
|
|
goto LBL_PAD;
|
|
}
|
|
for (x = 0; x < (winsize - 1); x++) {
|
|
if ((err = pstm_sqr_comba (pool, &M[1 << (winsize - 1)],
|
|
&M[1 << (winsize - 1)], paD, paDlen)) != PSTM_OKAY) {
|
|
goto LBL_PAD;
|
|
}
|
|
if ((err = pstm_montgomery_reduce(pool, &M[1 << (winsize - 1)], P, mp,
|
|
paD, paDlen)) != PSTM_OKAY) {
|
|
goto LBL_PAD;
|
|
}
|
|
}
|
|
/*
|
|
now init the second half of the array
|
|
*/
|
|
for (x = (1<<(winsize-1)) + 1; x < (1 << winsize); x++) {
|
|
if ((err = pstm_init_size(pool, &M[x], M[1<<(winsize-1)].alloc + 1))
|
|
!= PSTM_OKAY) {
|
|
for (y = 1<<(winsize-1); y < x; y++) {
|
|
pstm_clear(&M[y]);
|
|
}
|
|
goto LBL_PAD;
|
|
}
|
|
}
|
|
|
|
/* create upper table */
|
|
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
if ((err = pstm_mul_comba(pool, &M[x - 1], &M[1], &M[x], paD, paDlen))
|
|
!= PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
if ((err = pstm_montgomery_reduce(pool, &M[x], P, mp, paD, paDlen)) !=
|
|
PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
}
|
|
|
|
/* set initial mode and bit cnt */
|
|
mode = 0;
|
|
bitcnt = 1;
|
|
buf = 0;
|
|
digidx = X->used - 1;
|
|
bitcpy = 0;
|
|
bitbuf = 0;
|
|
|
|
for (;;) {
|
|
/* grab next digit as required */
|
|
if (--bitcnt == 0) {
|
|
/* if digidx == -1 we are out of digits so break */
|
|
if (digidx == -1) {
|
|
break;
|
|
}
|
|
/* read next digit and reset bitcnt */
|
|
buf = X->dp[digidx--];
|
|
bitcnt = (int32)DIGIT_BIT;
|
|
}
|
|
|
|
/* grab the next msb from the exponent */
|
|
y = (pstm_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
|
buf <<= (pstm_digit)1;
|
|
/*
|
|
If the bit is zero and mode == 0 then we ignore it.
|
|
These represent the leading zero bits before the first 1 bit
|
|
in the exponent. Technically this opt is not required but it
|
|
does lower the # of trivial squaring/reductions used
|
|
*/
|
|
if (mode == 0 && y == 0) {
|
|
continue;
|
|
}
|
|
|
|
/* if the bit is zero and mode == 1 then we square */
|
|
if (mode == 1 && y == 0) {
|
|
if ((err = pstm_sqr_comba(pool, &res, &res, paD, paDlen)) !=
|
|
PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, paDlen))
|
|
!= PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* else we add it to the window */
|
|
bitbuf |= (y << (winsize - ++bitcpy));
|
|
mode = 2;
|
|
|
|
if (bitcpy == winsize) {
|
|
/* ok window is filled so square as required and mul square first */
|
|
for (x = 0; x < winsize; x++) {
|
|
if ((err = pstm_sqr_comba(pool, &res, &res, paD, paDlen)) !=
|
|
PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD,
|
|
paDlen)) != PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
}
|
|
|
|
/* then multiply */
|
|
if ((err = pstm_mul_comba(pool, &res, &M[bitbuf], &res, paD,
|
|
paDlen)) != PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, paDlen))
|
|
!= PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
|
|
/* empty window and reset */
|
|
bitcpy = 0;
|
|
bitbuf = 0;
|
|
mode = 1;
|
|
}
|
|
}
|
|
|
|
/* if bits remain then square/multiply */
|
|
if (mode == 2 && bitcpy > 0) {
|
|
/* square then multiply if the bit is set */
|
|
for (x = 0; x < bitcpy; x++) {
|
|
if ((err = pstm_sqr_comba(pool, &res, &res, paD, paDlen)) !=
|
|
PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, paDlen))
|
|
!= PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
|
|
/* get next bit of the window */
|
|
bitbuf <<= 1;
|
|
if ((bitbuf & (1 << winsize)) != 0) {
|
|
/* then multiply */
|
|
if ((err = pstm_mul_comba(pool, &res, &M[1], &res, paD, paDlen))
|
|
!= PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD,
|
|
paDlen)) != PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
Fix up result if Montgomery reduction is used recall that any value in a
|
|
Montgomery system is actually multiplied by R mod n. So we have to reduce
|
|
one more time to cancel out the factor of R.
|
|
*/
|
|
if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, paDlen)) !=
|
|
PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
/* swap res with Y */
|
|
if ((err = pstm_copy (&res, Y)) != PSTM_OKAY) {
|
|
goto LBL_MARRAY;
|
|
}
|
|
err = PSTM_OKAY;
|
|
LBL_MARRAY:
|
|
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
|
pstm_clear(&M[x]);
|
|
}
|
|
LBL_PAD:psFree(paD, pool);
|
|
LBL_M: pstm_clear(&M[1]);
|
|
LBL_RES:pstm_clear(&res);
|
|
return err;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
|
|
*/
|
|
int32 pstm_add(pstm_int *a, pstm_int *b, pstm_int *c)
|
|
{
|
|
int32 res;
|
|
int16 sa, sb;
|
|
|
|
/* get sign of both inputs */
|
|
sa = a->sign;
|
|
sb = b->sign;
|
|
|
|
/* handle two cases, not four */
|
|
if (sa == sb) {
|
|
/* both positive or both negative, add their mags, copy the sign */
|
|
c->sign = sa;
|
|
if ((res = s_pstm_add (a, b, c)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
} else {
|
|
/*
|
|
one positive, the other negative
|
|
subtract the one with the greater magnitude from the one of the lesser
|
|
magnitude. The result gets the sign of the one with the greater mag.
|
|
*/
|
|
if (pstm_cmp_mag (a, b) == PSTM_LT) {
|
|
c->sign = sb;
|
|
if ((res = s_pstm_sub (b, a, c)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
} else {
|
|
c->sign = sa;
|
|
if ((res = s_pstm_sub (a, b, c)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
return PS_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
reverse an array, used for radix code
|
|
*/
|
|
static void pstm_reverse (unsigned char *s, int16 len)
|
|
{
|
|
int32 ix, iy;
|
|
unsigned char t;
|
|
|
|
ix = 0;
|
|
iy = len - 1;
|
|
while (ix < iy) {
|
|
t = s[ix];
|
|
s[ix] = s[iy];
|
|
s[iy] = t;
|
|
++ix;
|
|
--iy;
|
|
}
|
|
}
|
|
/******************************************************************************/
|
|
/*
|
|
No reverse. Useful in some of the EIP-154 PKA stuff where special byte
|
|
order seems to come into play more often
|
|
*/
|
|
int32 pstm_to_unsigned_bin_nr(psPool_t *pool, pstm_int *a, unsigned char *b)
|
|
{
|
|
int32 res;
|
|
int16 x;
|
|
pstm_int t = { 0 };
|
|
|
|
if ((res = pstm_init_copy(pool, &t, a, 0)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
|
|
x = 0;
|
|
while (pstm_iszero (&t) == 0) {
|
|
b[x++] = (unsigned char) (t.dp[0] & 255);
|
|
if ((res = pstm_div_2d (pool, &t, 8, &t, NULL)) != PSTM_OKAY) {
|
|
pstm_clear(&t);
|
|
return res;
|
|
}
|
|
}
|
|
pstm_clear(&t);
|
|
return PS_SUCCESS;
|
|
}
|
|
/******************************************************************************/
|
|
/*
|
|
|
|
*/
|
|
int32 pstm_to_unsigned_bin(psPool_t *pool, pstm_int *a, unsigned char *b)
|
|
{
|
|
int32 res;
|
|
int16 x;
|
|
pstm_int t = { 0 };
|
|
|
|
if ((res = pstm_init_copy(pool, &t, a, 0)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
|
|
x = 0;
|
|
while (pstm_iszero (&t) == 0) {
|
|
b[x++] = (unsigned char) (t.dp[0] & 255);
|
|
if ((res = pstm_div_2d (pool, &t, 8, &t, NULL)) != PSTM_OKAY) {
|
|
pstm_clear(&t);
|
|
return res;
|
|
}
|
|
}
|
|
pstm_reverse (b, x);
|
|
pstm_clear(&t);
|
|
return PS_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
compare against a single digit
|
|
*/
|
|
int32 pstm_cmp_d(pstm_int *a, pstm_digit b)
|
|
{
|
|
/* compare based on sign */
|
|
if ((b && a->used == 0) || a->sign == PSTM_NEG) {
|
|
return PSTM_LT;
|
|
}
|
|
|
|
/* compare based on magnitude */
|
|
if (a->used > 1) {
|
|
return PSTM_GT;
|
|
}
|
|
|
|
/* compare the only digit of a to b */
|
|
if (a->dp[0] > b) {
|
|
return PSTM_GT;
|
|
} else if (a->dp[0] < b) {
|
|
return PSTM_LT;
|
|
} else {
|
|
return PSTM_EQ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Need invmod for ECC and also private key loading for hardware crypto
|
|
in cases where dQ > dP. The values must be switched and a new qP must be
|
|
calculated using this function
|
|
*/
|
|
//bbox: pool unused
|
|
#define pstm_invmod_slow(pool, a, b, c) \
|
|
pstm_invmod_slow( a, b, c)
|
|
static int32 pstm_invmod_slow(psPool_t *pool, pstm_int * a, pstm_int * b,
|
|
pstm_int * c)
|
|
{
|
|
pstm_int x, y, u, v, A, B, C, D;
|
|
int32 res;
|
|
|
|
/* b cannot be negative */
|
|
if (b->sign == PSTM_NEG || pstm_iszero(b) == 1) {
|
|
return PS_LIMIT_FAIL;
|
|
}
|
|
|
|
/* init temps */
|
|
if (pstm_init_size(pool, &x, b->used) != PSTM_OKAY) {
|
|
return PS_MEM_FAIL;
|
|
}
|
|
|
|
/* x = a, y = b */
|
|
if ((res = pstm_mod(pool, a, b, &x)) != PSTM_OKAY) {
|
|
goto LBL_X;
|
|
}
|
|
|
|
if (pstm_init_copy(pool, &y, b, 0) != PSTM_OKAY) {
|
|
goto LBL_X;
|
|
}
|
|
|
|
/* 2. [modified] if x,y are both even then return an error! */
|
|
if (pstm_iseven (&x) == 1 && pstm_iseven (&y) == 1) {
|
|
res = PS_FAILURE;
|
|
goto LBL_Y;
|
|
}
|
|
|
|
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
if ((res = pstm_init_copy(pool, &u, &x, 0)) != PSTM_OKAY) {
|
|
goto LBL_Y;
|
|
}
|
|
if ((res = pstm_init_copy(pool, &v, &y, 0)) != PSTM_OKAY) {
|
|
goto LBL_U;
|
|
}
|
|
|
|
if ((res = pstm_init_size(pool, &A, sizeof(pstm_digit))) != PSTM_OKAY) {
|
|
goto LBL_V;
|
|
}
|
|
|
|
if ((res = pstm_init_size(pool, &D, sizeof(pstm_digit))) != PSTM_OKAY) {
|
|
goto LBL_A;
|
|
}
|
|
pstm_set (&A, 1);
|
|
pstm_set (&D, 1);
|
|
|
|
if ((res = pstm_init(pool, &B)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
if ((res = pstm_init(pool, &C)) != PSTM_OKAY) {
|
|
goto LBL_B;
|
|
}
|
|
|
|
top:
|
|
/* 4. while u is even do */
|
|
while (pstm_iseven (&u) == 1) {
|
|
/* 4.1 u = u/2 */
|
|
if ((res = pstm_div_2 (&u, &u)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
|
|
/* 4.2 if A or B is odd then */
|
|
if (pstm_isodd (&A) == 1 || pstm_isodd (&B) == 1) {
|
|
/* A = (A+y)/2, B = (B-x)/2 */
|
|
if ((res = pstm_add (&A, &y, &A)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
if ((res = pstm_sub (&B, &x, &B)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
}
|
|
/* A = A/2, B = B/2 */
|
|
if ((res = pstm_div_2 (&A, &A)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
if ((res = pstm_div_2 (&B, &B)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
}
|
|
|
|
/* 5. while v is even do */
|
|
while (pstm_iseven (&v) == 1) {
|
|
/* 5.1 v = v/2 */
|
|
if ((res = pstm_div_2 (&v, &v)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
|
|
/* 5.2 if C or D is odd then */
|
|
if (pstm_isodd (&C) == 1 || pstm_isodd (&D) == 1) {
|
|
/* C = (C+y)/2, D = (D-x)/2 */
|
|
if ((res = pstm_add (&C, &y, &C)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
if ((res = pstm_sub (&D, &x, &D)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
}
|
|
/* C = C/2, D = D/2 */
|
|
if ((res = pstm_div_2 (&C, &C)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
if ((res = pstm_div_2 (&D, &D)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
}
|
|
|
|
/* 6. if u >= v then */
|
|
if (pstm_cmp (&u, &v) != PSTM_LT) {
|
|
/* u = u - v, A = A - C, B = B - D */
|
|
if ((res = pstm_sub (&u, &v, &u)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
if ((res = pstm_sub (&A, &C, &A)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
if ((res = pstm_sub (&B, &D, &B)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
} else {
|
|
/* v - v - u, C = C - A, D = D - B */
|
|
if ((res = pstm_sub (&v, &u, &v)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
if ((res = pstm_sub (&C, &A, &C)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
if ((res = pstm_sub (&D, &B, &D)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
}
|
|
|
|
/* if not zero goto step 4 */
|
|
if (pstm_iszero (&u) == 0)
|
|
goto top;
|
|
|
|
/* now a = C, b = D, gcd == g*v */
|
|
|
|
/* if v != 1 then there is no inverse */
|
|
if (pstm_cmp_d (&v, 1) != PSTM_EQ) {
|
|
res = PS_FAILURE;
|
|
goto LBL_C;
|
|
}
|
|
|
|
/* if its too low */
|
|
while (pstm_cmp_d(&C, 0) == PSTM_LT) {
|
|
if ((res = pstm_add(&C, b, &C)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
}
|
|
|
|
/* too big */
|
|
while (pstm_cmp_mag(&C, b) != PSTM_LT) {
|
|
if ((res = pstm_sub(&C, b, &C)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
}
|
|
|
|
/* C is now the inverse */
|
|
if ((res = pstm_copy(&C, c)) != PSTM_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
res = PSTM_OKAY;
|
|
|
|
LBL_C: pstm_clear(&C);
|
|
LBL_D: pstm_clear(&D);
|
|
LBL_B: pstm_clear(&B);
|
|
LBL_A: pstm_clear(&A);
|
|
LBL_V: pstm_clear(&v);
|
|
LBL_U: pstm_clear(&u);
|
|
LBL_Y: pstm_clear(&y);
|
|
LBL_X: pstm_clear(&x);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* c = 1/a (mod b) for odd b only */
|
|
int32 pstm_invmod(psPool_t *pool, pstm_int *a, pstm_int *b, pstm_int *c)
|
|
{
|
|
pstm_int x, y, u, v, B, D;
|
|
int32 res;
|
|
uint16 neg, sanity;
|
|
|
|
/* 2. [modified] b must be odd */
|
|
if (pstm_iseven (b) == 1) {
|
|
return pstm_invmod_slow(pool, a,b,c);
|
|
}
|
|
|
|
/* x == modulus, y == value to invert */
|
|
if ((res = pstm_init_copy(pool, &x, b, 0)) != PSTM_OKAY) {
|
|
return res;
|
|
}
|
|
|
|
if ((res = pstm_init_size(pool, &y, a->alloc)) != PSTM_OKAY) {
|
|
goto LBL_X;
|
|
}
|
|
|
|
/* we need y = |a| */
|
|
pstm_abs(a, &y);
|
|
|
|
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
|
if ((res = pstm_init_copy(pool, &u, &x, 0)) != PSTM_OKAY) {
|
|
goto LBL_Y;
|
|
}
|
|
if ((res = pstm_init_copy(pool, &v, &y, 0)) != PSTM_OKAY) {
|
|
goto LBL_U;
|
|
}
|
|
if ((res = pstm_init(pool, &B)) != PSTM_OKAY) {
|
|
goto LBL_V;
|
|
}
|
|
if ((res = pstm_init(pool, &D)) != PSTM_OKAY) {
|
|
goto LBL_B;
|
|
}
|
|
|
|
pstm_set (&D, 1);
|
|
|
|
sanity = 0;
|
|
top:
|
|
/* 4. while u is even do */
|
|
while (pstm_iseven (&u) == 1) {
|
|
/* 4.1 u = u/2 */
|
|
if ((res = pstm_div_2 (&u, &u)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
|
|
/* 4.2 if B is odd then */
|
|
if (pstm_isodd (&B) == 1) {
|
|
if ((res = pstm_sub (&B, &x, &B)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
}
|
|
/* B = B/2 */
|
|
if ((res = pstm_div_2 (&B, &B)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
}
|
|
|
|
/* 5. while v is even do */
|
|
while (pstm_iseven (&v) == 1) {
|
|
/* 5.1 v = v/2 */
|
|
if ((res = pstm_div_2 (&v, &v)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
/* 5.2 if D is odd then */
|
|
if (pstm_isodd (&D) == 1) {
|
|
/* D = (D-x)/2 */
|
|
if ((res = pstm_sub (&D, &x, &D)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
}
|
|
/* D = D/2 */
|
|
if ((res = pstm_div_2 (&D, &D)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
}
|
|
|
|
/* 6. if u >= v then */
|
|
if (pstm_cmp (&u, &v) != PSTM_LT) {
|
|
/* u = u - v, B = B - D */
|
|
if ((res = pstm_sub (&u, &v, &u)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
if ((res = pstm_sub (&B, &D, &B)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
} else {
|
|
/* v - v - u, D = D - B */
|
|
if ((res = pstm_sub (&v, &u, &v)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
if ((res = pstm_sub (&D, &B, &D)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
}
|
|
|
|
/* if not zero goto step 4 */
|
|
if (sanity++ > 1000) {
|
|
res = PS_LIMIT_FAIL;
|
|
goto LBL_D;
|
|
}
|
|
if (pstm_iszero (&u) == 0) {
|
|
goto top;
|
|
}
|
|
|
|
/* now a = C, b = D, gcd == g*v */
|
|
|
|
/* if v != 1 then there is no inverse */
|
|
if (pstm_cmp_d (&v, 1) != PSTM_EQ) {
|
|
res = PS_FAILURE;
|
|
goto LBL_D;
|
|
}
|
|
|
|
/* b is now the inverse */
|
|
neg = a->sign;
|
|
while (D.sign == PSTM_NEG) {
|
|
if ((res = pstm_add (&D, b, &D)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
}
|
|
if ((res = pstm_copy (&D, c)) != PSTM_OKAY) {
|
|
goto LBL_D;
|
|
}
|
|
c->sign = neg;
|
|
res = PSTM_OKAY;
|
|
|
|
LBL_D: pstm_clear(&D);
|
|
LBL_B: pstm_clear(&B);
|
|
LBL_V: pstm_clear(&v);
|
|
LBL_U: pstm_clear(&u);
|
|
LBL_Y: pstm_clear(&y);
|
|
LBL_X: pstm_clear(&x);
|
|
return res;
|
|
}
|
|
#endif /* !DISABLE_PSTM */
|
|
/******************************************************************************/
|