mirror of
https://github.com/topjohnwu/ndk-busybox.git
synced 2024-12-14 23:38:35 +00:00
305958dbd4
For CONFIG_MD5_SMALL=1: function old new delta md5_process_block64 925 881 -44 For CONFIG_MD5_SMALL=0: function old new delta md5_process_block64 1603 1586 -17 Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
1444 lines
37 KiB
C
1444 lines
37 KiB
C
/* vi: set sw=4 ts=4: */
|
|
/*
|
|
* Utility routines.
|
|
*
|
|
* Copyright (C) 2010 Denys Vlasenko
|
|
*
|
|
* Licensed under GPLv2 or later, see file LICENSE in this source tree.
|
|
*/
|
|
|
|
#include "libbb.h"
|
|
|
|
/* gcc 4.2.1 optimizes rotr64 better with inline than with macro
|
|
* (for rotX32, there is no difference). Why? My guess is that
|
|
* macro requires clever common subexpression elimination heuristics
|
|
* in gcc, while inline basically forces it to happen.
|
|
*/
|
|
//#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
|
|
static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n)
|
|
{
|
|
return (x << n) | (x >> (32 - n));
|
|
}
|
|
//#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
|
|
static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n)
|
|
{
|
|
return (x >> n) | (x << (32 - n));
|
|
}
|
|
/* rotr64 in needed for sha512 only: */
|
|
//#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
|
|
static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n)
|
|
{
|
|
return (x >> n) | (x << (64 - n));
|
|
}
|
|
|
|
/* rotl64 only used for sha3 currently */
|
|
static ALWAYS_INLINE uint64_t rotl64(uint64_t x, unsigned n)
|
|
{
|
|
return (x << n) | (x >> (64 - n));
|
|
}
|
|
|
|
/* Feed data through a temporary buffer.
|
|
* The internal buffer remembers previous data until it has 64
|
|
* bytes worth to pass on.
|
|
*/
|
|
static void FAST_FUNC common64_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
|
|
{
|
|
unsigned bufpos = ctx->total64 & 63;
|
|
|
|
ctx->total64 += len;
|
|
|
|
while (1) {
|
|
unsigned remaining = 64 - bufpos;
|
|
if (remaining > len)
|
|
remaining = len;
|
|
/* Copy data into aligned buffer */
|
|
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
|
|
len -= remaining;
|
|
buffer = (const char *)buffer + remaining;
|
|
bufpos += remaining;
|
|
/* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
|
|
bufpos -= 64;
|
|
if (bufpos != 0)
|
|
break;
|
|
/* Buffer is filled up, process it */
|
|
ctx->process_block(ctx);
|
|
/*bufpos = 0; - already is */
|
|
}
|
|
}
|
|
|
|
/* Process the remaining bytes in the buffer */
|
|
static void FAST_FUNC common64_end(md5_ctx_t *ctx, int swap_needed)
|
|
{
|
|
unsigned bufpos = ctx->total64 & 63;
|
|
/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
|
|
ctx->wbuffer[bufpos++] = 0x80;
|
|
|
|
/* This loop iterates either once or twice, no more, no less */
|
|
while (1) {
|
|
unsigned remaining = 64 - bufpos;
|
|
memset(ctx->wbuffer + bufpos, 0, remaining);
|
|
/* Do we have enough space for the length count? */
|
|
if (remaining >= 8) {
|
|
/* Store the 64-bit counter of bits in the buffer */
|
|
uint64_t t = ctx->total64 << 3;
|
|
if (swap_needed)
|
|
t = bb_bswap_64(t);
|
|
/* wbuffer is suitably aligned for this */
|
|
*(bb__aliased_uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
|
|
}
|
|
ctx->process_block(ctx);
|
|
if (remaining >= 8)
|
|
break;
|
|
bufpos = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute MD5 checksum of strings according to the
|
|
* definition of MD5 in RFC 1321 from April 1992.
|
|
*
|
|
* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
|
|
*
|
|
* Copyright (C) 1995-1999 Free Software Foundation, Inc.
|
|
* Copyright (C) 2001 Manuel Novoa III
|
|
* Copyright (C) 2003 Glenn L. McGrath
|
|
* Copyright (C) 2003 Erik Andersen
|
|
*
|
|
* Licensed under GPLv2 or later, see file LICENSE in this source tree.
|
|
*/
|
|
|
|
/* 0: fastest, 3: smallest */
|
|
#if CONFIG_MD5_SMALL < 0
|
|
# define MD5_SMALL 0
|
|
#elif CONFIG_MD5_SMALL > 3
|
|
# define MD5_SMALL 3
|
|
#else
|
|
# define MD5_SMALL CONFIG_MD5_SMALL
|
|
#endif
|
|
|
|
/* These are the four functions used in the four steps of the MD5 algorithm
|
|
* and defined in the RFC 1321. The first function is a little bit optimized
|
|
* (as found in Colin Plumbs public domain implementation).
|
|
* #define FF(b, c, d) ((b & c) | (~b & d))
|
|
*/
|
|
#undef FF
|
|
#undef FG
|
|
#undef FH
|
|
#undef FI
|
|
#define FF(b, c, d) (d ^ (b & (c ^ d)))
|
|
#define FG(b, c, d) FF(d, b, c)
|
|
#define FH(b, c, d) (b ^ c ^ d)
|
|
#define FI(b, c, d) (c ^ (b | ~d))
|
|
|
|
/* Hash a single block, 64 bytes long and 4-byte aligned */
|
|
static void FAST_FUNC md5_process_block64(md5_ctx_t *ctx)
|
|
{
|
|
#if MD5_SMALL > 0
|
|
/* Before we start, one word to the strange constants.
|
|
They are defined in RFC 1321 as
|
|
T[i] = (int)(2^32 * fabs(sin(i))), i=1..64
|
|
*/
|
|
static const uint32_t C_array[] = {
|
|
/* round 1 */
|
|
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
|
|
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
|
|
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
|
|
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
|
|
/* round 2 */
|
|
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
|
|
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
|
|
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
|
|
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
|
|
/* round 3 */
|
|
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
|
|
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
|
|
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
|
|
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
|
|
/* round 4 */
|
|
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
|
|
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
|
|
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
|
|
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
|
|
};
|
|
static const char P_array[] ALIGN1 = {
|
|
# if MD5_SMALL > 1
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
|
|
# endif
|
|
1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
|
|
5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
|
|
0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
|
|
};
|
|
#endif
|
|
uint32_t *words = (void*) ctx->wbuffer;
|
|
uint32_t A = ctx->hash[0];
|
|
uint32_t B = ctx->hash[1];
|
|
uint32_t C = ctx->hash[2];
|
|
uint32_t D = ctx->hash[3];
|
|
|
|
#if MD5_SMALL >= 2 /* 2 or 3 */
|
|
|
|
static const char S_array[] ALIGN1 = {
|
|
7, 12, 17, 22,
|
|
5, 9, 14, 20,
|
|
4, 11, 16, 23,
|
|
6, 10, 15, 21
|
|
};
|
|
const uint32_t *pc;
|
|
const char *pp;
|
|
const char *ps;
|
|
int i;
|
|
uint32_t temp;
|
|
|
|
if (BB_BIG_ENDIAN)
|
|
for (i = 0; i < 16; i++)
|
|
words[i] = SWAP_LE32(words[i]);
|
|
|
|
# if MD5_SMALL == 3
|
|
pc = C_array;
|
|
pp = P_array;
|
|
ps = S_array - 4;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if ((i & 0x0f) == 0)
|
|
ps += 4;
|
|
temp = A;
|
|
switch (i >> 4) {
|
|
case 0:
|
|
temp += FF(B, C, D);
|
|
break;
|
|
case 1:
|
|
temp += FG(B, C, D);
|
|
break;
|
|
case 2:
|
|
temp += FH(B, C, D);
|
|
break;
|
|
default: /* case 3 */
|
|
temp += FI(B, C, D);
|
|
}
|
|
temp += words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
# else /* MD5_SMALL == 2 */
|
|
pc = C_array;
|
|
pp = P_array;
|
|
ps = S_array;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
# endif
|
|
/* Add checksum to the starting values */
|
|
ctx->hash[0] += A;
|
|
ctx->hash[1] += B;
|
|
ctx->hash[2] += C;
|
|
ctx->hash[3] += D;
|
|
|
|
#else /* MD5_SMALL == 0 or 1 */
|
|
|
|
# if MD5_SMALL == 1
|
|
const uint32_t *pc;
|
|
const char *pp;
|
|
int i;
|
|
# endif
|
|
|
|
/* First round: using the given function, the context and a constant
|
|
the next context is computed. Because the algorithm's processing
|
|
unit is a 32-bit word and it is determined to work on words in
|
|
little endian byte order we perhaps have to change the byte order
|
|
before the computation. To reduce the work for the next steps
|
|
we save swapped words in WORDS array. */
|
|
# undef OP
|
|
# define OP(a, b, c, d, s, T) \
|
|
do { \
|
|
a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
|
|
words++; \
|
|
a = rotl32(a, s); \
|
|
a += b; \
|
|
} while (0)
|
|
|
|
/* Round 1 */
|
|
# if MD5_SMALL == 1
|
|
pc = C_array;
|
|
for (i = 0; i < 4; i++) {
|
|
OP(A, B, C, D, 7, *pc++);
|
|
OP(D, A, B, C, 12, *pc++);
|
|
OP(C, D, A, B, 17, *pc++);
|
|
OP(B, C, D, A, 22, *pc++);
|
|
}
|
|
# else
|
|
OP(A, B, C, D, 7, 0xd76aa478);
|
|
OP(D, A, B, C, 12, 0xe8c7b756);
|
|
OP(C, D, A, B, 17, 0x242070db);
|
|
OP(B, C, D, A, 22, 0xc1bdceee);
|
|
OP(A, B, C, D, 7, 0xf57c0faf);
|
|
OP(D, A, B, C, 12, 0x4787c62a);
|
|
OP(C, D, A, B, 17, 0xa8304613);
|
|
OP(B, C, D, A, 22, 0xfd469501);
|
|
OP(A, B, C, D, 7, 0x698098d8);
|
|
OP(D, A, B, C, 12, 0x8b44f7af);
|
|
OP(C, D, A, B, 17, 0xffff5bb1);
|
|
OP(B, C, D, A, 22, 0x895cd7be);
|
|
OP(A, B, C, D, 7, 0x6b901122);
|
|
OP(D, A, B, C, 12, 0xfd987193);
|
|
OP(C, D, A, B, 17, 0xa679438e);
|
|
OP(B, C, D, A, 22, 0x49b40821);
|
|
# endif
|
|
words -= 16;
|
|
|
|
/* For the second to fourth round we have the possibly swapped words
|
|
in WORDS. Redefine the macro to take an additional first
|
|
argument specifying the function to use. */
|
|
# undef OP
|
|
# define OP(f, a, b, c, d, k, s, T) \
|
|
do { \
|
|
a += f(b, c, d) + words[k] + T; \
|
|
a = rotl32(a, s); \
|
|
a += b; \
|
|
} while (0)
|
|
|
|
/* Round 2 */
|
|
# if MD5_SMALL == 1
|
|
pp = P_array;
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
|
|
OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
|
|
OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
|
|
OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
|
|
}
|
|
# else
|
|
OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
|
|
OP(FG, D, A, B, C, 6, 9, 0xc040b340);
|
|
OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
|
|
OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
|
|
OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
|
|
OP(FG, D, A, B, C, 10, 9, 0x02441453);
|
|
OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
|
|
OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
|
|
OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
|
|
OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
|
|
OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
|
|
OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
|
|
OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
|
|
OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
|
|
OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
|
|
OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
|
|
# endif
|
|
|
|
/* Round 3 */
|
|
# if MD5_SMALL == 1
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
|
|
OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
|
|
OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
|
|
OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
|
|
}
|
|
# else
|
|
OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
|
|
OP(FH, D, A, B, C, 8, 11, 0x8771f681);
|
|
OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
|
|
OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
|
|
OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
|
|
OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
|
|
OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
|
|
OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
|
|
OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
|
|
OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
|
|
OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
|
|
OP(FH, B, C, D, A, 6, 23, 0x04881d05);
|
|
OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
|
|
OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
|
|
OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
|
|
OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
|
|
# endif
|
|
|
|
/* Round 4 */
|
|
# if MD5_SMALL == 1
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
|
|
OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
|
|
OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
|
|
OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
|
|
}
|
|
# else
|
|
OP(FI, A, B, C, D, 0, 6, 0xf4292244);
|
|
OP(FI, D, A, B, C, 7, 10, 0x432aff97);
|
|
OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
|
|
OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
|
|
OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
|
|
OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
|
|
OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
|
|
OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
|
|
OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
|
|
OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
|
|
OP(FI, C, D, A, B, 6, 15, 0xa3014314);
|
|
OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
|
|
OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
|
|
OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
|
|
OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
|
|
OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
|
|
# undef OP
|
|
# endif
|
|
/* Add checksum to the starting values */
|
|
ctx->hash[0] += A;
|
|
ctx->hash[1] += B;
|
|
ctx->hash[2] += C;
|
|
ctx->hash[3] += D;
|
|
#endif
|
|
}
|
|
#undef FF
|
|
#undef FG
|
|
#undef FH
|
|
#undef FI
|
|
|
|
/* Initialize structure containing state of computation.
|
|
* (RFC 1321, 3.3: Step 3)
|
|
*/
|
|
void FAST_FUNC md5_begin(md5_ctx_t *ctx)
|
|
{
|
|
ctx->hash[0] = 0x67452301;
|
|
ctx->hash[1] = 0xefcdab89;
|
|
ctx->hash[2] = 0x98badcfe;
|
|
ctx->hash[3] = 0x10325476;
|
|
ctx->total64 = 0;
|
|
ctx->process_block = md5_process_block64;
|
|
}
|
|
|
|
/* Used also for sha1 and sha256 */
|
|
void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
|
|
{
|
|
common64_hash(ctx, buffer, len);
|
|
}
|
|
|
|
/* Process the remaining bytes in the buffer and put result from CTX
|
|
* in first 16 bytes following RESBUF. The result is always in little
|
|
* endian byte order, so that a byte-wise output yields to the wanted
|
|
* ASCII representation of the message digest.
|
|
*/
|
|
void FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
|
|
{
|
|
/* MD5 stores total in LE, need to swap on BE arches: */
|
|
common64_end(ctx, /*swap_needed:*/ BB_BIG_ENDIAN);
|
|
|
|
/* The MD5 result is in little endian byte order */
|
|
if (BB_BIG_ENDIAN) {
|
|
ctx->hash[0] = SWAP_LE32(ctx->hash[0]);
|
|
ctx->hash[1] = SWAP_LE32(ctx->hash[1]);
|
|
ctx->hash[2] = SWAP_LE32(ctx->hash[2]);
|
|
ctx->hash[3] = SWAP_LE32(ctx->hash[3]);
|
|
}
|
|
|
|
memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * 4);
|
|
}
|
|
|
|
|
|
/*
|
|
* SHA1 part is:
|
|
* Copyright 2007 Rob Landley <rob@landley.net>
|
|
*
|
|
* Based on the public domain SHA-1 in C by Steve Reid <steve@edmweb.com>
|
|
* from http://www.mirrors.wiretapped.net/security/cryptography/hashes/sha1/
|
|
*
|
|
* Licensed under GPLv2, see file LICENSE in this source tree.
|
|
*
|
|
* ---------------------------------------------------------------------------
|
|
*
|
|
* SHA256 and SHA512 parts are:
|
|
* Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
|
|
* Shrank by Denys Vlasenko.
|
|
*
|
|
* ---------------------------------------------------------------------------
|
|
*
|
|
* The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c
|
|
* and replace "4096" with something like "2000 + time(NULL) % 2097",
|
|
* then rebuild and compare "shaNNNsum bigfile" results.
|
|
*/
|
|
|
|
static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
|
|
{
|
|
static const uint32_t rconsts[] = {
|
|
0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
|
|
};
|
|
int i, j;
|
|
int cnt;
|
|
uint32_t W[16+16];
|
|
uint32_t a, b, c, d, e;
|
|
|
|
/* On-stack work buffer frees up one register in the main loop
|
|
* which otherwise will be needed to hold ctx pointer */
|
|
for (i = 0; i < 16; i++)
|
|
W[i] = W[i+16] = SWAP_BE32(((uint32_t*)ctx->wbuffer)[i]);
|
|
|
|
a = ctx->hash[0];
|
|
b = ctx->hash[1];
|
|
c = ctx->hash[2];
|
|
d = ctx->hash[3];
|
|
e = ctx->hash[4];
|
|
|
|
/* 4 rounds of 20 operations each */
|
|
cnt = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
j = 19;
|
|
do {
|
|
uint32_t work;
|
|
|
|
work = c ^ d;
|
|
if (i == 0) {
|
|
work = (work & b) ^ d;
|
|
if (j <= 3)
|
|
goto ge16;
|
|
/* Used to do SWAP_BE32 here, but this
|
|
* requires ctx (see comment above) */
|
|
work += W[cnt];
|
|
} else {
|
|
if (i == 2)
|
|
work = ((b | c) & d) | (b & c);
|
|
else /* i = 1 or 3 */
|
|
work ^= b;
|
|
ge16:
|
|
W[cnt] = W[cnt+16] = rotl32(W[cnt+13] ^ W[cnt+8] ^ W[cnt+2] ^ W[cnt], 1);
|
|
work += W[cnt];
|
|
}
|
|
work += e + rotl32(a, 5) + rconsts[i];
|
|
|
|
/* Rotate by one for next time */
|
|
e = d;
|
|
d = c;
|
|
c = /* b = */ rotl32(b, 30);
|
|
b = a;
|
|
a = work;
|
|
cnt = (cnt + 1) & 15;
|
|
} while (--j >= 0);
|
|
}
|
|
|
|
ctx->hash[0] += a;
|
|
ctx->hash[1] += b;
|
|
ctx->hash[2] += c;
|
|
ctx->hash[3] += d;
|
|
ctx->hash[4] += e;
|
|
}
|
|
|
|
/* Constants for SHA512 from FIPS 180-2:4.2.3.
|
|
* SHA256 constants from FIPS 180-2:4.2.2
|
|
* are the most significant half of first 64 elements
|
|
* of the same array.
|
|
*/
|
|
static const uint64_t sha_K[80] = {
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
|
};
|
|
|
|
#undef Ch
|
|
#undef Maj
|
|
#undef S0
|
|
#undef S1
|
|
#undef R0
|
|
#undef R1
|
|
|
|
static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
|
|
{
|
|
unsigned t;
|
|
uint32_t W[64], a, b, c, d, e, f, g, h;
|
|
const uint32_t *words = (uint32_t*) ctx->wbuffer;
|
|
|
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
|
#define Ch(x, y, z) ((x & y) ^ (~x & z))
|
|
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
|
#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
|
|
#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
|
|
#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
|
|
#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
|
|
|
|
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
|
|
for (t = 0; t < 16; ++t)
|
|
W[t] = SWAP_BE32(words[t]);
|
|
for (/*t = 16*/; t < 64; ++t)
|
|
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
|
|
|
|
a = ctx->hash[0];
|
|
b = ctx->hash[1];
|
|
c = ctx->hash[2];
|
|
d = ctx->hash[3];
|
|
e = ctx->hash[4];
|
|
f = ctx->hash[5];
|
|
g = ctx->hash[6];
|
|
h = ctx->hash[7];
|
|
|
|
/* The actual computation according to FIPS 180-2:6.2.2 step 3. */
|
|
for (t = 0; t < 64; ++t) {
|
|
/* Need to fetch upper half of sha_K[t]
|
|
* (I hope compiler is clever enough to just fetch
|
|
* upper half)
|
|
*/
|
|
uint32_t K_t = sha_K[t] >> 32;
|
|
uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t];
|
|
uint32_t T2 = S0(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
#undef Ch
|
|
#undef Maj
|
|
#undef S0
|
|
#undef S1
|
|
#undef R0
|
|
#undef R1
|
|
/* Add the starting values of the context according to FIPS 180-2:6.2.2
|
|
step 4. */
|
|
ctx->hash[0] += a;
|
|
ctx->hash[1] += b;
|
|
ctx->hash[2] += c;
|
|
ctx->hash[3] += d;
|
|
ctx->hash[4] += e;
|
|
ctx->hash[5] += f;
|
|
ctx->hash[6] += g;
|
|
ctx->hash[7] += h;
|
|
}
|
|
|
|
static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
|
|
{
|
|
unsigned t;
|
|
uint64_t W[80];
|
|
/* On i386, having assignments here (not later as sha256 does)
|
|
* produces 99 bytes smaller code with gcc 4.3.1
|
|
*/
|
|
uint64_t a = ctx->hash[0];
|
|
uint64_t b = ctx->hash[1];
|
|
uint64_t c = ctx->hash[2];
|
|
uint64_t d = ctx->hash[3];
|
|
uint64_t e = ctx->hash[4];
|
|
uint64_t f = ctx->hash[5];
|
|
uint64_t g = ctx->hash[6];
|
|
uint64_t h = ctx->hash[7];
|
|
const uint64_t *words = (uint64_t*) ctx->wbuffer;
|
|
|
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
|
#define Ch(x, y, z) ((x & y) ^ (~x & z))
|
|
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
|
#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
|
|
#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
|
|
#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
|
|
#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
|
|
|
|
/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
|
|
for (t = 0; t < 16; ++t)
|
|
W[t] = SWAP_BE64(words[t]);
|
|
for (/*t = 16*/; t < 80; ++t)
|
|
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
|
|
|
|
/* The actual computation according to FIPS 180-2:6.3.2 step 3. */
|
|
for (t = 0; t < 80; ++t) {
|
|
uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t];
|
|
uint64_t T2 = S0(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
#undef Ch
|
|
#undef Maj
|
|
#undef S0
|
|
#undef S1
|
|
#undef R0
|
|
#undef R1
|
|
/* Add the starting values of the context according to FIPS 180-2:6.3.2
|
|
step 4. */
|
|
ctx->hash[0] += a;
|
|
ctx->hash[1] += b;
|
|
ctx->hash[2] += c;
|
|
ctx->hash[3] += d;
|
|
ctx->hash[4] += e;
|
|
ctx->hash[5] += f;
|
|
ctx->hash[6] += g;
|
|
ctx->hash[7] += h;
|
|
}
|
|
|
|
|
|
void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
|
|
{
|
|
ctx->hash[0] = 0x67452301;
|
|
ctx->hash[1] = 0xefcdab89;
|
|
ctx->hash[2] = 0x98badcfe;
|
|
ctx->hash[3] = 0x10325476;
|
|
ctx->hash[4] = 0xc3d2e1f0;
|
|
ctx->total64 = 0;
|
|
ctx->process_block = sha1_process_block64;
|
|
}
|
|
|
|
static const uint32_t init256[] = {
|
|
0,
|
|
0,
|
|
0x6a09e667,
|
|
0xbb67ae85,
|
|
0x3c6ef372,
|
|
0xa54ff53a,
|
|
0x510e527f,
|
|
0x9b05688c,
|
|
0x1f83d9ab,
|
|
0x5be0cd19,
|
|
};
|
|
static const uint32_t init512_lo[] = {
|
|
0,
|
|
0,
|
|
0xf3bcc908,
|
|
0x84caa73b,
|
|
0xfe94f82b,
|
|
0x5f1d36f1,
|
|
0xade682d1,
|
|
0x2b3e6c1f,
|
|
0xfb41bd6b,
|
|
0x137e2179,
|
|
};
|
|
|
|
/* Initialize structure containing state of computation.
|
|
(FIPS 180-2:5.3.2) */
|
|
void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
|
|
{
|
|
memcpy(&ctx->total64, init256, sizeof(init256));
|
|
/*ctx->total64 = 0; - done by prepending two 32-bit zeros to init256 */
|
|
ctx->process_block = sha256_process_block64;
|
|
}
|
|
|
|
/* Initialize structure containing state of computation.
|
|
(FIPS 180-2:5.3.3) */
|
|
void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
|
|
{
|
|
int i;
|
|
/* Two extra iterations zero out ctx->total64[2] */
|
|
uint64_t *tp = ctx->total64;
|
|
for (i = 0; i < 2+8; i++)
|
|
tp[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
|
|
/*ctx->total64[0] = ctx->total64[1] = 0; - already done */
|
|
}
|
|
|
|
void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
|
|
{
|
|
unsigned bufpos = ctx->total64[0] & 127;
|
|
unsigned remaining;
|
|
|
|
/* First increment the byte count. FIPS 180-2 specifies the possible
|
|
length of the file up to 2^128 _bits_.
|
|
We compute the number of _bytes_ and convert to bits later. */
|
|
ctx->total64[0] += len;
|
|
if (ctx->total64[0] < len)
|
|
ctx->total64[1]++;
|
|
#if 0
|
|
remaining = 128 - bufpos;
|
|
|
|
/* Hash whole blocks */
|
|
while (len >= remaining) {
|
|
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
|
|
buffer = (const char *)buffer + remaining;
|
|
len -= remaining;
|
|
remaining = 128;
|
|
bufpos = 0;
|
|
sha512_process_block128(ctx);
|
|
}
|
|
|
|
/* Save last, partial blosk */
|
|
memcpy(ctx->wbuffer + bufpos, buffer, len);
|
|
#else
|
|
while (1) {
|
|
remaining = 128 - bufpos;
|
|
if (remaining > len)
|
|
remaining = len;
|
|
/* Copy data into aligned buffer */
|
|
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
|
|
len -= remaining;
|
|
buffer = (const char *)buffer + remaining;
|
|
bufpos += remaining;
|
|
/* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
|
|
bufpos -= 128;
|
|
if (bufpos != 0)
|
|
break;
|
|
/* Buffer is filled up, process it */
|
|
sha512_process_block128(ctx);
|
|
/*bufpos = 0; - already is */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Used also for sha256 */
|
|
void FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf)
|
|
{
|
|
unsigned hash_size;
|
|
|
|
/* SHA stores total in BE, need to swap on LE arches: */
|
|
common64_end(ctx, /*swap_needed:*/ BB_LITTLE_ENDIAN);
|
|
|
|
hash_size = (ctx->process_block == sha1_process_block64) ? 5 : 8;
|
|
/* This way we do not impose alignment constraints on resbuf: */
|
|
if (BB_LITTLE_ENDIAN) {
|
|
unsigned i;
|
|
for (i = 0; i < hash_size; ++i)
|
|
ctx->hash[i] = SWAP_BE32(ctx->hash[i]);
|
|
}
|
|
memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * hash_size);
|
|
}
|
|
|
|
void FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf)
|
|
{
|
|
unsigned bufpos = ctx->total64[0] & 127;
|
|
|
|
/* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */
|
|
ctx->wbuffer[bufpos++] = 0x80;
|
|
|
|
while (1) {
|
|
unsigned remaining = 128 - bufpos;
|
|
memset(ctx->wbuffer + bufpos, 0, remaining);
|
|
if (remaining >= 16) {
|
|
/* Store the 128-bit counter of bits in the buffer in BE format */
|
|
uint64_t t;
|
|
t = ctx->total64[0] << 3;
|
|
t = SWAP_BE64(t);
|
|
*(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 8]) = t;
|
|
t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61);
|
|
t = SWAP_BE64(t);
|
|
*(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 16]) = t;
|
|
}
|
|
sha512_process_block128(ctx);
|
|
if (remaining >= 16)
|
|
break;
|
|
bufpos = 0;
|
|
}
|
|
|
|
if (BB_LITTLE_ENDIAN) {
|
|
unsigned i;
|
|
for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i)
|
|
ctx->hash[i] = SWAP_BE64(ctx->hash[i]);
|
|
}
|
|
memcpy(resbuf, ctx->hash, sizeof(ctx->hash));
|
|
}
|
|
|
|
|
|
/*
|
|
* The Keccak sponge function, designed by Guido Bertoni, Joan Daemen,
|
|
* Michael Peeters and Gilles Van Assche. For more information, feedback or
|
|
* questions, please refer to our website: http://keccak.noekeon.org/
|
|
*
|
|
* Implementation by Ronny Van Keer,
|
|
* hereby denoted as "the implementer".
|
|
*
|
|
* To the extent possible under law, the implementer has waived all copyright
|
|
* and related or neighboring rights to the source code in this file.
|
|
* http://creativecommons.org/publicdomain/zero/1.0/
|
|
*
|
|
* Busybox modifications (C) Lauri Kasanen, under the GPLv2.
|
|
*/
|
|
|
|
#if CONFIG_SHA3_SMALL < 0
|
|
# define SHA3_SMALL 0
|
|
#elif CONFIG_SHA3_SMALL > 1
|
|
# define SHA3_SMALL 1
|
|
#else
|
|
# define SHA3_SMALL CONFIG_SHA3_SMALL
|
|
#endif
|
|
|
|
#define OPTIMIZE_SHA3_FOR_32 0
|
|
/*
|
|
* SHA3 can be optimized for 32-bit CPUs with bit-slicing:
|
|
* every 64-bit word of state[] can be split into two 32-bit words
|
|
* by even/odd bits. In this form, all rotations of sha3 round
|
|
* are 32-bit - and there are lots of them.
|
|
* However, it requires either splitting/combining state words
|
|
* before/after sha3 round (code does this now)
|
|
* or shuffling bits before xor'ing them into state and in sha3_end.
|
|
* Without shuffling, bit-slicing results in -130 bytes of code
|
|
* and marginal speedup (but of course it gives wrong result).
|
|
* With shuffling it works, but +260 code bytes, and slower.
|
|
* Disabled for now:
|
|
*/
|
|
#if 0 /* LONG_MAX == 0x7fffffff */
|
|
# undef OPTIMIZE_SHA3_FOR_32
|
|
# define OPTIMIZE_SHA3_FOR_32 1
|
|
#endif
|
|
|
|
enum {
|
|
SHA3_IBLK_BYTES = 72, /* 576 bits / 8 */
|
|
};
|
|
|
|
#if OPTIMIZE_SHA3_FOR_32
|
|
/* This splits every 64-bit word into a pair of 32-bit words,
|
|
* even bits go into first word, odd bits go to second one.
|
|
* The conversion is done in-place.
|
|
*/
|
|
static void split_halves(uint64_t *state)
|
|
{
|
|
/* Credit: Henry S. Warren, Hacker's Delight, Addison-Wesley, 2002 */
|
|
uint32_t *s32 = (uint32_t*)state;
|
|
uint32_t t, x0, x1;
|
|
int i;
|
|
for (i = 24; i >= 0; --i) {
|
|
x0 = s32[0];
|
|
t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
|
|
t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
|
|
t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
|
|
t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
|
|
x1 = s32[1];
|
|
t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
|
|
t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
|
|
t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
|
|
t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
|
|
*s32++ = (x0 & 0x0000FFFF) | (x1 << 16);
|
|
*s32++ = (x0 >> 16) | (x1 & 0xFFFF0000);
|
|
}
|
|
}
|
|
/* The reverse operation */
|
|
static void combine_halves(uint64_t *state)
|
|
{
|
|
uint32_t *s32 = (uint32_t*)state;
|
|
uint32_t t, x0, x1;
|
|
int i;
|
|
for (i = 24; i >= 0; --i) {
|
|
x0 = s32[0];
|
|
x1 = s32[1];
|
|
t = (x0 & 0x0000FFFF) | (x1 << 16);
|
|
x1 = (x0 >> 16) | (x1 & 0xFFFF0000);
|
|
x0 = t;
|
|
t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
|
|
t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
|
|
t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
|
|
t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
|
|
*s32++ = x0;
|
|
t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
|
|
t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
|
|
t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
|
|
t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
|
|
*s32++ = x1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In the crypto literature this function is usually called Keccak-f().
|
|
*/
|
|
static void sha3_process_block72(uint64_t *state)
|
|
{
|
|
enum { NROUNDS = 24 };
|
|
|
|
#if OPTIMIZE_SHA3_FOR_32
|
|
/*
|
|
static const uint32_t IOTA_CONST_0[NROUNDS] = {
|
|
0x00000001UL,
|
|
0x00000000UL,
|
|
0x00000000UL,
|
|
0x00000000UL,
|
|
0x00000001UL,
|
|
0x00000001UL,
|
|
0x00000001UL,
|
|
0x00000001UL,
|
|
0x00000000UL,
|
|
0x00000000UL,
|
|
0x00000001UL,
|
|
0x00000000UL,
|
|
0x00000001UL,
|
|
0x00000001UL,
|
|
0x00000001UL,
|
|
0x00000001UL,
|
|
0x00000000UL,
|
|
0x00000000UL,
|
|
0x00000000UL,
|
|
0x00000000UL,
|
|
0x00000001UL,
|
|
0x00000000UL,
|
|
0x00000001UL,
|
|
0x00000000UL,
|
|
};
|
|
** bits are in lsb: 0101 0000 1111 0100 1111 0001
|
|
*/
|
|
uint32_t IOTA_CONST_0bits = (uint32_t)(0x0050f4f1);
|
|
static const uint32_t IOTA_CONST_1[NROUNDS] = {
|
|
0x00000000UL,
|
|
0x00000089UL,
|
|
0x8000008bUL,
|
|
0x80008080UL,
|
|
0x0000008bUL,
|
|
0x00008000UL,
|
|
0x80008088UL,
|
|
0x80000082UL,
|
|
0x0000000bUL,
|
|
0x0000000aUL,
|
|
0x00008082UL,
|
|
0x00008003UL,
|
|
0x0000808bUL,
|
|
0x8000000bUL,
|
|
0x8000008aUL,
|
|
0x80000081UL,
|
|
0x80000081UL,
|
|
0x80000008UL,
|
|
0x00000083UL,
|
|
0x80008003UL,
|
|
0x80008088UL,
|
|
0x80000088UL,
|
|
0x00008000UL,
|
|
0x80008082UL,
|
|
};
|
|
|
|
uint32_t *const s32 = (uint32_t*)state;
|
|
unsigned round;
|
|
|
|
split_halves(state);
|
|
|
|
for (round = 0; round < NROUNDS; round++) {
|
|
unsigned x;
|
|
|
|
/* Theta */
|
|
{
|
|
uint32_t BC[20];
|
|
for (x = 0; x < 10; ++x) {
|
|
BC[x+10] = BC[x] = s32[x]^s32[x+10]^s32[x+20]^s32[x+30]^s32[x+40];
|
|
}
|
|
for (x = 0; x < 10; x += 2) {
|
|
uint32_t ta, tb;
|
|
ta = BC[x+8] ^ rotl32(BC[x+3], 1);
|
|
tb = BC[x+9] ^ BC[x+2];
|
|
s32[x+0] ^= ta;
|
|
s32[x+1] ^= tb;
|
|
s32[x+10] ^= ta;
|
|
s32[x+11] ^= tb;
|
|
s32[x+20] ^= ta;
|
|
s32[x+21] ^= tb;
|
|
s32[x+30] ^= ta;
|
|
s32[x+31] ^= tb;
|
|
s32[x+40] ^= ta;
|
|
s32[x+41] ^= tb;
|
|
}
|
|
}
|
|
/* RhoPi */
|
|
{
|
|
uint32_t t0a,t0b, t1a,t1b;
|
|
t1a = s32[1*2+0];
|
|
t1b = s32[1*2+1];
|
|
|
|
#define RhoPi(PI_LANE, ROT_CONST) \
|
|
t0a = s32[PI_LANE*2+0];\
|
|
t0b = s32[PI_LANE*2+1];\
|
|
if (ROT_CONST & 1) {\
|
|
s32[PI_LANE*2+0] = rotl32(t1b, ROT_CONST/2+1);\
|
|
s32[PI_LANE*2+1] = ROT_CONST == 1 ? t1a : rotl32(t1a, ROT_CONST/2+0);\
|
|
} else {\
|
|
s32[PI_LANE*2+0] = rotl32(t1a, ROT_CONST/2);\
|
|
s32[PI_LANE*2+1] = rotl32(t1b, ROT_CONST/2);\
|
|
}\
|
|
t1a = t0a; t1b = t0b;
|
|
|
|
RhoPi(10, 1)
|
|
RhoPi( 7, 3)
|
|
RhoPi(11, 6)
|
|
RhoPi(17,10)
|
|
RhoPi(18,15)
|
|
RhoPi( 3,21)
|
|
RhoPi( 5,28)
|
|
RhoPi(16,36)
|
|
RhoPi( 8,45)
|
|
RhoPi(21,55)
|
|
RhoPi(24, 2)
|
|
RhoPi( 4,14)
|
|
RhoPi(15,27)
|
|
RhoPi(23,41)
|
|
RhoPi(19,56)
|
|
RhoPi(13, 8)
|
|
RhoPi(12,25)
|
|
RhoPi( 2,43)
|
|
RhoPi(20,62)
|
|
RhoPi(14,18)
|
|
RhoPi(22,39)
|
|
RhoPi( 9,61)
|
|
RhoPi( 6,20)
|
|
RhoPi( 1,44)
|
|
#undef RhoPi
|
|
}
|
|
/* Chi */
|
|
for (x = 0; x <= 40;) {
|
|
uint32_t BC0, BC1, BC2, BC3, BC4;
|
|
BC0 = s32[x + 0*2];
|
|
BC1 = s32[x + 1*2];
|
|
BC2 = s32[x + 2*2];
|
|
s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
|
|
BC3 = s32[x + 3*2];
|
|
s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
|
|
BC4 = s32[x + 4*2];
|
|
s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
|
|
s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
|
|
s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
|
|
x++;
|
|
BC0 = s32[x + 0*2];
|
|
BC1 = s32[x + 1*2];
|
|
BC2 = s32[x + 2*2];
|
|
s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
|
|
BC3 = s32[x + 3*2];
|
|
s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
|
|
BC4 = s32[x + 4*2];
|
|
s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
|
|
s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
|
|
s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
|
|
x += 9;
|
|
}
|
|
/* Iota */
|
|
s32[0] ^= IOTA_CONST_0bits & 1;
|
|
IOTA_CONST_0bits >>= 1;
|
|
s32[1] ^= IOTA_CONST_1[round];
|
|
}
|
|
|
|
combine_halves(state);
|
|
#else
|
|
/* Native 64-bit algorithm */
|
|
static const uint16_t IOTA_CONST[NROUNDS] = {
|
|
/* Elements should be 64-bit, but top half is always zero
|
|
* or 0x80000000. We encode 63rd bits in a separate word below.
|
|
* Same is true for 31th bits, which lets us use 16-bit table
|
|
* instead of 64-bit. The speed penalty is lost in the noise.
|
|
*/
|
|
0x0001,
|
|
0x8082,
|
|
0x808a,
|
|
0x8000,
|
|
0x808b,
|
|
0x0001,
|
|
0x8081,
|
|
0x8009,
|
|
0x008a,
|
|
0x0088,
|
|
0x8009,
|
|
0x000a,
|
|
0x808b,
|
|
0x008b,
|
|
0x8089,
|
|
0x8003,
|
|
0x8002,
|
|
0x0080,
|
|
0x800a,
|
|
0x000a,
|
|
0x8081,
|
|
0x8080,
|
|
0x0001,
|
|
0x8008,
|
|
};
|
|
/* bit for CONST[0] is in msb: 0011 0011 0000 0111 1101 1101 */
|
|
const uint32_t IOTA_CONST_bit63 = (uint32_t)(0x3307dd00);
|
|
/* bit for CONST[0] is in msb: 0001 0110 0011 1000 0001 1011 */
|
|
const uint32_t IOTA_CONST_bit31 = (uint32_t)(0x16381b00);
|
|
|
|
static const uint8_t ROT_CONST[24] = {
|
|
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
|
|
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44,
|
|
};
|
|
static const uint8_t PI_LANE[24] = {
|
|
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
|
|
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1,
|
|
};
|
|
/*static const uint8_t MOD5[10] = { 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, };*/
|
|
|
|
unsigned x;
|
|
unsigned round;
|
|
|
|
if (BB_BIG_ENDIAN) {
|
|
for (x = 0; x < 25; x++) {
|
|
state[x] = SWAP_LE64(state[x]);
|
|
}
|
|
}
|
|
|
|
for (round = 0; round < NROUNDS; ++round) {
|
|
/* Theta */
|
|
{
|
|
uint64_t BC[10];
|
|
for (x = 0; x < 5; ++x) {
|
|
BC[x + 5] = BC[x] = state[x]
|
|
^ state[x + 5] ^ state[x + 10]
|
|
^ state[x + 15] ^ state[x + 20];
|
|
}
|
|
/* Using 2x5 vector above eliminates the need to use
|
|
* BC[MOD5[x+N]] trick below to fetch BC[(x+N) % 5],
|
|
* and the code is a bit _smaller_.
|
|
*/
|
|
for (x = 0; x < 5; ++x) {
|
|
uint64_t temp = BC[x + 4] ^ rotl64(BC[x + 1], 1);
|
|
state[x] ^= temp;
|
|
state[x + 5] ^= temp;
|
|
state[x + 10] ^= temp;
|
|
state[x + 15] ^= temp;
|
|
state[x + 20] ^= temp;
|
|
}
|
|
}
|
|
|
|
/* Rho Pi */
|
|
if (SHA3_SMALL) {
|
|
uint64_t t1 = state[1];
|
|
for (x = 0; x < 24; ++x) {
|
|
uint64_t t0 = state[PI_LANE[x]];
|
|
state[PI_LANE[x]] = rotl64(t1, ROT_CONST[x]);
|
|
t1 = t0;
|
|
}
|
|
} else {
|
|
/* Especially large benefit for 32-bit arch (75% faster):
|
|
* 64-bit rotations by non-constant usually are SLOW on those.
|
|
* We resort to unrolling here.
|
|
* This optimizes out PI_LANE[] and ROT_CONST[],
|
|
* but generates 300-500 more bytes of code.
|
|
*/
|
|
uint64_t t0;
|
|
uint64_t t1 = state[1];
|
|
#define RhoPi_twice(x) \
|
|
t0 = state[PI_LANE[x ]]; \
|
|
state[PI_LANE[x ]] = rotl64(t1, ROT_CONST[x ]); \
|
|
t1 = state[PI_LANE[x+1]]; \
|
|
state[PI_LANE[x+1]] = rotl64(t0, ROT_CONST[x+1]);
|
|
RhoPi_twice(0); RhoPi_twice(2);
|
|
RhoPi_twice(4); RhoPi_twice(6);
|
|
RhoPi_twice(8); RhoPi_twice(10);
|
|
RhoPi_twice(12); RhoPi_twice(14);
|
|
RhoPi_twice(16); RhoPi_twice(18);
|
|
RhoPi_twice(20); RhoPi_twice(22);
|
|
#undef RhoPi_twice
|
|
}
|
|
/* Chi */
|
|
# if LONG_MAX > 0x7fffffff
|
|
for (x = 0; x <= 20; x += 5) {
|
|
uint64_t BC0, BC1, BC2, BC3, BC4;
|
|
BC0 = state[x + 0];
|
|
BC1 = state[x + 1];
|
|
BC2 = state[x + 2];
|
|
state[x + 0] = BC0 ^ ((~BC1) & BC2);
|
|
BC3 = state[x + 3];
|
|
state[x + 1] = BC1 ^ ((~BC2) & BC3);
|
|
BC4 = state[x + 4];
|
|
state[x + 2] = BC2 ^ ((~BC3) & BC4);
|
|
state[x + 3] = BC3 ^ ((~BC4) & BC0);
|
|
state[x + 4] = BC4 ^ ((~BC0) & BC1);
|
|
}
|
|
# else
|
|
/* Reduced register pressure version
|
|
* for register-starved 32-bit arches
|
|
* (i386: -95 bytes, and it is _faster_)
|
|
*/
|
|
for (x = 0; x <= 40;) {
|
|
uint32_t BC0, BC1, BC2, BC3, BC4;
|
|
uint32_t *const s32 = (uint32_t*)state;
|
|
# if SHA3_SMALL
|
|
do_half:
|
|
# endif
|
|
BC0 = s32[x + 0*2];
|
|
BC1 = s32[x + 1*2];
|
|
BC2 = s32[x + 2*2];
|
|
s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
|
|
BC3 = s32[x + 3*2];
|
|
s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
|
|
BC4 = s32[x + 4*2];
|
|
s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
|
|
s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
|
|
s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
|
|
x++;
|
|
# if SHA3_SMALL
|
|
if (x & 1)
|
|
goto do_half;
|
|
x += 8;
|
|
# else
|
|
BC0 = s32[x + 0*2];
|
|
BC1 = s32[x + 1*2];
|
|
BC2 = s32[x + 2*2];
|
|
s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
|
|
BC3 = s32[x + 3*2];
|
|
s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
|
|
BC4 = s32[x + 4*2];
|
|
s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
|
|
s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
|
|
s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
|
|
x += 9;
|
|
# endif
|
|
}
|
|
# endif /* long is 32-bit */
|
|
/* Iota */
|
|
state[0] ^= IOTA_CONST[round]
|
|
| (uint32_t)((IOTA_CONST_bit31 << round) & 0x80000000)
|
|
| (uint64_t)((IOTA_CONST_bit63 << round) & 0x80000000) << 32;
|
|
}
|
|
|
|
if (BB_BIG_ENDIAN) {
|
|
for (x = 0; x < 25; x++) {
|
|
state[x] = SWAP_LE64(state[x]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void FAST_FUNC sha3_begin(sha3_ctx_t *ctx)
|
|
{
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
}
|
|
|
|
void FAST_FUNC sha3_hash(sha3_ctx_t *ctx, const void *buffer, size_t len)
|
|
{
|
|
#if SHA3_SMALL
|
|
const uint8_t *data = buffer;
|
|
unsigned bufpos = ctx->bytes_queued;
|
|
|
|
while (1) {
|
|
unsigned remaining = SHA3_IBLK_BYTES - bufpos;
|
|
if (remaining > len)
|
|
remaining = len;
|
|
len -= remaining;
|
|
/* XOR data into buffer */
|
|
while (remaining != 0) {
|
|
uint8_t *buf = (uint8_t*)ctx->state;
|
|
buf[bufpos] ^= *data++;
|
|
bufpos++;
|
|
remaining--;
|
|
}
|
|
/* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
|
|
bufpos -= SHA3_IBLK_BYTES;
|
|
if (bufpos != 0)
|
|
break;
|
|
/* Buffer is filled up, process it */
|
|
sha3_process_block72(ctx->state);
|
|
/*bufpos = 0; - already is */
|
|
}
|
|
ctx->bytes_queued = bufpos + SHA3_IBLK_BYTES;
|
|
#else
|
|
/* +50 bytes code size, but a bit faster because of long-sized XORs */
|
|
const uint8_t *data = buffer;
|
|
unsigned bufpos = ctx->bytes_queued;
|
|
|
|
/* If already data in queue, continue queuing first */
|
|
while (len != 0 && bufpos != 0) {
|
|
uint8_t *buf = (uint8_t*)ctx->state;
|
|
buf[bufpos] ^= *data++;
|
|
len--;
|
|
bufpos++;
|
|
if (bufpos == SHA3_IBLK_BYTES) {
|
|
bufpos = 0;
|
|
goto do_block;
|
|
}
|
|
}
|
|
|
|
/* Absorb complete blocks */
|
|
while (len >= SHA3_IBLK_BYTES) {
|
|
/* XOR data onto beginning of state[].
|
|
* We try to be efficient - operate one word at a time, not byte.
|
|
* Careful wrt unaligned access: can't just use "*(long*)data"!
|
|
*/
|
|
unsigned count = SHA3_IBLK_BYTES / sizeof(long);
|
|
long *buf = (long*)ctx->state;
|
|
do {
|
|
long v;
|
|
move_from_unaligned_long(v, (long*)data);
|
|
*buf++ ^= v;
|
|
data += sizeof(long);
|
|
} while (--count);
|
|
len -= SHA3_IBLK_BYTES;
|
|
do_block:
|
|
sha3_process_block72(ctx->state);
|
|
}
|
|
|
|
/* Queue remaining data bytes */
|
|
while (len != 0) {
|
|
uint8_t *buf = (uint8_t*)ctx->state;
|
|
buf[bufpos] ^= *data++;
|
|
bufpos++;
|
|
len--;
|
|
}
|
|
|
|
ctx->bytes_queued = bufpos;
|
|
#endif
|
|
}
|
|
|
|
void FAST_FUNC sha3_end(sha3_ctx_t *ctx, void *resbuf)
|
|
{
|
|
/* Padding */
|
|
uint8_t *buf = (uint8_t*)ctx->state;
|
|
buf[ctx->bytes_queued] ^= 1;
|
|
buf[SHA3_IBLK_BYTES - 1] ^= 0x80;
|
|
|
|
sha3_process_block72(ctx->state);
|
|
|
|
/* Output */
|
|
memcpy(resbuf, ctx->state, 64);
|
|
}
|