webwml/docs/en/hidden-services.wml
Roger Dingledine 2673ea9603 the .onion addresses are actually not uniquely derived from the service's
key -- many different keys could in theory produce the same .onion address
(though we hope they don't in practice).
2012-08-24 17:04:46 +00:00

166 lines
7.3 KiB
Plaintext

## translation metadata
# Revision: $Revision$
# Translation-Priority: 3-low
#include "head.wmi" TITLE="Tor: Hidden Service Protocol" CHARSET="UTF-8"
<div id="content" class="clearfix">
<div id="breadcrumbs">
<a href="<page index>">Home &raquo; </a>
<a href="<page docs/documentation>">Documentation &raquo; </a>
<a href="<page docs/hidden-services>">Hidden Services</a>
</div>
<div id="maincol">
<h2>Tor: Hidden Service Protocol</h2>
<hr>
<p>
Tor makes it possible for users to hide their locations while offering
various kinds of services, such as web publishing or an instant
messaging server. Using Tor "rendezvous points," other Tor users can
connect to these hidden services, each without knowing the other's
network identity. This page describes the technical details of how
this rendezvous protocol works. For a more direct how-to, see our <a
href="<page docs/tor-hidden-service>">configuring hidden services</a>
page.
</p>
<p>
A hidden service needs to advertise its existence in the Tor network before
clients will be able to contact it. Therefore, the service randomly picks
some relays, builds circuits to them, and asks them to act as
<em>introduction points</em> by telling them its public key. Note
that in the following figures the green links are circuits rather
than direct connections. By using a full Tor circuit, it's hard for
anyone to associate an introduction point with the hidden server's IP
address. While the introduction points and others are told the hidden
service's identity (public key), we don't want them to learn about the
hidden server's location (IP address).
</p>
<img alt="Tor hidden service step one" src="$(IMGROOT)/THS-1.png">
# maybe add a speech bubble containing "PK" to Bob, because that's what
# Bob tells to his introduction points
<p>
Step two: the hidden service assembles a <em>hidden service
descriptor</em>, containing its public key and a summary of each
introduction point, and signs this descriptor with its private key.
It uploads that descriptor to a distributed hash table. The descriptor will be
found by clients requesting XYZ.onion where XYZ is a 16 character
name derived from the service's public key. After
this step, the hidden service is set up.
</p>
<p>
Although it might seem impractical to use an automatically-generated
service name, it serves an important goal: Everyone &ndash; including
the introduction points, the distributed hash table directory, and of course the
clients &ndash; can verify that they are talking to the right hidden
service. See also <a href="http://zooko.com/distnames.html">Zooko's
conjecture</a> that out of Decentralized, Secure, and Human-Meaningful,
you can achieve at most two. Perhaps one day somebody will implement a <a
href="http://www.skyhunter.com/marcs/petnames/IntroPetNames.html">Petname</a>
design for hidden service names?
</p>
<img alt="Tor hidden service step two" src="$(IMGROOT)/THS-2.png">
# maybe replace "database" with "DHT"; further: how incorrect
# is it to *not* add DB to the Tor cloud, now that begin dir cells are in
# use?
<p>
Step three: A client that wants to contact a hidden service needs
to learn about its onion address first. After that, the client can
initiate connection establishment by downloading the descriptor from
the distributed hash table. If there is a descriptor for XYZ.onion
(the hidden service could also be offline or have left long ago,
or there could be a typo in the onion address), the client now
knows the set of introduction points and the right public key to
use. Around this time, the client also creates a circuit to another
randomly picked relay and asks it to act as <em>rendezvous point</em>
by telling it a one-time secret.
</p>
<img alt="Tor hidden service step three" src="$(IMGROOT)/THS-3.png">
# maybe add "cookie" to speech bubble, separated from the surrounded
# "IP1-3" and "PK"
<p>
Step four: When the descriptor is present and the rendezvous
point is ready, the client assembles an <em>introduce</em> message
(encrypted to the hidden service's public key) including the address
of the rendezvous point and the one-time secret. The client sends
this message to one of the introduction points, requesting it be
delivered to the hidden service. Again, communication takes place
via a Tor circuit: nobody can relate sending the introduce message
to the client's IP address, so the client remains anonymous.
</p>
<img alt="Tor hidden service step four" src="$(IMGROOT)/THS-4.png">
<p>
Step five: The hidden service decrypts the client's introduce message
and finds the address of the rendezvous point and the one-time secret
in it. The service creates a circuit to the rendezvous point and
sends the one-time secret to it in a rendezvous message.
</p>
<p>
At this point it is of special importance that the hidden service sticks to
the same set of <a
href="<wikifaq>#Whatsthisaboutentryguardformerlyknownashelpernodes">entry
guards</a> when creating new circuits. Otherwise an attacker
could run his own relay and force a hidden service to create an arbitrary
number of circuits in the hope that the corrupt relay is picked as entry
node and he learns the hidden server's IP address via timing analysis. This
attack was described by &Oslash;verlier and Syverson in their paper titled
<a href="http://freehaven.net/anonbib/#hs-attack06">Locating Hidden
Servers</a>.
</p>
<img alt="Tor hidden service step five" src="$(IMGROOT)/THS-5.png">
# it should say "Bob connects to Alice's ..."
<p>
In the last step, the rendezvous point notifies the client about successful
connection establishment. After that, both client and hidden service can
use their circuits to the rendezvous point for communicating with each
other. The rendezvous point simply relays (end-to-end encrypted) messages
from client to service and vice versa.
</p>
<p>
One of the reasons for not using the introduction circuit
for actual communication is that no single relay should
appear to be responsible for a given hidden service. This is why the
rendezvous point never learns about the hidden service's identity.
</p>
<p>
In general, the complete connection between client and hidden service
consists of 6 relays: 3 of them were picked by the client with the third
being the rendezvous point and the other 3 were picked by the hidden
service.
</p>
<img alt="Tor hidden service step six" src="$(IMGROOT)/THS-6.png">
<p>
There are more detailed descriptions about the hidden service protocol than
this one. See the
<a href="<svnprojects>design-paper/tor-design.pdf">Tor design paper</a>
for an in-depth design description and the
<a href="<specblob>rend-spec.txt">rendezvous specification</a>
for the message formats.
</p>
</div>
<!-- END MAINCOL -->
<div id = "sidecol">
#include "side.wmi"
#include "info.wmi"
</div>
<!-- END SIDECOL -->
</div>
<!-- END CONTENT -->
#include <foot.wmi>