xemu/hw/display/ssd0323.c

380 lines
10 KiB
C
Raw Normal View History

/*
* SSD0323 OLED controller with OSRAM Pictiva 128x64 display.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
/* The controller can support a variety of different displays, but we only
implement one. Most of the commends relating to brightness and geometry
setup are ignored. */
#include "qemu/osdep.h"
#include "hw/ssi/ssi.h"
#include "ui/console.h"
//#define DEBUG_SSD0323 1
#ifdef DEBUG_SSD0323
#define DPRINTF(fmt, ...) \
do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0)
#define BADF(fmt, ...) \
do { \
fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \
} while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#define BADF(fmt, ...) \
do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0)
#endif
/* Scaling factor for pixels. */
#define MAGNIFY 4
#define REMAP_SWAP_COLUMN 0x01
#define REMAP_SWAP_NYBBLE 0x02
#define REMAP_VERTICAL 0x04
#define REMAP_SWAP_COM 0x10
#define REMAP_SPLIT_COM 0x40
enum ssd0323_mode
{
SSD0323_CMD,
SSD0323_DATA
};
typedef struct {
SSISlave ssidev;
QemuConsole *con;
uint32_t cmd_len;
int32_t cmd;
int32_t cmd_data[8];
int32_t row;
int32_t row_start;
int32_t row_end;
int32_t col;
int32_t col_start;
int32_t col_end;
int32_t redraw;
int32_t remap;
uint32_t mode;
uint8_t framebuffer[128 * 80 / 2];
} ssd0323_state;
static uint32_t ssd0323_transfer(SSISlave *dev, uint32_t data)
{
ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, dev);
switch (s->mode) {
case SSD0323_DATA:
DPRINTF("data 0x%02x\n", data);
s->framebuffer[s->col + s->row * 64] = data;
if (s->remap & REMAP_VERTICAL) {
s->row++;
if (s->row > s->row_end) {
s->row = s->row_start;
s->col++;
}
if (s->col > s->col_end) {
s->col = s->col_start;
}
} else {
s->col++;
if (s->col > s->col_end) {
s->row++;
s->col = s->col_start;
}
if (s->row > s->row_end) {
s->row = s->row_start;
}
}
s->redraw = 1;
break;
case SSD0323_CMD:
DPRINTF("cmd 0x%02x\n", data);
if (s->cmd_len == 0) {
s->cmd = data;
} else {
s->cmd_data[s->cmd_len - 1] = data;
}
s->cmd_len++;
switch (s->cmd) {
#define DATA(x) if (s->cmd_len <= (x)) return 0
case 0x15: /* Set column. */
DATA(2);
s->col = s->col_start = s->cmd_data[0] % 64;
s->col_end = s->cmd_data[1] % 64;
break;
case 0x75: /* Set row. */
DATA(2);
s->row = s->row_start = s->cmd_data[0] % 80;
s->row_end = s->cmd_data[1] % 80;
break;
case 0x81: /* Set contrast */
DATA(1);
break;
case 0x84: case 0x85: case 0x86: /* Max current. */
DATA(0);
break;
case 0xa0: /* Set remapping. */
/* FIXME: Implement this. */
DATA(1);
s->remap = s->cmd_data[0];
break;
case 0xa1: /* Set display start line. */
case 0xa2: /* Set display offset. */
/* FIXME: Implement these. */
DATA(1);
break;
case 0xa4: /* Normal mode. */
case 0xa5: /* All on. */
case 0xa6: /* All off. */
case 0xa7: /* Inverse. */
/* FIXME: Implement these. */
DATA(0);
break;
case 0xa8: /* Set multiplex ratio. */
case 0xad: /* Set DC-DC converter. */
DATA(1);
/* Ignored. Don't care. */
break;
case 0xae: /* Display off. */
case 0xaf: /* Display on. */
DATA(0);
/* TODO: Implement power control. */
break;
case 0xb1: /* Set phase length. */
case 0xb2: /* Set row period. */
case 0xb3: /* Set clock rate. */
case 0xbc: /* Set precharge. */
case 0xbe: /* Set VCOMH. */
case 0xbf: /* Set segment low. */
DATA(1);
/* Ignored. Don't care. */
break;
case 0xb8: /* Set grey scale table. */
/* FIXME: Implement this. */
DATA(8);
break;
case 0xe3: /* NOP. */
DATA(0);
break;
case 0xff: /* Nasty hack because we don't handle chip selects
properly. */
break;
default:
BADF("Unknown command: 0x%x\n", data);
}
s->cmd_len = 0;
return 0;
}
return 0;
}
static void ssd0323_update_display(void *opaque)
{
ssd0323_state *s = (ssd0323_state *)opaque;
DisplaySurface *surface = qemu_console_surface(s->con);
uint8_t *dest;
uint8_t *src;
int x;
int y;
int i;
int line;
char *colors[16];
char colortab[MAGNIFY * 64];
char *p;
int dest_width;
if (!s->redraw)
return;
switch (surface_bits_per_pixel(surface)) {
case 0:
return;
case 15:
dest_width = 2;
break;
case 16:
dest_width = 2;
break;
case 24:
dest_width = 3;
break;
case 32:
dest_width = 4;
break;
default:
BADF("Bad color depth\n");
return;
}
p = colortab;
for (i = 0; i < 16; i++) {
int n;
colors[i] = p;
switch (surface_bits_per_pixel(surface)) {
case 15:
n = i * 2 + (i >> 3);
p[0] = n | (n << 5);
p[1] = (n << 2) | (n >> 3);
break;
case 16:
n = i * 2 + (i >> 3);
p[0] = n | (n << 6) | ((n << 1) & 0x20);
p[1] = (n << 3) | (n >> 2);
break;
case 24:
case 32:
n = (i << 4) | i;
p[0] = p[1] = p[2] = n;
break;
default:
BADF("Bad color depth\n");
return;
}
p += dest_width;
}
/* TODO: Implement row/column remapping. */
dest = surface_data(surface);
for (y = 0; y < 64; y++) {
line = y;
src = s->framebuffer + 64 * line;
for (x = 0; x < 64; x++) {
int val;
val = *src >> 4;
for (i = 0; i < MAGNIFY; i++) {
memcpy(dest, colors[val], dest_width);
dest += dest_width;
}
val = *src & 0xf;
for (i = 0; i < MAGNIFY; i++) {
memcpy(dest, colors[val], dest_width);
dest += dest_width;
}
src++;
}
for (i = 1; i < MAGNIFY; i++) {
memcpy(dest, dest - dest_width * MAGNIFY * 128,
dest_width * 128 * MAGNIFY);
dest += dest_width * 128 * MAGNIFY;
}
}
s->redraw = 0;
dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY);
}
static void ssd0323_invalidate_display(void * opaque)
{
ssd0323_state *s = (ssd0323_state *)opaque;
s->redraw = 1;
}
/* Command/data input. */
static void ssd0323_cd(void *opaque, int n, int level)
{
ssd0323_state *s = (ssd0323_state *)opaque;
DPRINTF("%s mode\n", level ? "Data" : "Command");
s->mode = level ? SSD0323_DATA : SSD0323_CMD;
}
static int ssd0323_post_load(void *opaque, int version_id)
{
ssd0323_state *s = (ssd0323_state *)opaque;
if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) {
return -EINVAL;
}
if (s->row < 0 || s->row >= 80) {
return -EINVAL;
}
if (s->row_start < 0 || s->row_start >= 80) {
return -EINVAL;
}
if (s->row_end < 0 || s->row_end >= 80) {
return -EINVAL;
}
if (s->col < 0 || s->col >= 64) {
return -EINVAL;
}
if (s->col_start < 0 || s->col_start >= 64) {
return -EINVAL;
}
if (s->col_end < 0 || s->col_end >= 64) {
return -EINVAL;
}
if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) {
return -EINVAL;
}
return 0;
}
static const VMStateDescription vmstate_ssd0323 = {
.name = "ssd0323_oled",
.version_id = 2,
.minimum_version_id = 2,
.post_load = ssd0323_post_load,
.fields = (VMStateField []) {
VMSTATE_UINT32(cmd_len, ssd0323_state),
VMSTATE_INT32(cmd, ssd0323_state),
VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8),
VMSTATE_INT32(row, ssd0323_state),
VMSTATE_INT32(row_start, ssd0323_state),
VMSTATE_INT32(row_end, ssd0323_state),
VMSTATE_INT32(col, ssd0323_state),
VMSTATE_INT32(col_start, ssd0323_state),
VMSTATE_INT32(col_end, ssd0323_state),
VMSTATE_INT32(redraw, ssd0323_state),
VMSTATE_INT32(remap, ssd0323_state),
VMSTATE_UINT32(mode, ssd0323_state),
VMSTATE_BUFFER(framebuffer, ssd0323_state),
VMSTATE_SSI_SLAVE(ssidev, ssd0323_state),
VMSTATE_END_OF_LIST()
}
};
static const GraphicHwOps ssd0323_ops = {
.invalidate = ssd0323_invalidate_display,
.gfx_update = ssd0323_update_display,
};
static void ssd0323_realize(SSISlave *d, Error **errp)
{
DeviceState *dev = DEVICE(d);
ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, d);
s->col_end = 63;
s->row_end = 79;
s->con = graphic_console_init(dev, 0, &ssd0323_ops, s);
qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY);
qdev_init_gpio_in(dev, ssd0323_cd, 1);
}
static void ssd0323_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
k->realize = ssd0323_realize;
k->transfer = ssd0323_transfer;
k->cs_polarity = SSI_CS_HIGH;
dc->vmsd = &vmstate_ssd0323;
}
static const TypeInfo ssd0323_info = {
.name = "ssd0323",
.parent = TYPE_SSI_SLAVE,
.instance_size = sizeof(ssd0323_state),
.class_init = ssd0323_class_init,
};
static void ssd03232_register_types(void)
{
type_register_static(&ssd0323_info);
}
type_init(ssd03232_register_types)