xemu/softmmu_header.h

240 lines
6.5 KiB
C
Raw Normal View History

/*
* Software MMU support
*
* Generate inline load/store functions for one MMU mode and data
* size.
*
* Generate a store function as well as signed and unsigned loads. For
* 32 and 64 bit cases, also generate floating point functions with
* the same size.
*
* Not used directly but included from softmmu_exec.h and exec-all.h.
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#if DATA_SIZE == 8
#define SUFFIX q
#define USUFFIX q
#define DATA_TYPE uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define USUFFIX l
#define DATA_TYPE uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define USUFFIX uw
#define DATA_TYPE uint16_t
#define DATA_STYPE int16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define USUFFIX ub
#define DATA_TYPE uint8_t
#define DATA_STYPE int8_t
#else
#error unsupported data size
#endif
#if ACCESS_TYPE < (NB_MMU_MODES)
#define CPU_MMU_INDEX ACCESS_TYPE
#define MMUSUFFIX _mmu
#elif ACCESS_TYPE == (NB_MMU_MODES)
#define CPU_MMU_INDEX (cpu_mmu_index(env))
#define MMUSUFFIX _mmu
#elif ACCESS_TYPE == (NB_MMU_MODES + 1)
#define CPU_MMU_INDEX (cpu_mmu_index(env))
#define MMUSUFFIX _cmmu
#else
#error invalid ACCESS_TYPE
#endif
#if DATA_SIZE == 8
#define RES_TYPE uint64_t
#else
#define RES_TYPE uint32_t
#endif
#if ACCESS_TYPE == (NB_MMU_MODES + 1)
#define ADDR_READ addr_code
#else
#define ADDR_READ addr_read
#endif
#ifndef CONFIG_TCG_PASS_AREG0
#define ENV_PARAM
#define ENV_VAR
#define CPU_PREFIX
#define HELPER_PREFIX __
#else
#define ENV_PARAM CPUArchState *env,
#define ENV_VAR env,
#define CPU_PREFIX cpu_
#define HELPER_PREFIX helper_
#endif
/* generic load/store macros */
static inline RES_TYPE
glue(glue(glue(CPU_PREFIX, ld), USUFFIX), MEMSUFFIX)(ENV_PARAM
target_ulong ptr)
{
int page_index;
RES_TYPE res;
target_ulong addr;
unsigned long physaddr;
int mmu_idx;
addr = ptr;
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = CPU_MMU_INDEX;
if (unlikely(env->tlb_table[mmu_idx][page_index].ADDR_READ !=
(addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) {
res = glue(glue(glue(HELPER_PREFIX, ld), SUFFIX), MMUSUFFIX)(ENV_VAR
addr,
mmu_idx);
} else {
physaddr = addr + env->tlb_table[mmu_idx][page_index].addend;
res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)physaddr);
}
return res;
}
#if DATA_SIZE <= 2
static inline int
glue(glue(glue(CPU_PREFIX, lds), SUFFIX), MEMSUFFIX)(ENV_PARAM
target_ulong ptr)
{
int res, page_index;
target_ulong addr;
unsigned long physaddr;
int mmu_idx;
addr = ptr;
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = CPU_MMU_INDEX;
if (unlikely(env->tlb_table[mmu_idx][page_index].ADDR_READ !=
(addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) {
res = (DATA_STYPE)glue(glue(glue(HELPER_PREFIX, ld), SUFFIX),
MMUSUFFIX)(ENV_VAR addr, mmu_idx);
} else {
physaddr = addr + env->tlb_table[mmu_idx][page_index].addend;
res = glue(glue(lds, SUFFIX), _raw)((uint8_t *)physaddr);
}
return res;
}
#endif
#if ACCESS_TYPE != (NB_MMU_MODES + 1)
/* generic store macro */
static inline void
glue(glue(glue(CPU_PREFIX, st), SUFFIX), MEMSUFFIX)(ENV_PARAM target_ulong ptr,
RES_TYPE v)
{
int page_index;
target_ulong addr;
unsigned long physaddr;
int mmu_idx;
addr = ptr;
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = CPU_MMU_INDEX;
if (unlikely(env->tlb_table[mmu_idx][page_index].addr_write !=
(addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) {
glue(glue(glue(HELPER_PREFIX, st), SUFFIX), MMUSUFFIX)(ENV_VAR addr, v,
mmu_idx);
} else {
physaddr = addr + env->tlb_table[mmu_idx][page_index].addend;
glue(glue(st, SUFFIX), _raw)((uint8_t *)physaddr, v);
}
}
#endif /* ACCESS_TYPE != (NB_MMU_MODES + 1) */
#if ACCESS_TYPE != (NB_MMU_MODES + 1)
#if DATA_SIZE == 8
static inline float64 glue(glue(CPU_PREFIX, ldfq), MEMSUFFIX)(ENV_PARAM
target_ulong ptr)
{
union {
float64 d;
uint64_t i;
} u;
u.i = glue(glue(CPU_PREFIX, ldq), MEMSUFFIX)(ENV_VAR ptr);
return u.d;
}
static inline void glue(glue(CPU_PREFIX, stfq), MEMSUFFIX)(ENV_PARAM
target_ulong ptr,
float64 v)
{
union {
float64 d;
uint64_t i;
} u;
u.d = v;
glue(glue(CPU_PREFIX, stq), MEMSUFFIX)(ENV_VAR ptr, u.i);
}
#endif /* DATA_SIZE == 8 */
#if DATA_SIZE == 4
static inline float32 glue(glue(CPU_PREFIX, ldfl), MEMSUFFIX)(ENV_PARAM
target_ulong ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = glue(glue(CPU_PREFIX, ldl), MEMSUFFIX)(ENV_VAR ptr);
return u.f;
}
static inline void glue(glue(CPU_PREFIX, stfl), MEMSUFFIX)(ENV_PARAM
target_ulong ptr,
float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
glue(glue(CPU_PREFIX, stl), MEMSUFFIX)(ENV_VAR ptr, u.i);
}
#endif /* DATA_SIZE == 4 */
#endif /* ACCESS_TYPE != (NB_MMU_MODES + 1) */
#undef RES_TYPE
#undef DATA_TYPE
#undef DATA_STYPE
#undef SUFFIX
#undef USUFFIX
#undef DATA_SIZE
#undef CPU_MMU_INDEX
#undef MMUSUFFIX
#undef ADDR_READ
#undef ENV_PARAM
#undef ENV_VAR
#undef CPU_PREFIX
#undef HELPER_PREFIX