2019-07-04 16:14:43 +00:00
|
|
|
/*
|
|
|
|
* ARM debug helpers.
|
|
|
|
*
|
|
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "cpu.h"
|
|
|
|
#include "internals.h"
|
|
|
|
#include "exec/exec-all.h"
|
|
|
|
#include "exec/helper-proto.h"
|
|
|
|
|
2022-06-10 13:32:30 +00:00
|
|
|
|
2022-06-10 13:32:31 +00:00
|
|
|
/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
|
|
|
|
static bool aa64_generate_debug_exceptions(CPUARMState *env)
|
|
|
|
{
|
|
|
|
int cur_el = arm_current_el(env);
|
|
|
|
int debug_el;
|
|
|
|
|
|
|
|
if (cur_el == 3) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* MDCR_EL3.SDD disables debug events from Secure state */
|
|
|
|
if (arm_is_secure_below_el3(env)
|
|
|
|
&& extract32(env->cp15.mdcr_el3, 16, 1)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Same EL to same EL debug exceptions need MDSCR_KDE enabled
|
|
|
|
* while not masking the (D)ebug bit in DAIF.
|
|
|
|
*/
|
|
|
|
debug_el = arm_debug_target_el(env);
|
|
|
|
|
|
|
|
if (cur_el == debug_el) {
|
|
|
|
return extract32(env->cp15.mdscr_el1, 13, 1)
|
|
|
|
&& !(env->daif & PSTATE_D);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Otherwise the debug target needs to be a higher EL */
|
|
|
|
return debug_el > cur_el;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool aa32_generate_debug_exceptions(CPUARMState *env)
|
|
|
|
{
|
|
|
|
int el = arm_current_el(env);
|
|
|
|
|
|
|
|
if (el == 0 && arm_el_is_aa64(env, 1)) {
|
|
|
|
return aa64_generate_debug_exceptions(env);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (arm_is_secure(env)) {
|
|
|
|
int spd;
|
|
|
|
|
|
|
|
if (el == 0 && (env->cp15.sder & 1)) {
|
|
|
|
/*
|
|
|
|
* SDER.SUIDEN means debug exceptions from Secure EL0
|
|
|
|
* are always enabled. Otherwise they are controlled by
|
|
|
|
* SDCR.SPD like those from other Secure ELs.
|
|
|
|
*/
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
spd = extract32(env->cp15.mdcr_el3, 14, 2);
|
|
|
|
switch (spd) {
|
|
|
|
case 1:
|
|
|
|
/* SPD == 0b01 is reserved, but behaves as 0b00. */
|
|
|
|
case 0:
|
|
|
|
/*
|
|
|
|
* For 0b00 we return true if external secure invasive debug
|
|
|
|
* is enabled. On real hardware this is controlled by external
|
|
|
|
* signals to the core. QEMU always permits debug, and behaves
|
|
|
|
* as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
|
|
|
|
*/
|
|
|
|
return true;
|
|
|
|
case 2:
|
|
|
|
return false;
|
|
|
|
case 3:
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return el != 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return true if debugging exceptions are currently enabled.
|
|
|
|
* This corresponds to what in ARM ARM pseudocode would be
|
|
|
|
* if UsingAArch32() then
|
|
|
|
* return AArch32.GenerateDebugExceptions()
|
|
|
|
* else
|
|
|
|
* return AArch64.GenerateDebugExceptions()
|
|
|
|
* We choose to push the if() down into this function for clarity,
|
|
|
|
* since the pseudocode has it at all callsites except for the one in
|
|
|
|
* CheckSoftwareStep(), where it is elided because both branches would
|
|
|
|
* always return the same value.
|
|
|
|
*/
|
|
|
|
bool arm_generate_debug_exceptions(CPUARMState *env)
|
|
|
|
{
|
2022-06-10 13:32:31 +00:00
|
|
|
if (is_a64(env)) {
|
2022-06-10 13:32:31 +00:00
|
|
|
return aa64_generate_debug_exceptions(env);
|
|
|
|
} else {
|
|
|
|
return aa32_generate_debug_exceptions(env);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-06-10 13:32:30 +00:00
|
|
|
/*
|
|
|
|
* Is single-stepping active? (Note that the "is EL_D AArch64?" check
|
|
|
|
* implicitly means this always returns false in pre-v8 CPUs.)
|
|
|
|
*/
|
|
|
|
bool arm_singlestep_active(CPUARMState *env)
|
|
|
|
{
|
|
|
|
return extract32(env->cp15.mdscr_el1, 0, 1)
|
|
|
|
&& arm_el_is_aa64(env, arm_debug_target_el(env))
|
|
|
|
&& arm_generate_debug_exceptions(env);
|
|
|
|
}
|
|
|
|
|
2019-07-04 16:14:43 +00:00
|
|
|
/* Return true if the linked breakpoint entry lbn passes its checks */
|
|
|
|
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
|
|
|
|
{
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
uint64_t bcr = env->cp15.dbgbcr[lbn];
|
2020-02-14 17:51:05 +00:00
|
|
|
int brps = arm_num_brps(cpu);
|
|
|
|
int ctx_cmps = arm_num_ctx_cmps(cpu);
|
2019-07-04 16:14:43 +00:00
|
|
|
int bt;
|
|
|
|
uint32_t contextidr;
|
2020-02-07 14:04:21 +00:00
|
|
|
uint64_t hcr_el2;
|
2019-07-04 16:14:43 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Links to unimplemented or non-context aware breakpoints are
|
|
|
|
* CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
|
|
|
|
* as if linked to an UNKNOWN context-aware breakpoint (in which
|
|
|
|
* case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
|
|
|
|
* We choose the former.
|
|
|
|
*/
|
2020-02-14 17:51:05 +00:00
|
|
|
if (lbn >= brps || lbn < (brps - ctx_cmps)) {
|
2019-07-04 16:14:43 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bcr = env->cp15.dbgbcr[lbn];
|
|
|
|
|
|
|
|
if (extract64(bcr, 0, 1) == 0) {
|
|
|
|
/* Linked breakpoint disabled : generate no events */
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bt = extract64(bcr, 20, 4);
|
2020-02-07 14:04:21 +00:00
|
|
|
hcr_el2 = arm_hcr_el2_eff(env);
|
2019-07-04 16:14:43 +00:00
|
|
|
|
|
|
|
switch (bt) {
|
|
|
|
case 3: /* linked context ID match */
|
2020-02-07 14:04:21 +00:00
|
|
|
switch (arm_current_el(env)) {
|
|
|
|
default:
|
|
|
|
/* Context matches never fire in AArch64 EL3 */
|
2019-07-04 16:14:43 +00:00
|
|
|
return false;
|
2020-02-07 14:04:21 +00:00
|
|
|
case 2:
|
|
|
|
if (!(hcr_el2 & HCR_E2H)) {
|
|
|
|
/* Context matches never fire in EL2 without E2H enabled. */
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
contextidr = env->cp15.contextidr_el[2];
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
contextidr = env->cp15.contextidr_el[1];
|
|
|
|
break;
|
|
|
|
case 0:
|
|
|
|
if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
|
|
contextidr = env->cp15.contextidr_el[2];
|
|
|
|
} else {
|
|
|
|
contextidr = env->cp15.contextidr_el[1];
|
|
|
|
}
|
|
|
|
break;
|
2019-07-04 16:14:43 +00:00
|
|
|
}
|
2020-02-07 14:04:21 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 7: /* linked contextidr_el1 match */
|
|
|
|
contextidr = env->cp15.contextidr_el[1];
|
|
|
|
break;
|
|
|
|
case 13: /* linked contextidr_el2 match */
|
|
|
|
contextidr = env->cp15.contextidr_el[2];
|
|
|
|
break;
|
|
|
|
|
2019-07-04 16:14:43 +00:00
|
|
|
case 9: /* linked VMID match (reserved if no EL2) */
|
|
|
|
case 11: /* linked context ID and VMID match (reserved if no EL2) */
|
2020-02-07 14:04:21 +00:00
|
|
|
case 15: /* linked full context ID match */
|
2019-07-04 16:14:43 +00:00
|
|
|
default:
|
|
|
|
/*
|
|
|
|
* Links to Unlinked context breakpoints must generate no
|
|
|
|
* events; we choose to do the same for reserved values too.
|
|
|
|
*/
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-02-07 14:04:21 +00:00
|
|
|
/*
|
|
|
|
* We match the whole register even if this is AArch32 using the
|
|
|
|
* short descriptor format (in which case it holds both PROCID and ASID),
|
|
|
|
* since we don't implement the optional v7 context ID masking.
|
|
|
|
*/
|
|
|
|
return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
|
2019-07-04 16:14:43 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
|
|
|
|
{
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
uint64_t cr;
|
|
|
|
int pac, hmc, ssc, wt, lbn;
|
|
|
|
/*
|
|
|
|
* Note that for watchpoints the check is against the CPU security
|
|
|
|
* state, not the S/NS attribute on the offending data access.
|
|
|
|
*/
|
|
|
|
bool is_secure = arm_is_secure(env);
|
|
|
|
int access_el = arm_current_el(env);
|
|
|
|
|
|
|
|
if (is_wp) {
|
|
|
|
CPUWatchpoint *wp = env->cpu_watchpoint[n];
|
|
|
|
|
|
|
|
if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
cr = env->cp15.dbgwcr[n];
|
|
|
|
if (wp->hitattrs.user) {
|
|
|
|
/*
|
|
|
|
* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
|
|
|
|
* match watchpoints as if they were accesses done at EL0, even if
|
|
|
|
* the CPU is at EL1 or higher.
|
|
|
|
*/
|
|
|
|
access_el = 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
|
|
|
|
|
|
|
|
if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
cr = env->cp15.dbgbcr[n];
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
|
|
|
|
* enabled and that the address and access type match; for breakpoints
|
|
|
|
* we know the address matched; check the remaining fields, including
|
|
|
|
* linked breakpoints. We rely on WCR and BCR having the same layout
|
|
|
|
* for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
|
|
|
|
* Note that some combinations of {PAC, HMC, SSC} are reserved and
|
|
|
|
* must act either like some valid combination or as if the watchpoint
|
|
|
|
* were disabled. We choose the former, and use this together with
|
|
|
|
* the fact that EL3 must always be Secure and EL2 must always be
|
|
|
|
* Non-Secure to simplify the code slightly compared to the full
|
|
|
|
* table in the ARM ARM.
|
|
|
|
*/
|
2022-04-27 05:19:26 +00:00
|
|
|
pac = FIELD_EX64(cr, DBGWCR, PAC);
|
|
|
|
hmc = FIELD_EX64(cr, DBGWCR, HMC);
|
|
|
|
ssc = FIELD_EX64(cr, DBGWCR, SSC);
|
2019-07-04 16:14:43 +00:00
|
|
|
|
|
|
|
switch (ssc) {
|
|
|
|
case 0:
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
case 3:
|
|
|
|
if (is_secure) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
if (!is_secure) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (access_el) {
|
|
|
|
case 3:
|
|
|
|
case 2:
|
|
|
|
if (!hmc) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
if (extract32(pac, 0, 1) == 0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0:
|
|
|
|
if (extract32(pac, 1, 1) == 0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
|
|
|
|
2022-04-27 05:19:26 +00:00
|
|
|
wt = FIELD_EX64(cr, DBGWCR, WT);
|
|
|
|
lbn = FIELD_EX64(cr, DBGWCR, LBN);
|
2019-07-04 16:14:43 +00:00
|
|
|
|
|
|
|
if (wt && !linked_bp_matches(cpu, lbn)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool check_watchpoints(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
int n;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If watchpoints are disabled globally or we can't take debug
|
|
|
|
* exceptions here then watchpoint firings are ignored.
|
|
|
|
*/
|
|
|
|
if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
|
|
|
|
|| !arm_generate_debug_exceptions(env)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
|
|
|
|
if (bp_wp_matches(cpu, n, true)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-07-19 18:19:26 +00:00
|
|
|
bool arm_debug_check_breakpoint(CPUState *cs)
|
2019-07-04 16:14:43 +00:00
|
|
|
{
|
2021-07-19 18:19:26 +00:00
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
2019-07-04 16:14:43 +00:00
|
|
|
CPUARMState *env = &cpu->env;
|
2021-11-03 04:03:51 +00:00
|
|
|
target_ulong pc;
|
2019-07-04 16:14:43 +00:00
|
|
|
int n;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If breakpoints are disabled globally or we can't take debug
|
|
|
|
* exceptions here then breakpoint firings are ignored.
|
|
|
|
*/
|
|
|
|
if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
|
|
|
|
|| !arm_generate_debug_exceptions(env)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-11-03 04:03:51 +00:00
|
|
|
/*
|
|
|
|
* Single-step exceptions have priority over breakpoint exceptions.
|
|
|
|
* If single-step state is active-pending, suppress the bp.
|
|
|
|
*/
|
|
|
|
if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* PC alignment faults have priority over breakpoint exceptions.
|
|
|
|
*/
|
|
|
|
pc = is_a64(env) ? env->pc : env->regs[15];
|
|
|
|
if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Instruction aborts have priority over breakpoint exceptions.
|
|
|
|
* TODO: We would need to look up the page for PC and verify that
|
|
|
|
* it is present and executable.
|
|
|
|
*/
|
|
|
|
|
2019-07-04 16:14:43 +00:00
|
|
|
for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
|
|
|
|
if (bp_wp_matches(cpu, n, false)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Called by core code when a CPU watchpoint fires; need to check if this
|
|
|
|
* is also an architectural watchpoint match.
|
|
|
|
*/
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
|
|
|
|
return check_watchpoints(cpu);
|
|
|
|
}
|
|
|
|
|
2022-06-10 13:32:31 +00:00
|
|
|
/*
|
|
|
|
* Return the FSR value for a debug exception (watchpoint, hardware
|
|
|
|
* breakpoint or BKPT insn) targeting the specified exception level.
|
|
|
|
*/
|
|
|
|
static uint32_t arm_debug_exception_fsr(CPUARMState *env)
|
|
|
|
{
|
|
|
|
ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
|
|
|
|
int target_el = arm_debug_target_el(env);
|
|
|
|
bool using_lpae = false;
|
|
|
|
|
|
|
|
if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
|
|
|
|
using_lpae = true;
|
|
|
|
} else {
|
|
|
|
if (arm_feature(env, ARM_FEATURE_LPAE) &&
|
|
|
|
(env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
|
|
|
|
using_lpae = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (using_lpae) {
|
|
|
|
return arm_fi_to_lfsc(&fi);
|
|
|
|
} else {
|
|
|
|
return arm_fi_to_sfsc(&fi);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-07-04 16:14:43 +00:00
|
|
|
void arm_debug_excp_handler(CPUState *cs)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Called by core code when a watchpoint or breakpoint fires;
|
|
|
|
* need to check which one and raise the appropriate exception.
|
|
|
|
*/
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
CPUWatchpoint *wp_hit = cs->watchpoint_hit;
|
|
|
|
|
|
|
|
if (wp_hit) {
|
|
|
|
if (wp_hit->flags & BP_CPU) {
|
|
|
|
bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
|
|
|
|
bool same_el = arm_debug_target_el(env) == arm_current_el(env);
|
|
|
|
|
|
|
|
cs->watchpoint_hit = NULL;
|
|
|
|
|
|
|
|
env->exception.fsr = arm_debug_exception_fsr(env);
|
|
|
|
env->exception.vaddress = wp_hit->hitaddr;
|
|
|
|
raise_exception(env, EXCP_DATA_ABORT,
|
|
|
|
syn_watchpoint(same_el, 0, wnr),
|
|
|
|
arm_debug_target_el(env));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
|
|
|
|
bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* (1) GDB breakpoints should be handled first.
|
|
|
|
* (2) Do not raise a CPU exception if no CPU breakpoint has fired,
|
|
|
|
* since singlestep is also done by generating a debug internal
|
|
|
|
* exception.
|
|
|
|
*/
|
|
|
|
if (cpu_breakpoint_test(cs, pc, BP_GDB)
|
|
|
|
|| !cpu_breakpoint_test(cs, pc, BP_CPU)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
env->exception.fsr = arm_debug_exception_fsr(env);
|
|
|
|
/*
|
|
|
|
* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
|
|
|
|
* values to the guest that it shouldn't be able to see at its
|
|
|
|
* exception/security level.
|
|
|
|
*/
|
|
|
|
env->exception.vaddress = 0;
|
|
|
|
raise_exception(env, EXCP_PREFETCH_ABORT,
|
|
|
|
syn_breakpoint(same_el),
|
|
|
|
arm_debug_target_el(env));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-06-10 13:32:31 +00:00
|
|
|
/*
|
|
|
|
* Raise an EXCP_BKPT with the specified syndrome register value,
|
|
|
|
* targeting the correct exception level for debug exceptions.
|
|
|
|
*/
|
|
|
|
void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
|
|
|
|
{
|
|
|
|
int debug_el = arm_debug_target_el(env);
|
|
|
|
int cur_el = arm_current_el(env);
|
|
|
|
|
|
|
|
/* FSR will only be used if the debug target EL is AArch32. */
|
|
|
|
env->exception.fsr = arm_debug_exception_fsr(env);
|
|
|
|
/*
|
|
|
|
* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
|
|
|
|
* values to the guest that it shouldn't be able to see at its
|
|
|
|
* exception/security level.
|
|
|
|
*/
|
|
|
|
env->exception.vaddress = 0;
|
|
|
|
/*
|
|
|
|
* Other kinds of architectural debug exception are ignored if
|
|
|
|
* they target an exception level below the current one (in QEMU
|
|
|
|
* this is checked by arm_generate_debug_exceptions()). Breakpoint
|
|
|
|
* instructions are special because they always generate an exception
|
|
|
|
* to somewhere: if they can't go to the configured debug exception
|
|
|
|
* level they are taken to the current exception level.
|
|
|
|
*/
|
|
|
|
if (debug_el < cur_el) {
|
|
|
|
debug_el = cur_el;
|
|
|
|
}
|
|
|
|
raise_exception(env, EXCP_BKPT, syndrome, debug_el);
|
|
|
|
}
|
|
|
|
|
2019-07-04 16:14:43 +00:00
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
|
|
|
|
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
|
|
|
|
{
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In BE32 system mode, target memory is stored byteswapped (on a
|
|
|
|
* little-endian host system), and by the time we reach here (via an
|
|
|
|
* opcode helper) the addresses of subword accesses have been adjusted
|
|
|
|
* to account for that, which means that watchpoints will not match.
|
|
|
|
* Undo the adjustment here.
|
|
|
|
*/
|
|
|
|
if (arm_sctlr_b(env)) {
|
|
|
|
if (len == 1) {
|
|
|
|
addr ^= 3;
|
|
|
|
} else if (len == 2) {
|
|
|
|
addr ^= 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|