xemu/hw/ipmi/ipmi_bmc_sim.c

1816 lines
57 KiB
C
Raw Normal View History

/*
* IPMI BMC emulation
*
* Copyright (c) 2015 Corey Minyard, MontaVista Software, LLC
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "sysemu/sysemu.h"
#include "qemu/timer.h"
#include "hw/ipmi/ipmi.h"
#include "qemu/error-report.h"
#define IPMI_NETFN_CHASSIS 0x00
#define IPMI_CMD_GET_CHASSIS_CAPABILITIES 0x00
#define IPMI_CMD_GET_CHASSIS_STATUS 0x01
#define IPMI_CMD_CHASSIS_CONTROL 0x02
#define IPMI_CMD_GET_SYS_RESTART_CAUSE 0x09
#define IPMI_NETFN_SENSOR_EVENT 0x04
#define IPMI_CMD_SET_SENSOR_EVT_ENABLE 0x28
#define IPMI_CMD_GET_SENSOR_EVT_ENABLE 0x29
#define IPMI_CMD_REARM_SENSOR_EVTS 0x2a
#define IPMI_CMD_GET_SENSOR_EVT_STATUS 0x2b
#define IPMI_CMD_GET_SENSOR_READING 0x2d
#define IPMI_CMD_SET_SENSOR_TYPE 0x2e
#define IPMI_CMD_GET_SENSOR_TYPE 0x2f
/* #define IPMI_NETFN_APP 0x06 In ipmi.h */
#define IPMI_CMD_GET_DEVICE_ID 0x01
#define IPMI_CMD_COLD_RESET 0x02
#define IPMI_CMD_WARM_RESET 0x03
#define IPMI_CMD_SET_ACPI_POWER_STATE 0x06
#define IPMI_CMD_GET_ACPI_POWER_STATE 0x07
#define IPMI_CMD_GET_DEVICE_GUID 0x08
#define IPMI_CMD_RESET_WATCHDOG_TIMER 0x22
#define IPMI_CMD_SET_WATCHDOG_TIMER 0x24
#define IPMI_CMD_GET_WATCHDOG_TIMER 0x25
#define IPMI_CMD_SET_BMC_GLOBAL_ENABLES 0x2e
#define IPMI_CMD_GET_BMC_GLOBAL_ENABLES 0x2f
#define IPMI_CMD_CLR_MSG_FLAGS 0x30
#define IPMI_CMD_GET_MSG_FLAGS 0x31
#define IPMI_CMD_GET_MSG 0x33
#define IPMI_CMD_SEND_MSG 0x34
#define IPMI_CMD_READ_EVT_MSG_BUF 0x35
#define IPMI_NETFN_STORAGE 0x0a
#define IPMI_CMD_GET_SDR_REP_INFO 0x20
#define IPMI_CMD_GET_SDR_REP_ALLOC_INFO 0x21
#define IPMI_CMD_RESERVE_SDR_REP 0x22
#define IPMI_CMD_GET_SDR 0x23
#define IPMI_CMD_ADD_SDR 0x24
#define IPMI_CMD_PARTIAL_ADD_SDR 0x25
#define IPMI_CMD_DELETE_SDR 0x26
#define IPMI_CMD_CLEAR_SDR_REP 0x27
#define IPMI_CMD_GET_SDR_REP_TIME 0x28
#define IPMI_CMD_SET_SDR_REP_TIME 0x29
#define IPMI_CMD_ENTER_SDR_REP_UPD_MODE 0x2A
#define IPMI_CMD_EXIT_SDR_REP_UPD_MODE 0x2B
#define IPMI_CMD_RUN_INIT_AGENT 0x2C
#define IPMI_CMD_GET_SEL_INFO 0x40
#define IPMI_CMD_GET_SEL_ALLOC_INFO 0x41
#define IPMI_CMD_RESERVE_SEL 0x42
#define IPMI_CMD_GET_SEL_ENTRY 0x43
#define IPMI_CMD_ADD_SEL_ENTRY 0x44
#define IPMI_CMD_PARTIAL_ADD_SEL_ENTRY 0x45
#define IPMI_CMD_DELETE_SEL_ENTRY 0x46
#define IPMI_CMD_CLEAR_SEL 0x47
#define IPMI_CMD_GET_SEL_TIME 0x48
#define IPMI_CMD_SET_SEL_TIME 0x49
/* Same as a timespec struct. */
struct ipmi_time {
long tv_sec;
long tv_nsec;
};
#define MAX_SEL_SIZE 128
typedef struct IPMISel {
uint8_t sel[MAX_SEL_SIZE][16];
unsigned int next_free;
long time_offset;
uint16_t reservation;
uint8_t last_addition[4];
uint8_t last_clear[4];
uint8_t overflow;
} IPMISel;
#define MAX_SDR_SIZE 16384
typedef struct IPMISdr {
uint8_t sdr[MAX_SDR_SIZE];
unsigned int next_free;
uint16_t next_rec_id;
uint16_t reservation;
uint8_t last_addition[4];
uint8_t last_clear[4];
uint8_t overflow;
} IPMISdr;
typedef struct IPMISensor {
uint8_t status;
uint8_t reading;
uint16_t states_suppt;
uint16_t assert_suppt;
uint16_t deassert_suppt;
uint16_t states;
uint16_t assert_states;
uint16_t deassert_states;
uint16_t assert_enable;
uint16_t deassert_enable;
uint8_t sensor_type;
uint8_t evt_reading_type_code;
} IPMISensor;
#define IPMI_SENSOR_GET_PRESENT(s) ((s)->status & 0x01)
#define IPMI_SENSOR_SET_PRESENT(s, v) ((s)->status = (s->status & ~0x01) | \
!!(v))
#define IPMI_SENSOR_GET_SCAN_ON(s) ((s)->status & 0x40)
#define IPMI_SENSOR_SET_SCAN_ON(s, v) ((s)->status = (s->status & ~0x40) | \
((!!(v)) << 6))
#define IPMI_SENSOR_GET_EVENTS_ON(s) ((s)->status & 0x80)
#define IPMI_SENSOR_SET_EVENTS_ON(s, v) ((s)->status = (s->status & ~0x80) | \
((!!(v)) << 7))
#define IPMI_SENSOR_GET_RET_STATUS(s) ((s)->status & 0xc0)
#define IPMI_SENSOR_SET_RET_STATUS(s, v) ((s)->status = (s->status & ~0xc0) | \
(v & 0xc0))
#define IPMI_SENSOR_IS_DISCRETE(s) ((s)->evt_reading_type_code != 1)
#define MAX_SENSORS 20
#define IPMI_WATCHDOG_SENSOR 0
typedef struct IPMIBmcSim IPMIBmcSim;
#define MAX_NETFNS 64
typedef void (*IPMICmdHandler)(IPMIBmcSim *s,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len);
typedef struct IPMINetfn {
unsigned int cmd_nums;
const IPMICmdHandler *cmd_handlers;
} IPMINetfn;
typedef struct IPMIRcvBufEntry {
QTAILQ_ENTRY(IPMIRcvBufEntry) entry;
uint8_t len;
uint8_t buf[MAX_IPMI_MSG_SIZE];
} IPMIRcvBufEntry;
#define TYPE_IPMI_BMC_SIMULATOR "ipmi-bmc-sim"
#define IPMI_BMC_SIMULATOR(obj) OBJECT_CHECK(IPMIBmcSim, (obj), \
TYPE_IPMI_BMC_SIMULATOR)
struct IPMIBmcSim {
IPMIBmc parent;
QEMUTimer *timer;
uint8_t bmc_global_enables;
uint8_t msg_flags;
bool watchdog_initialized;
uint8_t watchdog_use;
uint8_t watchdog_action;
uint8_t watchdog_pretimeout; /* In seconds */
bool watchdog_expired;
uint16_t watchdog_timeout; /* in 100's of milliseconds */
bool watchdog_running;
bool watchdog_preaction_ran;
int64_t watchdog_expiry;
uint8_t device_id;
uint8_t ipmi_version;
uint8_t device_rev;
uint8_t fwrev1;
uint8_t fwrev2;
uint8_t mfg_id[3];
uint8_t product_id[2];
uint8_t restart_cause;
uint8_t acpi_power_state[2];
uint8_t uuid[16];
IPMISel sel;
IPMISdr sdr;
IPMISensor sensors[MAX_SENSORS];
/* Odd netfns are for responses, so we only need the even ones. */
const IPMINetfn *netfns[MAX_NETFNS / 2];
QemuMutex lock;
/* We allow one event in the buffer */
uint8_t evtbuf[16];
QTAILQ_HEAD(, IPMIRcvBufEntry) rcvbufs;
};
#define IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK (1 << 3)
#define IPMI_BMC_MSG_FLAG_EVT_BUF_FULL (1 << 1)
#define IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE (1 << 0)
#define IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK_SET(s) \
(IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK & (s)->msg_flags)
#define IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(s) \
(IPMI_BMC_MSG_FLAG_EVT_BUF_FULL & (s)->msg_flags)
#define IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(s) \
(IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE & (s)->msg_flags)
#define IPMI_BMC_RCV_MSG_QUEUE_INT_BIT 0
#define IPMI_BMC_EVBUF_FULL_INT_BIT 1
#define IPMI_BMC_EVENT_MSG_BUF_BIT 2
#define IPMI_BMC_EVENT_LOG_BIT 3
#define IPMI_BMC_MSG_INTS_ON(s) ((s)->bmc_global_enables & \
(1 << IPMI_BMC_RCV_MSG_QUEUE_INT_BIT))
#define IPMI_BMC_EVBUF_FULL_INT_ENABLED(s) ((s)->bmc_global_enables & \
(1 << IPMI_BMC_EVBUF_FULL_INT_BIT))
#define IPMI_BMC_EVENT_LOG_ENABLED(s) ((s)->bmc_global_enables & \
(1 << IPMI_BMC_EVENT_LOG_BIT))
#define IPMI_BMC_EVENT_MSG_BUF_ENABLED(s) ((s)->bmc_global_enables & \
(1 << IPMI_BMC_EVENT_MSG_BUF_BIT))
#define IPMI_BMC_WATCHDOG_USE_MASK 0xc7
#define IPMI_BMC_WATCHDOG_ACTION_MASK 0x77
#define IPMI_BMC_WATCHDOG_GET_USE(s) ((s)->watchdog_use & 0x7)
#define IPMI_BMC_WATCHDOG_GET_DONT_LOG(s) (((s)->watchdog_use >> 7) & 0x1)
#define IPMI_BMC_WATCHDOG_GET_DONT_STOP(s) (((s)->watchdog_use >> 6) & 0x1)
#define IPMI_BMC_WATCHDOG_GET_PRE_ACTION(s) (((s)->watchdog_action >> 4) & 0x7)
#define IPMI_BMC_WATCHDOG_PRE_NONE 0
#define IPMI_BMC_WATCHDOG_PRE_SMI 1
#define IPMI_BMC_WATCHDOG_PRE_NMI 2
#define IPMI_BMC_WATCHDOG_PRE_MSG_INT 3
#define IPMI_BMC_WATCHDOG_GET_ACTION(s) ((s)->watchdog_action & 0x7)
#define IPMI_BMC_WATCHDOG_ACTION_NONE 0
#define IPMI_BMC_WATCHDOG_ACTION_RESET 1
#define IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN 2
#define IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE 3
/* Add a byte to the response. */
#define IPMI_ADD_RSP_DATA(b) \
do { \
if (*rsp_len >= max_rsp_len) { \
rsp[2] = IPMI_CC_REQUEST_DATA_TRUNCATED; \
return; \
} \
rsp[(*rsp_len)++] = (b); \
} while (0)
/* Verify that the received command is a certain length. */
#define IPMI_CHECK_CMD_LEN(l) \
if (cmd_len < l) { \
rsp[2] = IPMI_CC_REQUEST_DATA_LENGTH_INVALID; \
return; \
}
/* Check that the reservation in the command is valid. */
#define IPMI_CHECK_RESERVATION(off, r) \
do { \
if ((cmd[off] | (cmd[off + 1] << 8)) != r) { \
rsp[2] = IPMI_CC_INVALID_RESERVATION; \
return; \
} \
} while (0)
static void ipmi_sim_handle_timeout(IPMIBmcSim *ibs);
static void ipmi_gettime(struct ipmi_time *time)
{
int64_t stime;
stime = qemu_clock_get_ns(QEMU_CLOCK_HOST);
time->tv_sec = stime / 1000000000LL;
time->tv_nsec = stime % 1000000000LL;
}
static int64_t ipmi_getmonotime(void)
{
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
}
static void ipmi_timeout(void *opaque)
{
IPMIBmcSim *ibs = opaque;
ipmi_sim_handle_timeout(ibs);
}
static void set_timestamp(IPMIBmcSim *ibs, uint8_t *ts)
{
unsigned int val;
struct ipmi_time now;
ipmi_gettime(&now);
val = now.tv_sec + ibs->sel.time_offset;
ts[0] = val & 0xff;
ts[1] = (val >> 8) & 0xff;
ts[2] = (val >> 16) & 0xff;
ts[3] = (val >> 24) & 0xff;
}
static void sdr_inc_reservation(IPMISdr *sdr)
{
sdr->reservation++;
if (sdr->reservation == 0) {
sdr->reservation = 1;
}
}
static int sdr_add_entry(IPMIBmcSim *ibs,
const struct ipmi_sdr_header *sdrh_entry,
unsigned int len, uint16_t *recid)
{
struct ipmi_sdr_header *sdrh =
(struct ipmi_sdr_header *) &ibs->sdr.sdr[ibs->sdr.next_free];
if ((len < IPMI_SDR_HEADER_SIZE) || (len > 255)) {
return 1;
}
if (ipmi_sdr_length(sdrh_entry) != len) {
return 1;
}
if (ibs->sdr.next_free + len > MAX_SDR_SIZE) {
ibs->sdr.overflow = 1;
return 1;
}
memcpy(sdrh, sdrh_entry, len);
sdrh->rec_id[0] = ibs->sdr.next_rec_id & 0xff;
sdrh->rec_id[1] = (ibs->sdr.next_rec_id >> 8) & 0xff;
sdrh->sdr_version = 0x51; /* Conform to IPMI 1.5 spec */
if (recid) {
*recid = ibs->sdr.next_rec_id;
}
ibs->sdr.next_rec_id++;
set_timestamp(ibs, ibs->sdr.last_addition);
ibs->sdr.next_free += len;
sdr_inc_reservation(&ibs->sdr);
return 0;
}
static int sdr_find_entry(IPMISdr *sdr, uint16_t recid,
unsigned int *retpos, uint16_t *nextrec)
{
unsigned int pos = *retpos;
while (pos < sdr->next_free) {
struct ipmi_sdr_header *sdrh =
(struct ipmi_sdr_header *) &sdr->sdr[pos];
uint16_t trec = ipmi_sdr_recid(sdrh);
unsigned int nextpos = pos + ipmi_sdr_length(sdrh);
if (trec == recid) {
if (nextrec) {
if (nextpos >= sdr->next_free) {
*nextrec = 0xffff;
} else {
*nextrec = (sdr->sdr[nextpos] |
(sdr->sdr[nextpos + 1] << 8));
}
}
*retpos = pos;
return 0;
}
pos = nextpos;
}
return 1;
}
static void sel_inc_reservation(IPMISel *sel)
{
sel->reservation++;
if (sel->reservation == 0) {
sel->reservation = 1;
}
}
/* Returns 1 if the SEL is full and can't hold the event. */
static int sel_add_event(IPMIBmcSim *ibs, uint8_t *event)
{
event[0] = 0xff;
event[1] = 0xff;
set_timestamp(ibs, event + 3);
if (ibs->sel.next_free == MAX_SEL_SIZE) {
ibs->sel.overflow = 1;
return 1;
}
event[0] = ibs->sel.next_free & 0xff;
event[1] = (ibs->sel.next_free >> 8) & 0xff;
memcpy(ibs->sel.last_addition, event + 3, 4);
memcpy(ibs->sel.sel[ibs->sel.next_free], event, 16);
ibs->sel.next_free++;
sel_inc_reservation(&ibs->sel);
return 0;
}
static int attn_set(IPMIBmcSim *ibs)
{
return IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(ibs)
|| IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(ibs)
|| IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK_SET(ibs);
}
static int attn_irq_enabled(IPMIBmcSim *ibs)
{
return (IPMI_BMC_MSG_INTS_ON(ibs) && IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE_SET(ibs))
|| (IPMI_BMC_EVBUF_FULL_INT_ENABLED(ibs) &&
IPMI_BMC_MSG_FLAG_EVT_BUF_FULL_SET(ibs));
}
static void gen_event(IPMIBmcSim *ibs, unsigned int sens_num, uint8_t deassert,
uint8_t evd1, uint8_t evd2, uint8_t evd3)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
uint8_t evt[16];
IPMISensor *sens = ibs->sensors + sens_num;
if (!IPMI_BMC_EVENT_MSG_BUF_ENABLED(ibs)) {
return;
}
if (!IPMI_SENSOR_GET_EVENTS_ON(sens)) {
return;
}
evt[2] = 0x2; /* System event record */
evt[7] = ibs->parent.slave_addr;
evt[8] = 0;
evt[9] = 0x04; /* Format version */
evt[10] = sens->sensor_type;
evt[11] = sens_num;
evt[12] = sens->evt_reading_type_code | (!!deassert << 7);
evt[13] = evd1;
evt[14] = evd2;
evt[15] = evd3;
if (IPMI_BMC_EVENT_LOG_ENABLED(ibs)) {
sel_add_event(ibs, evt);
}
if (ibs->msg_flags & IPMI_BMC_MSG_FLAG_EVT_BUF_FULL) {
return;
}
memcpy(ibs->evtbuf, evt, 16);
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_EVT_BUF_FULL;
k->set_atn(s, 1, attn_irq_enabled(ibs));
}
static void sensor_set_discrete_bit(IPMIBmcSim *ibs, unsigned int sensor,
unsigned int bit, unsigned int val,
uint8_t evd1, uint8_t evd2, uint8_t evd3)
{
IPMISensor *sens;
uint16_t mask;
if (sensor >= MAX_SENSORS) {
return;
}
if (bit >= 16) {
return;
}
mask = (1 << bit);
sens = ibs->sensors + sensor;
if (val) {
sens->states |= mask & sens->states_suppt;
if (sens->assert_states & mask) {
return; /* Already asserted */
}
sens->assert_states |= mask & sens->assert_suppt;
if (sens->assert_enable & mask & sens->assert_states) {
/* Send an event on assert */
gen_event(ibs, sensor, 0, evd1, evd2, evd3);
}
} else {
sens->states &= ~(mask & sens->states_suppt);
if (sens->deassert_states & mask) {
return; /* Already deasserted */
}
sens->deassert_states |= mask & sens->deassert_suppt;
if (sens->deassert_enable & mask & sens->deassert_states) {
/* Send an event on deassert */
gen_event(ibs, sensor, 1, evd1, evd2, evd3);
}
}
}
static void ipmi_init_sensors_from_sdrs(IPMIBmcSim *s)
{
unsigned int i, pos;
IPMISensor *sens;
for (i = 0; i < MAX_SENSORS; i++) {
memset(s->sensors + i, 0, sizeof(*sens));
}
pos = 0;
for (i = 0; !sdr_find_entry(&s->sdr, i, &pos, NULL); i++) {
struct ipmi_sdr_compact *sdr =
(struct ipmi_sdr_compact *) &s->sdr.sdr[pos];
unsigned int len = sdr->header.rec_length;
if (len < 20) {
continue;
}
if (sdr->header.rec_type != IPMI_SDR_COMPACT_TYPE) {
continue; /* Not a sensor SDR we set from */
}
if (sdr->sensor_owner_number >= MAX_SENSORS) {
continue;
}
sens = s->sensors + sdr->sensor_owner_number;
IPMI_SENSOR_SET_PRESENT(sens, 1);
IPMI_SENSOR_SET_SCAN_ON(sens, (sdr->sensor_init >> 6) & 1);
IPMI_SENSOR_SET_EVENTS_ON(sens, (sdr->sensor_init >> 5) & 1);
sens->assert_suppt = sdr->assert_mask[0] | (sdr->assert_mask[1] << 8);
sens->deassert_suppt =
sdr->deassert_mask[0] | (sdr->deassert_mask[1] << 8);
sens->states_suppt =
sdr->discrete_mask[0] | (sdr->discrete_mask[1] << 8);
sens->sensor_type = sdr->sensor_type;
sens->evt_reading_type_code = sdr->reading_type & 0x7f;
/* Enable all the events that are supported. */
sens->assert_enable = sens->assert_suppt;
sens->deassert_enable = sens->deassert_suppt;
}
}
static int ipmi_register_netfn(IPMIBmcSim *s, unsigned int netfn,
const IPMINetfn *netfnd)
{
if ((netfn & 1) || (netfn >= MAX_NETFNS) || (s->netfns[netfn / 2])) {
return -1;
}
s->netfns[netfn / 2] = netfnd;
return 0;
}
static void next_timeout(IPMIBmcSim *ibs)
{
int64_t next;
if (ibs->watchdog_running) {
next = ibs->watchdog_expiry;
} else {
/* Wait a minute */
next = ipmi_getmonotime() + 60 * 1000000000LL;
}
timer_mod_ns(ibs->timer, next);
}
static void ipmi_sim_handle_command(IPMIBmc *b,
uint8_t *cmd, unsigned int cmd_len,
unsigned int max_cmd_len,
uint8_t msg_id)
{
IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b);
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
unsigned int netfn;
uint8_t rsp[MAX_IPMI_MSG_SIZE];
unsigned int rsp_len_holder = 0;
unsigned int *rsp_len = &rsp_len_holder;
unsigned int max_rsp_len = sizeof(rsp);
/* Set up the response, set the low bit of NETFN. */
/* Note that max_rsp_len must be at least 3 */
if (max_rsp_len < 3) {
rsp[2] = IPMI_CC_REQUEST_DATA_TRUNCATED;
goto out;
}
IPMI_ADD_RSP_DATA(cmd[0] | 0x04);
IPMI_ADD_RSP_DATA(cmd[1]);
IPMI_ADD_RSP_DATA(0); /* Assume success */
/* If it's too short or it was truncated, return an error. */
if (cmd_len < 2) {
rsp[2] = IPMI_CC_REQUEST_DATA_LENGTH_INVALID;
goto out;
}
if (cmd_len > max_cmd_len) {
rsp[2] = IPMI_CC_REQUEST_DATA_TRUNCATED;
goto out;
}
if ((cmd[0] & 0x03) != 0) {
/* Only have stuff on LUN 0 */
rsp[2] = IPMI_CC_COMMAND_INVALID_FOR_LUN;
goto out;
}
netfn = cmd[0] >> 2;
/* Odd netfns are not valid, make sure the command is registered */
if ((netfn & 1) || !ibs->netfns[netfn / 2] ||
(cmd[1] >= ibs->netfns[netfn / 2]->cmd_nums) ||
(!ibs->netfns[netfn / 2]->cmd_handlers[cmd[1]])) {
rsp[2] = IPMI_CC_INVALID_CMD;
goto out;
}
ibs->netfns[netfn / 2]->cmd_handlers[cmd[1]](ibs, cmd, cmd_len, rsp, rsp_len,
max_rsp_len);
out:
k->handle_rsp(s, msg_id, rsp, *rsp_len);
next_timeout(ibs);
}
static void ipmi_sim_handle_timeout(IPMIBmcSim *ibs)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
if (!ibs->watchdog_running) {
goto out;
}
if (!ibs->watchdog_preaction_ran) {
switch (IPMI_BMC_WATCHDOG_GET_PRE_ACTION(ibs)) {
case IPMI_BMC_WATCHDOG_PRE_NMI:
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK;
k->do_hw_op(s, IPMI_SEND_NMI, 0);
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 8, 1,
0xc8, (2 << 4) | 0xf, 0xff);
break;
case IPMI_BMC_WATCHDOG_PRE_MSG_INT:
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_WATCHDOG_TIMEOUT_MASK;
k->set_atn(s, 1, attn_irq_enabled(ibs));
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 8, 1,
0xc8, (3 << 4) | 0xf, 0xff);
break;
default:
goto do_full_expiry;
}
ibs->watchdog_preaction_ran = 1;
/* Issued the pretimeout, do the rest of the timeout now. */
ibs->watchdog_expiry = ipmi_getmonotime();
ibs->watchdog_expiry += ibs->watchdog_pretimeout * 1000000000LL;
goto out;
}
do_full_expiry:
ibs->watchdog_running = 0; /* Stop the watchdog on a timeout */
ibs->watchdog_expired |= (1 << IPMI_BMC_WATCHDOG_GET_USE(ibs));
switch (IPMI_BMC_WATCHDOG_GET_ACTION(ibs)) {
case IPMI_BMC_WATCHDOG_ACTION_NONE:
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 0, 1,
0xc0, ibs->watchdog_use & 0xf, 0xff);
break;
case IPMI_BMC_WATCHDOG_ACTION_RESET:
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 1, 1,
0xc1, ibs->watchdog_use & 0xf, 0xff);
k->do_hw_op(s, IPMI_RESET_CHASSIS, 0);
break;
case IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN:
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 2, 1,
0xc2, ibs->watchdog_use & 0xf, 0xff);
k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 0);
break;
case IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE:
sensor_set_discrete_bit(ibs, IPMI_WATCHDOG_SENSOR, 2, 1,
0xc3, ibs->watchdog_use & 0xf, 0xff);
k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 0);
break;
}
out:
next_timeout(ibs);
}
static void chassis_capabilities(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(0);
IPMI_ADD_RSP_DATA(ibs->parent.slave_addr);
IPMI_ADD_RSP_DATA(ibs->parent.slave_addr);
IPMI_ADD_RSP_DATA(ibs->parent.slave_addr);
IPMI_ADD_RSP_DATA(ibs->parent.slave_addr);
}
static void chassis_status(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(0x61); /* Unknown power restore, power is on */
IPMI_ADD_RSP_DATA(0);
IPMI_ADD_RSP_DATA(0);
IPMI_ADD_RSP_DATA(0);
}
static void chassis_control(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
IPMI_CHECK_CMD_LEN(3);
switch (cmd[2] & 0xf) {
case 0: /* power down */
rsp[2] = k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 0);
break;
case 1: /* power up */
rsp[2] = k->do_hw_op(s, IPMI_POWERON_CHASSIS, 0);
break;
case 2: /* power cycle */
rsp[2] = k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 0);
break;
case 3: /* hard reset */
rsp[2] = k->do_hw_op(s, IPMI_RESET_CHASSIS, 0);
break;
case 4: /* pulse diagnostic interrupt */
rsp[2] = k->do_hw_op(s, IPMI_PULSE_DIAG_IRQ, 0);
break;
case 5: /* soft shutdown via ACPI by overtemp emulation */
rsp[2] = k->do_hw_op(s,
IPMI_SHUTDOWN_VIA_ACPI_OVERTEMP, 0);
break;
default:
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
}
static void chassis_get_sys_restart_cause(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(ibs->restart_cause & 0xf); /* Restart Cause */
IPMI_ADD_RSP_DATA(0); /* Channel 0 */
}
static void get_device_id(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(ibs->device_id);
IPMI_ADD_RSP_DATA(ibs->device_rev & 0xf);
IPMI_ADD_RSP_DATA(ibs->fwrev1 & 0x7f);
IPMI_ADD_RSP_DATA(ibs->fwrev2);
IPMI_ADD_RSP_DATA(ibs->ipmi_version);
IPMI_ADD_RSP_DATA(0x07); /* sensor, SDR, and SEL. */
IPMI_ADD_RSP_DATA(ibs->mfg_id[0]);
IPMI_ADD_RSP_DATA(ibs->mfg_id[1]);
IPMI_ADD_RSP_DATA(ibs->mfg_id[2]);
IPMI_ADD_RSP_DATA(ibs->product_id[0]);
IPMI_ADD_RSP_DATA(ibs->product_id[1]);
}
static void set_global_enables(IPMIBmcSim *ibs, uint8_t val)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
bool irqs_on;
ibs->bmc_global_enables = val;
irqs_on = val & (IPMI_BMC_EVBUF_FULL_INT_BIT |
IPMI_BMC_RCV_MSG_QUEUE_INT_BIT);
k->set_irq_enable(s, irqs_on);
}
static void cold_reset(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
/* Disable all interrupts */
set_global_enables(ibs, 1 << IPMI_BMC_EVENT_LOG_BIT);
if (k->reset) {
k->reset(s, true);
}
}
static void warm_reset(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
if (k->reset) {
k->reset(s, false);
}
}
static void set_acpi_power_state(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_CHECK_CMD_LEN(4);
ibs->acpi_power_state[0] = cmd[2];
ibs->acpi_power_state[1] = cmd[3];
}
static void get_acpi_power_state(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(ibs->acpi_power_state[0]);
IPMI_ADD_RSP_DATA(ibs->acpi_power_state[1]);
}
static void get_device_guid(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
unsigned int i;
for (i = 0; i < 16; i++) {
IPMI_ADD_RSP_DATA(ibs->uuid[i]);
}
}
static void set_bmc_global_enables(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_CHECK_CMD_LEN(3);
set_global_enables(ibs, cmd[2]);
}
static void get_bmc_global_enables(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(ibs->bmc_global_enables);
}
static void clr_msg_flags(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
IPMI_CHECK_CMD_LEN(3);
ibs->msg_flags &= ~cmd[2];
k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs));
}
static void get_msg_flags(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(ibs->msg_flags);
}
static void read_evt_msg_buf(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
unsigned int i;
if (!(ibs->msg_flags & IPMI_BMC_MSG_FLAG_EVT_BUF_FULL)) {
rsp[2] = 0x80;
return;
}
for (i = 0; i < 16; i++) {
IPMI_ADD_RSP_DATA(ibs->evtbuf[i]);
}
ibs->msg_flags &= ~IPMI_BMC_MSG_FLAG_EVT_BUF_FULL;
k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs));
}
static void get_msg(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMIRcvBufEntry *msg;
qemu_mutex_lock(&ibs->lock);
if (QTAILQ_EMPTY(&ibs->rcvbufs)) {
rsp[2] = 0x80; /* Queue empty */
goto out;
}
rsp[3] = 0; /* Channel 0 */
*rsp_len += 1;
msg = QTAILQ_FIRST(&ibs->rcvbufs);
memcpy(rsp + 4, msg->buf, msg->len);
*rsp_len += msg->len;
QTAILQ_REMOVE(&ibs->rcvbufs, msg, entry);
g_free(msg);
if (QTAILQ_EMPTY(&ibs->rcvbufs)) {
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
ibs->msg_flags &= ~IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE;
k->set_atn(s, attn_set(ibs), attn_irq_enabled(ibs));
}
out:
qemu_mutex_unlock(&ibs->lock);
return;
}
static unsigned char
ipmb_checksum(unsigned char *data, int size, unsigned char csum)
{
for (; size > 0; size--, data++) {
csum += *data;
}
return -csum;
}
static void send_msg(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
IPMIRcvBufEntry *msg;
uint8_t *buf;
uint8_t netfn, rqLun, rsLun, rqSeq;
IPMI_CHECK_CMD_LEN(3);
if (cmd[2] != 0) {
/* We only handle channel 0 with no options */
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
IPMI_CHECK_CMD_LEN(10);
if (cmd[3] != 0x40) {
/* We only emulate a MC at address 0x40. */
rsp[2] = 0x83; /* NAK on write */
return;
}
cmd += 3; /* Skip the header. */
cmd_len -= 3;
/*
* At this point we "send" the message successfully. Any error will
* be returned in the response.
*/
if (ipmb_checksum(cmd, cmd_len, 0) != 0 ||
cmd[3] != 0x20) { /* Improper response address */
return; /* No response */
}
netfn = cmd[1] >> 2;
rqLun = cmd[4] & 0x3;
rsLun = cmd[1] & 0x3;
rqSeq = cmd[4] >> 2;
if (rqLun != 2) {
/* We only support LUN 2 coming back to us. */
return;
}
msg = g_malloc(sizeof(*msg));
msg->buf[0] = ((netfn | 1) << 2) | rqLun; /* NetFN, and make a response */
msg->buf[1] = ipmb_checksum(msg->buf, 1, 0);
msg->buf[2] = cmd[0]; /* rsSA */
msg->buf[3] = (rqSeq << 2) | rsLun;
msg->buf[4] = cmd[5]; /* Cmd */
msg->buf[5] = 0; /* Completion Code */
msg->len = 6;
if ((cmd[1] >> 2) != IPMI_NETFN_APP || cmd[5] != IPMI_CMD_GET_DEVICE_ID) {
/* Not a command we handle. */
msg->buf[5] = IPMI_CC_INVALID_CMD;
goto end_msg;
}
buf = msg->buf + msg->len; /* After the CC */
buf[0] = 0;
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
buf[4] = 0x51;
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
buf[8] = 0;
buf[9] = 0;
buf[10] = 0;
msg->len += 11;
end_msg:
msg->buf[msg->len] = ipmb_checksum(msg->buf, msg->len, 0);
msg->len++;
qemu_mutex_lock(&ibs->lock);
QTAILQ_INSERT_TAIL(&ibs->rcvbufs, msg, entry);
ibs->msg_flags |= IPMI_BMC_MSG_FLAG_RCV_MSG_QUEUE;
k->set_atn(s, 1, attn_irq_enabled(ibs));
qemu_mutex_unlock(&ibs->lock);
}
static void do_watchdog_reset(IPMIBmcSim *ibs)
{
if (IPMI_BMC_WATCHDOG_GET_ACTION(ibs) ==
IPMI_BMC_WATCHDOG_ACTION_NONE) {
ibs->watchdog_running = 0;
return;
}
ibs->watchdog_preaction_ran = 0;
/* Timeout is in tenths of a second, offset is in seconds */
ibs->watchdog_expiry = ipmi_getmonotime();
ibs->watchdog_expiry += ibs->watchdog_timeout * 100000000LL;
if (IPMI_BMC_WATCHDOG_GET_PRE_ACTION(ibs) != IPMI_BMC_WATCHDOG_PRE_NONE) {
ibs->watchdog_expiry -= ibs->watchdog_pretimeout * 1000000000LL;
}
ibs->watchdog_running = 1;
}
static void reset_watchdog_timer(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
if (!ibs->watchdog_initialized) {
rsp[2] = 0x80;
return;
}
do_watchdog_reset(ibs);
}
static void set_watchdog_timer(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMIInterface *s = ibs->parent.intf;
IPMIInterfaceClass *k = IPMI_INTERFACE_GET_CLASS(s);
unsigned int val;
IPMI_CHECK_CMD_LEN(8);
val = cmd[2] & 0x7; /* Validate use */
if (val == 0 || val > 5) {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
val = cmd[3] & 0x7; /* Validate action */
switch (val) {
case IPMI_BMC_WATCHDOG_ACTION_NONE:
break;
case IPMI_BMC_WATCHDOG_ACTION_RESET:
rsp[2] = k->do_hw_op(s, IPMI_RESET_CHASSIS, 1);
break;
case IPMI_BMC_WATCHDOG_ACTION_POWER_DOWN:
rsp[2] = k->do_hw_op(s, IPMI_POWEROFF_CHASSIS, 1);
break;
case IPMI_BMC_WATCHDOG_ACTION_POWER_CYCLE:
rsp[2] = k->do_hw_op(s, IPMI_POWERCYCLE_CHASSIS, 1);
break;
default:
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
}
if (rsp[2]) {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
val = (cmd[3] >> 4) & 0x7; /* Validate preaction */
switch (val) {
case IPMI_BMC_WATCHDOG_PRE_MSG_INT:
case IPMI_BMC_WATCHDOG_PRE_NONE:
break;
case IPMI_BMC_WATCHDOG_PRE_NMI:
if (!k->do_hw_op(s, IPMI_SEND_NMI, 1)) {
/* NMI not supported. */
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
break;
default:
/* We don't support PRE_SMI */
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
ibs->watchdog_initialized = 1;
ibs->watchdog_use = cmd[2] & IPMI_BMC_WATCHDOG_USE_MASK;
ibs->watchdog_action = cmd[3] & IPMI_BMC_WATCHDOG_ACTION_MASK;
ibs->watchdog_pretimeout = cmd[4];
ibs->watchdog_expired &= ~cmd[5];
ibs->watchdog_timeout = cmd[6] | (((uint16_t) cmd[7]) << 8);
if (ibs->watchdog_running & IPMI_BMC_WATCHDOG_GET_DONT_STOP(ibs)) {
do_watchdog_reset(ibs);
} else {
ibs->watchdog_running = 0;
}
}
static void get_watchdog_timer(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(ibs->watchdog_use);
IPMI_ADD_RSP_DATA(ibs->watchdog_action);
IPMI_ADD_RSP_DATA(ibs->watchdog_pretimeout);
IPMI_ADD_RSP_DATA(ibs->watchdog_expired);
if (ibs->watchdog_running) {
long timeout;
timeout = ((ibs->watchdog_expiry - ipmi_getmonotime() + 50000000)
/ 100000000);
IPMI_ADD_RSP_DATA(timeout & 0xff);
IPMI_ADD_RSP_DATA((timeout >> 8) & 0xff);
} else {
IPMI_ADD_RSP_DATA(0);
IPMI_ADD_RSP_DATA(0);
}
}
static void get_sdr_rep_info(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
unsigned int i;
IPMI_ADD_RSP_DATA(0x51); /* Conform to IPMI 1.5 spec */
IPMI_ADD_RSP_DATA(ibs->sdr.next_rec_id & 0xff);
IPMI_ADD_RSP_DATA((ibs->sdr.next_rec_id >> 8) & 0xff);
IPMI_ADD_RSP_DATA((MAX_SDR_SIZE - ibs->sdr.next_free) & 0xff);
IPMI_ADD_RSP_DATA(((MAX_SDR_SIZE - ibs->sdr.next_free) >> 8) & 0xff);
for (i = 0; i < 4; i++) {
IPMI_ADD_RSP_DATA(ibs->sdr.last_addition[i]);
}
for (i = 0; i < 4; i++) {
IPMI_ADD_RSP_DATA(ibs->sdr.last_clear[i]);
}
/* Only modal support, reserve supported */
IPMI_ADD_RSP_DATA((ibs->sdr.overflow << 7) | 0x22);
}
static void reserve_sdr_rep(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(ibs->sdr.reservation & 0xff);
IPMI_ADD_RSP_DATA((ibs->sdr.reservation >> 8) & 0xff);
}
static void get_sdr(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
unsigned int pos;
uint16_t nextrec;
struct ipmi_sdr_header *sdrh;
IPMI_CHECK_CMD_LEN(8);
if (cmd[6]) {
IPMI_CHECK_RESERVATION(2, ibs->sdr.reservation);
}
pos = 0;
if (sdr_find_entry(&ibs->sdr, cmd[4] | (cmd[5] << 8),
&pos, &nextrec)) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sdrh = (struct ipmi_sdr_header *) &ibs->sdr.sdr[pos];
if (cmd[6] > ipmi_sdr_length(sdrh)) {
rsp[2] = IPMI_CC_PARM_OUT_OF_RANGE;
return;
}
IPMI_ADD_RSP_DATA(nextrec & 0xff);
IPMI_ADD_RSP_DATA((nextrec >> 8) & 0xff);
if (cmd[7] == 0xff) {
cmd[7] = ipmi_sdr_length(sdrh) - cmd[6];
}
if ((cmd[7] + *rsp_len) > max_rsp_len) {
rsp[2] = IPMI_CC_CANNOT_RETURN_REQ_NUM_BYTES;
return;
}
memcpy(rsp + *rsp_len, ibs->sdr.sdr + pos + cmd[6], cmd[7]);
*rsp_len += cmd[7];
}
static void add_sdr(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
uint16_t recid;
struct ipmi_sdr_header *sdrh = (struct ipmi_sdr_header *) cmd + 2;
if (sdr_add_entry(ibs, sdrh, cmd_len - 2, &recid)) {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
IPMI_ADD_RSP_DATA(recid & 0xff);
IPMI_ADD_RSP_DATA((recid >> 8) & 0xff);
}
static void clear_sdr_rep(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_CHECK_CMD_LEN(8);
IPMI_CHECK_RESERVATION(2, ibs->sdr.reservation);
if (cmd[4] != 'C' || cmd[5] != 'L' || cmd[6] != 'R') {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
if (cmd[7] == 0xaa) {
ibs->sdr.next_free = 0;
ibs->sdr.overflow = 0;
set_timestamp(ibs, ibs->sdr.last_clear);
IPMI_ADD_RSP_DATA(1); /* Erasure complete */
sdr_inc_reservation(&ibs->sdr);
} else if (cmd[7] == 0) {
IPMI_ADD_RSP_DATA(1); /* Erasure complete */
} else {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
}
static void get_sel_info(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
unsigned int i, val;
IPMI_ADD_RSP_DATA(0x51); /* Conform to IPMI 1.5 */
IPMI_ADD_RSP_DATA(ibs->sel.next_free & 0xff);
IPMI_ADD_RSP_DATA((ibs->sel.next_free >> 8) & 0xff);
val = (MAX_SEL_SIZE - ibs->sel.next_free) * 16;
IPMI_ADD_RSP_DATA(val & 0xff);
IPMI_ADD_RSP_DATA((val >> 8) & 0xff);
for (i = 0; i < 4; i++) {
IPMI_ADD_RSP_DATA(ibs->sel.last_addition[i]);
}
for (i = 0; i < 4; i++) {
IPMI_ADD_RSP_DATA(ibs->sel.last_clear[i]);
}
/* Only support Reserve SEL */
IPMI_ADD_RSP_DATA((ibs->sel.overflow << 7) | 0x02);
}
static void reserve_sel(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_ADD_RSP_DATA(ibs->sel.reservation & 0xff);
IPMI_ADD_RSP_DATA((ibs->sel.reservation >> 8) & 0xff);
}
static void get_sel_entry(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
unsigned int val;
IPMI_CHECK_CMD_LEN(8);
if (cmd[6]) {
IPMI_CHECK_RESERVATION(2, ibs->sel.reservation);
}
if (ibs->sel.next_free == 0) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
if (cmd[6] > 15) {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
if (cmd[7] == 0xff) {
cmd[7] = 16;
} else if ((cmd[7] + cmd[6]) > 16) {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
} else {
cmd[7] += cmd[6];
}
val = cmd[4] | (cmd[5] << 8);
if (val == 0xffff) {
val = ibs->sel.next_free - 1;
} else if (val >= ibs->sel.next_free) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
if ((val + 1) == ibs->sel.next_free) {
IPMI_ADD_RSP_DATA(0xff);
IPMI_ADD_RSP_DATA(0xff);
} else {
IPMI_ADD_RSP_DATA((val + 1) & 0xff);
IPMI_ADD_RSP_DATA(((val + 1) >> 8) & 0xff);
}
for (; cmd[6] < cmd[7]; cmd[6]++) {
IPMI_ADD_RSP_DATA(ibs->sel.sel[val][cmd[6]]);
}
}
static void add_sel_entry(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_CHECK_CMD_LEN(18);
if (sel_add_event(ibs, cmd + 2)) {
rsp[2] = IPMI_CC_OUT_OF_SPACE;
return;
}
/* sel_add_event fills in the record number. */
IPMI_ADD_RSP_DATA(cmd[2]);
IPMI_ADD_RSP_DATA(cmd[3]);
}
static void clear_sel(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMI_CHECK_CMD_LEN(8);
IPMI_CHECK_RESERVATION(2, ibs->sel.reservation);
if (cmd[4] != 'C' || cmd[5] != 'L' || cmd[6] != 'R') {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
if (cmd[7] == 0xaa) {
ibs->sel.next_free = 0;
ibs->sel.overflow = 0;
set_timestamp(ibs, ibs->sdr.last_clear);
IPMI_ADD_RSP_DATA(1); /* Erasure complete */
sel_inc_reservation(&ibs->sel);
} else if (cmd[7] == 0) {
IPMI_ADD_RSP_DATA(1); /* Erasure complete */
} else {
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
}
static void get_sel_time(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
uint32_t val;
struct ipmi_time now;
ipmi_gettime(&now);
val = now.tv_sec + ibs->sel.time_offset;
IPMI_ADD_RSP_DATA(val & 0xff);
IPMI_ADD_RSP_DATA((val >> 8) & 0xff);
IPMI_ADD_RSP_DATA((val >> 16) & 0xff);
IPMI_ADD_RSP_DATA((val >> 24) & 0xff);
}
static void set_sel_time(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
uint32_t val;
struct ipmi_time now;
IPMI_CHECK_CMD_LEN(6);
val = cmd[2] | (cmd[3] << 8) | (cmd[4] << 16) | (cmd[5] << 24);
ipmi_gettime(&now);
ibs->sel.time_offset = now.tv_sec - ((long) val);
}
static void set_sensor_evt_enable(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMISensor *sens;
IPMI_CHECK_CMD_LEN(4);
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sens = ibs->sensors + cmd[2];
switch ((cmd[3] >> 4) & 0x3) {
case 0: /* Do not change */
break;
case 1: /* Enable bits */
if (cmd_len > 4) {
sens->assert_enable |= cmd[4];
}
if (cmd_len > 5) {
sens->assert_enable |= cmd[5] << 8;
}
if (cmd_len > 6) {
sens->deassert_enable |= cmd[6];
}
if (cmd_len > 7) {
sens->deassert_enable |= cmd[7] << 8;
}
break;
case 2: /* Disable bits */
if (cmd_len > 4) {
sens->assert_enable &= ~cmd[4];
}
if (cmd_len > 5) {
sens->assert_enable &= ~(cmd[5] << 8);
}
if (cmd_len > 6) {
sens->deassert_enable &= ~cmd[6];
}
if (cmd_len > 7) {
sens->deassert_enable &= ~(cmd[7] << 8);
}
break;
case 3:
rsp[2] = IPMI_CC_INVALID_DATA_FIELD;
return;
}
IPMI_SENSOR_SET_RET_STATUS(sens, cmd[3]);
}
static void get_sensor_evt_enable(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMISensor *sens;
IPMI_CHECK_CMD_LEN(3);
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sens = ibs->sensors + cmd[2];
IPMI_ADD_RSP_DATA(IPMI_SENSOR_GET_RET_STATUS(sens));
IPMI_ADD_RSP_DATA(sens->assert_enable & 0xff);
IPMI_ADD_RSP_DATA((sens->assert_enable >> 8) & 0xff);
IPMI_ADD_RSP_DATA(sens->deassert_enable & 0xff);
IPMI_ADD_RSP_DATA((sens->deassert_enable >> 8) & 0xff);
}
static void rearm_sensor_evts(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMISensor *sens;
IPMI_CHECK_CMD_LEN(4);
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sens = ibs->sensors + cmd[2];
if ((cmd[3] & 0x80) == 0) {
/* Just clear everything */
sens->states = 0;
return;
}
}
static void get_sensor_evt_status(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMISensor *sens;
IPMI_CHECK_CMD_LEN(3);
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sens = ibs->sensors + cmd[2];
IPMI_ADD_RSP_DATA(sens->reading);
IPMI_ADD_RSP_DATA(IPMI_SENSOR_GET_RET_STATUS(sens));
IPMI_ADD_RSP_DATA(sens->assert_states & 0xff);
IPMI_ADD_RSP_DATA((sens->assert_states >> 8) & 0xff);
IPMI_ADD_RSP_DATA(sens->deassert_states & 0xff);
IPMI_ADD_RSP_DATA((sens->deassert_states >> 8) & 0xff);
}
static void get_sensor_reading(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMISensor *sens;
IPMI_CHECK_CMD_LEN(3);
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sens = ibs->sensors + cmd[2];
IPMI_ADD_RSP_DATA(sens->reading);
IPMI_ADD_RSP_DATA(IPMI_SENSOR_GET_RET_STATUS(sens));
IPMI_ADD_RSP_DATA(sens->states & 0xff);
if (IPMI_SENSOR_IS_DISCRETE(sens)) {
IPMI_ADD_RSP_DATA((sens->states >> 8) & 0xff);
}
}
static void set_sensor_type(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMISensor *sens;
IPMI_CHECK_CMD_LEN(5);
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sens = ibs->sensors + cmd[2];
sens->sensor_type = cmd[3];
sens->evt_reading_type_code = cmd[4] & 0x7f;
}
static void get_sensor_type(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
IPMISensor *sens;
IPMI_CHECK_CMD_LEN(3);
if ((cmd[2] >= MAX_SENSORS) ||
!IPMI_SENSOR_GET_PRESENT(ibs->sensors + cmd[2])) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sens = ibs->sensors + cmd[2];
IPMI_ADD_RSP_DATA(sens->sensor_type);
IPMI_ADD_RSP_DATA(sens->evt_reading_type_code);
}
static const IPMICmdHandler chassis_cmds[] = {
[IPMI_CMD_GET_CHASSIS_CAPABILITIES] = chassis_capabilities,
[IPMI_CMD_GET_CHASSIS_STATUS] = chassis_status,
[IPMI_CMD_CHASSIS_CONTROL] = chassis_control,
[IPMI_CMD_GET_SYS_RESTART_CAUSE] = chassis_get_sys_restart_cause
};
static const IPMINetfn chassis_netfn = {
.cmd_nums = ARRAY_SIZE(chassis_cmds),
.cmd_handlers = chassis_cmds
};
static const IPMICmdHandler sensor_event_cmds[] = {
[IPMI_CMD_SET_SENSOR_EVT_ENABLE] = set_sensor_evt_enable,
[IPMI_CMD_GET_SENSOR_EVT_ENABLE] = get_sensor_evt_enable,
[IPMI_CMD_REARM_SENSOR_EVTS] = rearm_sensor_evts,
[IPMI_CMD_GET_SENSOR_EVT_STATUS] = get_sensor_evt_status,
[IPMI_CMD_GET_SENSOR_READING] = get_sensor_reading,
[IPMI_CMD_SET_SENSOR_TYPE] = set_sensor_type,
[IPMI_CMD_GET_SENSOR_TYPE] = get_sensor_type,
};
static const IPMINetfn sensor_event_netfn = {
.cmd_nums = ARRAY_SIZE(sensor_event_cmds),
.cmd_handlers = sensor_event_cmds
};
static const IPMICmdHandler app_cmds[] = {
[IPMI_CMD_GET_DEVICE_ID] = get_device_id,
[IPMI_CMD_COLD_RESET] = cold_reset,
[IPMI_CMD_WARM_RESET] = warm_reset,
[IPMI_CMD_SET_ACPI_POWER_STATE] = set_acpi_power_state,
[IPMI_CMD_GET_ACPI_POWER_STATE] = get_acpi_power_state,
[IPMI_CMD_GET_DEVICE_GUID] = get_device_guid,
[IPMI_CMD_SET_BMC_GLOBAL_ENABLES] = set_bmc_global_enables,
[IPMI_CMD_GET_BMC_GLOBAL_ENABLES] = get_bmc_global_enables,
[IPMI_CMD_CLR_MSG_FLAGS] = clr_msg_flags,
[IPMI_CMD_GET_MSG_FLAGS] = get_msg_flags,
[IPMI_CMD_GET_MSG] = get_msg,
[IPMI_CMD_SEND_MSG] = send_msg,
[IPMI_CMD_READ_EVT_MSG_BUF] = read_evt_msg_buf,
[IPMI_CMD_RESET_WATCHDOG_TIMER] = reset_watchdog_timer,
[IPMI_CMD_SET_WATCHDOG_TIMER] = set_watchdog_timer,
[IPMI_CMD_GET_WATCHDOG_TIMER] = get_watchdog_timer,
};
static const IPMINetfn app_netfn = {
.cmd_nums = ARRAY_SIZE(app_cmds),
.cmd_handlers = app_cmds
};
static const IPMICmdHandler storage_cmds[] = {
[IPMI_CMD_GET_SDR_REP_INFO] = get_sdr_rep_info,
[IPMI_CMD_RESERVE_SDR_REP] = reserve_sdr_rep,
[IPMI_CMD_GET_SDR] = get_sdr,
[IPMI_CMD_ADD_SDR] = add_sdr,
[IPMI_CMD_CLEAR_SDR_REP] = clear_sdr_rep,
[IPMI_CMD_GET_SEL_INFO] = get_sel_info,
[IPMI_CMD_RESERVE_SEL] = reserve_sel,
[IPMI_CMD_GET_SEL_ENTRY] = get_sel_entry,
[IPMI_CMD_ADD_SEL_ENTRY] = add_sel_entry,
[IPMI_CMD_CLEAR_SEL] = clear_sel,
[IPMI_CMD_GET_SEL_TIME] = get_sel_time,
[IPMI_CMD_SET_SEL_TIME] = set_sel_time,
};
static const IPMINetfn storage_netfn = {
.cmd_nums = ARRAY_SIZE(storage_cmds),
.cmd_handlers = storage_cmds
};
static void register_cmds(IPMIBmcSim *s)
{
ipmi_register_netfn(s, IPMI_NETFN_CHASSIS, &chassis_netfn);
ipmi_register_netfn(s, IPMI_NETFN_SENSOR_EVENT, &sensor_event_netfn);
ipmi_register_netfn(s, IPMI_NETFN_APP, &app_netfn);
ipmi_register_netfn(s, IPMI_NETFN_STORAGE, &storage_netfn);
}
static const uint8_t init_sdrs[] = {
/* Watchdog device */
0x00, 0x00, 0x51, 0x02, 35, 0x20, 0x00, 0x00,
0x23, 0x01, 0x63, 0x00, 0x23, 0x6f, 0x0f, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc8,
'W', 'a', 't', 'c', 'h', 'd', 'o', 'g',
/* End */
0xff, 0xff, 0x00, 0x00, 0x00
};
static const VMStateDescription vmstate_ipmi_sim = {
.name = TYPE_IPMI_BMC_SIMULATOR,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(bmc_global_enables, IPMIBmcSim),
VMSTATE_UINT8(msg_flags, IPMIBmcSim),
VMSTATE_BOOL(watchdog_initialized, IPMIBmcSim),
VMSTATE_UINT8(watchdog_use, IPMIBmcSim),
VMSTATE_UINT8(watchdog_action, IPMIBmcSim),
VMSTATE_UINT8(watchdog_pretimeout, IPMIBmcSim),
VMSTATE_BOOL(watchdog_expired, IPMIBmcSim),
VMSTATE_UINT16(watchdog_timeout, IPMIBmcSim),
VMSTATE_BOOL(watchdog_running, IPMIBmcSim),
VMSTATE_BOOL(watchdog_preaction_ran, IPMIBmcSim),
VMSTATE_INT64(watchdog_expiry, IPMIBmcSim),
VMSTATE_UINT8_ARRAY(evtbuf, IPMIBmcSim, 16),
VMSTATE_UINT8(sensors[IPMI_WATCHDOG_SENSOR].status, IPMIBmcSim),
VMSTATE_UINT8(sensors[IPMI_WATCHDOG_SENSOR].reading, IPMIBmcSim),
VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].states, IPMIBmcSim),
VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].assert_states, IPMIBmcSim),
VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].deassert_states,
IPMIBmcSim),
VMSTATE_UINT16(sensors[IPMI_WATCHDOG_SENSOR].assert_enable, IPMIBmcSim),
VMSTATE_END_OF_LIST()
}
};
static void ipmi_sim_init(Object *obj)
{
IPMIBmc *b = IPMI_BMC(obj);
unsigned int i;
unsigned int recid;
IPMIBmcSim *ibs = IPMI_BMC_SIMULATOR(b);
qemu_mutex_init(&ibs->lock);
QTAILQ_INIT(&ibs->rcvbufs);
ibs->bmc_global_enables = (1 << IPMI_BMC_EVENT_LOG_BIT);
ibs->device_id = 0x20;
ibs->ipmi_version = 0x02; /* IPMI 2.0 */
ibs->restart_cause = 0;
for (i = 0; i < 4; i++) {
ibs->sel.last_addition[i] = 0xff;
ibs->sel.last_clear[i] = 0xff;
ibs->sdr.last_addition[i] = 0xff;
ibs->sdr.last_clear[i] = 0xff;
}
for (i = 0;;) {
struct ipmi_sdr_header *sdrh;
int len;
if ((i + IPMI_SDR_HEADER_SIZE) > sizeof(init_sdrs)) {
error_report("Problem with recid 0x%4.4x", i);
return;
}
sdrh = (struct ipmi_sdr_header *) &init_sdrs[i];
len = ipmi_sdr_length(sdrh);
recid = ipmi_sdr_recid(sdrh);
if (recid == 0xffff) {
break;
}
if ((i + len) > sizeof(init_sdrs)) {
error_report("Problem with recid 0x%4.4x", i);
return;
}
sdr_add_entry(ibs, sdrh, len, NULL);
i += len;
}
ibs->acpi_power_state[0] = 0;
ibs->acpi_power_state[1] = 0;
if (qemu_uuid_set) {
memcpy(&ibs->uuid, qemu_uuid, 16);
} else {
memset(&ibs->uuid, 0, 16);
}
ipmi_init_sensors_from_sdrs(ibs);
register_cmds(ibs);
ibs->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ipmi_timeout, ibs);
vmstate_register(NULL, 0, &vmstate_ipmi_sim, ibs);
}
static void ipmi_sim_class_init(ObjectClass *oc, void *data)
{
IPMIBmcClass *bk = IPMI_BMC_CLASS(oc);
bk->handle_command = ipmi_sim_handle_command;
}
static const TypeInfo ipmi_sim_type = {
.name = TYPE_IPMI_BMC_SIMULATOR,
.parent = TYPE_IPMI_BMC,
.instance_size = sizeof(IPMIBmcSim),
.instance_init = ipmi_sim_init,
.class_init = ipmi_sim_class_init,
};
static void ipmi_sim_register_types(void)
{
type_register_static(&ipmi_sim_type);
}
type_init(ipmi_sim_register_types)