xemu/hw/prep_pci.c

170 lines
5.1 KiB
C
Raw Normal View History

/*
* QEMU PREP PCI host
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
typedef uint32_t pci_addr_t;
#include "pci_host.h"
typedef PCIHostState PREPPCIState;
static void pci_prep_addr_writel(void* opaque, uint32_t addr, uint32_t val)
{
PREPPCIState *s = opaque;
s->config_reg = val;
}
static uint32_t pci_prep_addr_readl(void* opaque, uint32_t addr)
{
PREPPCIState *s = opaque;
return s->config_reg;
}
static inline uint32_t PPC_PCIIO_config(target_phys_addr_t addr)
{
int i;
for(i = 0; i < 11; i++) {
if ((addr & (1 << (11 + i))) != 0)
break;
}
return (addr & 0x7ff) | (i << 11);
}
static void PPC_PCIIO_writeb (void *opaque, target_phys_addr_t addr, uint32_t val)
{
PREPPCIState *s = opaque;
pci_data_write(s->bus, PPC_PCIIO_config(addr), val, 1);
}
static void PPC_PCIIO_writew (void *opaque, target_phys_addr_t addr, uint32_t val)
{
PREPPCIState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
pci_data_write(s->bus, PPC_PCIIO_config(addr), val, 2);
}
static void PPC_PCIIO_writel (void *opaque, target_phys_addr_t addr, uint32_t val)
{
PREPPCIState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
pci_data_write(s->bus, PPC_PCIIO_config(addr), val, 4);
}
static uint32_t PPC_PCIIO_readb (void *opaque, target_phys_addr_t addr)
{
PREPPCIState *s = opaque;
uint32_t val;
val = pci_data_read(s->bus, PPC_PCIIO_config(addr), 1);
return val;
}
static uint32_t PPC_PCIIO_readw (void *opaque, target_phys_addr_t addr)
{
PREPPCIState *s = opaque;
uint32_t val;
val = pci_data_read(s->bus, PPC_PCIIO_config(addr), 2);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
return val;
}
static uint32_t PPC_PCIIO_readl (void *opaque, target_phys_addr_t addr)
{
PREPPCIState *s = opaque;
uint32_t val;
val = pci_data_read(s->bus, PPC_PCIIO_config(addr), 4);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
static CPUWriteMemoryFunc * const PPC_PCIIO_write[] = {
&PPC_PCIIO_writeb,
&PPC_PCIIO_writew,
&PPC_PCIIO_writel,
};
static CPUReadMemoryFunc * const PPC_PCIIO_read[] = {
&PPC_PCIIO_readb,
&PPC_PCIIO_readw,
&PPC_PCIIO_readl,
};
static int prep_map_irq(PCIDevice *pci_dev, int irq_num)
{
return (irq_num + (pci_dev->devfn >> 3)) & 1;
}
static void prep_set_irq(qemu_irq *pic, int irq_num, int level)
{
qemu_set_irq(pic[(irq_num & 1) ? 11 : 9] , level);
}
PCIBus *pci_prep_init(qemu_irq *pic)
{
PREPPCIState *s;
PCIDevice *d;
int PPC_io_memory;
s = qemu_mallocz(sizeof(PREPPCIState));
s->bus = pci_register_bus(NULL, "pci",
prep_set_irq, prep_map_irq, pic, 0, 4);
register_ioport_write(0xcf8, 4, 4, pci_prep_addr_writel, s);
register_ioport_read(0xcf8, 4, 4, pci_prep_addr_readl, s);
register_ioport_write(0xcfc, 4, 1, pci_host_data_writeb, s);
register_ioport_write(0xcfc, 4, 2, pci_host_data_writew, s);
register_ioport_write(0xcfc, 4, 4, pci_host_data_writel, s);
register_ioport_read(0xcfc, 4, 1, pci_host_data_readb, s);
register_ioport_read(0xcfc, 4, 2, pci_host_data_readw, s);
register_ioport_read(0xcfc, 4, 4, pci_host_data_readl, s);
PPC_io_memory = cpu_register_io_memory(PPC_PCIIO_read,
PPC_PCIIO_write, s);
cpu_register_physical_memory(0x80800000, 0x00400000, PPC_io_memory);
/* PCI host bridge */
d = pci_register_device(s->bus, "PREP Host Bridge - Motorola Raven",
sizeof(PCIDevice), 0, NULL, NULL);
pci_config_set_vendor_id(d->config, PCI_VENDOR_ID_MOTOROLA);
pci_config_set_device_id(d->config, PCI_DEVICE_ID_MOTOROLA_RAVEN);
d->config[0x08] = 0x00; // revision
pci_config_set_class(d->config, PCI_CLASS_BRIDGE_HOST);
d->config[0x0C] = 0x08; // cache_line_size
d->config[0x0D] = 0x10; // latency_timer
d->config[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
d->config[0x34] = 0x00; // capabilities_pointer
return s->bus;
}