xemu/tcg/tcg.c

1782 lines
52 KiB
C
Raw Normal View History

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* define it to suppress various consistency checks (faster) */
#define NDEBUG
/* define it to use liveness analysis (better code) */
#define USE_LIVENESS_ANALYSIS
#include <assert.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "config.h"
#include "osdep.h"
/* Note: the long term plan is to reduce the dependancies on the QEMU
CPU definitions. Currently they are used for qemu_ld/st
instructions */
#define NO_CPU_IO_DEFS
#include "cpu.h"
#include "exec-all.h"
#include "tcg-op.h"
#include "elf.h"
static void patch_reloc(uint8_t *code_ptr, int type,
tcg_target_long value);
TCGOpDef tcg_op_defs[] = {
#define DEF(s, n, copy_size) { #s, 0, 0, n, n, 0, copy_size },
#define DEF2(s, iargs, oargs, cargs, flags) { #s, iargs, oargs, cargs, iargs + oargs + cargs, flags, 0 },
#include "tcg-opc.h"
#undef DEF
#undef DEF2
};
TCGRegSet tcg_target_available_regs[2];
TCGRegSet tcg_target_call_clobber_regs;
/* XXX: move that inside the context */
uint16_t *gen_opc_ptr;
TCGArg *gen_opparam_ptr;
static inline void tcg_out8(TCGContext *s, uint8_t v)
{
*s->code_ptr++ = v;
}
static inline void tcg_out16(TCGContext *s, uint16_t v)
{
*(uint16_t *)s->code_ptr = v;
s->code_ptr += 2;
}
static inline void tcg_out32(TCGContext *s, uint32_t v)
{
*(uint32_t *)s->code_ptr = v;
s->code_ptr += 4;
}
/* label relocation processing */
void tcg_out_reloc(TCGContext *s, uint8_t *code_ptr, int type,
int label_index, long addend)
{
TCGLabel *l;
TCGRelocation *r;
l = &s->labels[label_index];
if (l->has_value) {
patch_reloc(code_ptr, type, l->u.value + addend);
} else {
/* add a new relocation entry */
r = tcg_malloc(sizeof(TCGRelocation));
r->type = type;
r->ptr = code_ptr;
r->addend = addend;
r->next = l->u.first_reloc;
l->u.first_reloc = r;
}
}
static void tcg_out_label(TCGContext *s, int label_index,
tcg_target_long value)
{
TCGLabel *l;
TCGRelocation *r;
l = &s->labels[label_index];
if (l->has_value)
tcg_abort();
r = l->u.first_reloc;
while (r != NULL) {
patch_reloc(r->ptr, r->type, value + r->addend);
r = r->next;
}
l->has_value = 1;
l->u.value = value;
}
int gen_new_label(void)
{
TCGContext *s = &tcg_ctx;
int idx;
TCGLabel *l;
if (s->nb_labels >= TCG_MAX_LABELS)
tcg_abort();
idx = s->nb_labels++;
l = &s->labels[idx];
l->has_value = 0;
l->u.first_reloc = NULL;
return idx;
}
#include "tcg-target.c"
/* XXX: factorize */
static void pstrcpy(char *buf, int buf_size, const char *str)
{
int c;
char *q = buf;
if (buf_size <= 0)
return;
for(;;) {
c = *str++;
if (c == 0 || q >= buf + buf_size - 1)
break;
*q++ = c;
}
*q = '\0';
}
#if TCG_TARGET_REG_BITS == 32
/* strcat and truncate. */
static char *pstrcat(char *buf, int buf_size, const char *s)
{
int len;
len = strlen(buf);
if (len < buf_size)
pstrcpy(buf + len, buf_size - len, s);
return buf;
}
#endif
/* pool based memory allocation */
void *tcg_malloc_internal(TCGContext *s, int size)
{
TCGPool *p;
int pool_size;
if (size > TCG_POOL_CHUNK_SIZE) {
/* big malloc: insert a new pool (XXX: could optimize) */
p = qemu_malloc(sizeof(TCGPool) + size);
p->size = size;
if (s->pool_current)
s->pool_current->next = p;
else
s->pool_first = p;
p->next = s->pool_current;
} else {
p = s->pool_current;
if (!p) {
p = s->pool_first;
if (!p)
goto new_pool;
} else {
if (!p->next) {
new_pool:
pool_size = TCG_POOL_CHUNK_SIZE;
p = qemu_malloc(sizeof(TCGPool) + pool_size);
p->size = pool_size;
p->next = NULL;
if (s->pool_current)
s->pool_current->next = p;
else
s->pool_first = p;
} else {
p = p->next;
}
}
}
s->pool_current = p;
s->pool_cur = p->data + size;
s->pool_end = p->data + p->size;
return p->data;
}
void tcg_pool_reset(TCGContext *s)
{
s->pool_cur = s->pool_end = NULL;
s->pool_current = NULL;
}
/* free all the pool */
void tcg_pool_free(TCGContext *s)
{
TCGPool *p, *p1;
for(p = s->pool_first; p != NULL; p = p1) {
p1 = p->next;
qemu_free(p);
}
s->pool_first = NULL;
s->pool_cur = s->pool_end = NULL;
}
void tcg_context_init(TCGContext *s)
{
int op, total_args, n;
TCGOpDef *def;
TCGArgConstraint *args_ct;
int *sorted_args;
memset(s, 0, sizeof(*s));
s->temps = s->static_temps;
s->nb_globals = 0;
/* Count total number of arguments and allocate the corresponding
space */
total_args = 0;
for(op = 0; op < NB_OPS; op++) {
def = &tcg_op_defs[op];
n = def->nb_iargs + def->nb_oargs;
total_args += n;
}
args_ct = qemu_malloc(sizeof(TCGArgConstraint) * total_args);
sorted_args = qemu_malloc(sizeof(int) * total_args);
for(op = 0; op < NB_OPS; op++) {
def = &tcg_op_defs[op];
def->args_ct = args_ct;
def->sorted_args = sorted_args;
n = def->nb_iargs + def->nb_oargs;
sorted_args += n;
args_ct += n;
}
tcg_target_init(s);
}
void tcg_set_frame(TCGContext *s, int reg,
tcg_target_long start, tcg_target_long size)
{
s->frame_start = start;
s->frame_end = start + size;
s->frame_reg = reg;
}
void tcg_set_macro_func(TCGContext *s, TCGMacroFunc *func)
{
s->macro_func = func;
}
void tcg_func_start(TCGContext *s)
{
tcg_pool_reset(s);
s->nb_temps = s->nb_globals;
s->labels = tcg_malloc(sizeof(TCGLabel) * TCG_MAX_LABELS);
s->nb_labels = 0;
s->current_frame_offset = s->frame_start;
gen_opc_ptr = gen_opc_buf;
gen_opparam_ptr = gen_opparam_buf;
}
static inline void tcg_temp_alloc(TCGContext *s, int n)
{
if (n > TCG_MAX_TEMPS)
tcg_abort();
}
int tcg_global_reg_new(TCGType type, int reg, const char *name)
{
TCGContext *s = &tcg_ctx;
TCGTemp *ts;
int idx;
#if TCG_TARGET_REG_BITS == 32
if (type != TCG_TYPE_I32)
tcg_abort();
#endif
if (tcg_regset_test_reg(s->reserved_regs, reg))
tcg_abort();
idx = s->nb_globals;
tcg_temp_alloc(s, s->nb_globals + 1);
ts = &s->temps[s->nb_globals];
ts->base_type = type;
ts->type = type;
ts->fixed_reg = 1;
ts->reg = reg;
ts->val_type = TEMP_VAL_REG;
ts->name = name;
s->nb_globals++;
tcg_regset_set_reg(s->reserved_regs, reg);
return idx;
}
int tcg_global_mem_new(TCGType type, int reg, tcg_target_long offset,
const char *name)
{
TCGContext *s = &tcg_ctx;
TCGTemp *ts;
int idx;
idx = s->nb_globals;
#if TCG_TARGET_REG_BITS == 32
if (type == TCG_TYPE_I64) {
char buf[64];
tcg_temp_alloc(s, s->nb_globals + 1);
ts = &s->temps[s->nb_globals];
ts->base_type = type;
ts->type = TCG_TYPE_I32;
ts->fixed_reg = 0;
ts->mem_allocated = 1;
ts->mem_reg = reg;
#ifdef TCG_TARGET_WORDS_BIGENDIAN
ts->mem_offset = offset + 4;
#else
ts->mem_offset = offset;
#endif
ts->val_type = TEMP_VAL_MEM;
pstrcpy(buf, sizeof(buf), name);
pstrcat(buf, sizeof(buf), "_0");
ts->name = strdup(buf);
ts++;
ts->base_type = type;
ts->type = TCG_TYPE_I32;
ts->fixed_reg = 0;
ts->mem_allocated = 1;
ts->mem_reg = reg;
#ifdef TCG_TARGET_WORDS_BIGENDIAN
ts->mem_offset = offset;
#else
ts->mem_offset = offset + 4;
#endif
ts->val_type = TEMP_VAL_MEM;
pstrcpy(buf, sizeof(buf), name);
pstrcat(buf, sizeof(buf), "_1");
ts->name = strdup(buf);
s->nb_globals += 2;
} else
#endif
{
tcg_temp_alloc(s, s->nb_globals + 1);
ts = &s->temps[s->nb_globals];
ts->base_type = type;
ts->type = type;
ts->fixed_reg = 0;
ts->mem_allocated = 1;
ts->mem_reg = reg;
ts->mem_offset = offset;
ts->val_type = TEMP_VAL_MEM;
ts->name = name;
s->nb_globals++;
}
return idx;
}
int tcg_temp_new(TCGType type)
{
TCGContext *s = &tcg_ctx;
TCGTemp *ts;
int idx;
idx = s->nb_temps;
#if TCG_TARGET_REG_BITS == 32
if (type == TCG_TYPE_I64) {
tcg_temp_alloc(s, s->nb_temps + 1);
ts = &s->temps[s->nb_temps];
ts->base_type = type;
ts->type = TCG_TYPE_I32;
ts->val_type = TEMP_VAL_DEAD;
ts->mem_allocated = 0;
ts->name = NULL;
ts++;
ts->base_type = TCG_TYPE_I32;
ts->type = TCG_TYPE_I32;
ts->val_type = TEMP_VAL_DEAD;
ts->mem_allocated = 0;
ts->name = NULL;
s->nb_temps += 2;
} else
#endif
{
tcg_temp_alloc(s, s->nb_temps + 1);
ts = &s->temps[s->nb_temps];
ts->base_type = type;
ts->type = type;
ts->val_type = TEMP_VAL_DEAD;
ts->mem_allocated = 0;
ts->name = NULL;
s->nb_temps++;
}
return idx;
}
int tcg_const_i32(int32_t val)
{
TCGContext *s = &tcg_ctx;
TCGTemp *ts;
int idx;
idx = s->nb_temps;
tcg_temp_alloc(s, idx + 1);
ts = &s->temps[idx];
ts->base_type = ts->type = TCG_TYPE_I32;
ts->val_type = TEMP_VAL_CONST;
ts->name = NULL;
ts->val = val;
s->nb_temps++;
return idx;
}
int tcg_const_i64(int64_t val)
{
TCGContext *s = &tcg_ctx;
TCGTemp *ts;
int idx;
idx = s->nb_temps;
#if TCG_TARGET_REG_BITS == 32
tcg_temp_alloc(s, idx + 2);
ts = &s->temps[idx];
ts->base_type = TCG_TYPE_I64;
ts->type = TCG_TYPE_I32;
ts->val_type = TEMP_VAL_CONST;
ts->name = NULL;
ts->val = val;
ts++;
ts->base_type = TCG_TYPE_I32;
ts->type = TCG_TYPE_I32;
ts->val_type = TEMP_VAL_CONST;
ts->name = NULL;
ts->val = val >> 32;
s->nb_temps += 2;
#else
tcg_temp_alloc(s, idx + 1);
ts = &s->temps[idx];
ts->base_type = ts->type = TCG_TYPE_I64;
ts->val_type = TEMP_VAL_CONST;
ts->name = NULL;
ts->val = val;
s->nb_temps++;
#endif
return idx;
}
void tcg_register_helper(void *func, const char *name)
{
TCGContext *s = &tcg_ctx;
int n;
if ((s->nb_helpers + 1) > s->allocated_helpers) {
n = s->allocated_helpers;
if (n == 0) {
n = 4;
} else {
n *= 2;
}
s->helpers = realloc(s->helpers, n * sizeof(TCGHelperInfo));
s->allocated_helpers = n;
}
s->helpers[s->nb_helpers].func = func;
s->helpers[s->nb_helpers].name = name;
s->nb_helpers++;
}
const char *tcg_helper_get_name(TCGContext *s, void *func)
{
int i;
for(i = 0; i < s->nb_helpers; i++) {
if (s->helpers[i].func == func)
return s->helpers[i].name;
}
return NULL;
}
static inline TCGType tcg_get_base_type(TCGContext *s, TCGArg arg)
{
return s->temps[arg].base_type;
}
static void tcg_gen_call_internal(TCGContext *s, TCGArg func,
unsigned int flags,
unsigned int nb_rets, const TCGArg *rets,
unsigned int nb_params, const TCGArg *params)
{
int i;
*gen_opc_ptr++ = INDEX_op_call;
*gen_opparam_ptr++ = (nb_rets << 16) | (nb_params + 1);
for(i = 0; i < nb_rets; i++) {
*gen_opparam_ptr++ = rets[i];
}
for(i = 0; i < nb_params; i++) {
*gen_opparam_ptr++ = params[i];
}
*gen_opparam_ptr++ = func;
*gen_opparam_ptr++ = flags;
/* total parameters, needed to go backward in the instruction stream */
*gen_opparam_ptr++ = 1 + nb_rets + nb_params + 3;
}
#if TCG_TARGET_REG_BITS < 64
/* Note: we convert the 64 bit args to 32 bit */
void tcg_gen_call(TCGContext *s, TCGArg func, unsigned int flags,
unsigned int nb_rets, const TCGArg *rets,
unsigned int nb_params, const TCGArg *args1)
{
TCGArg ret, *args2, rets_2[2], arg;
int j, i, call_type;
if (nb_rets == 1) {
ret = rets[0];
if (tcg_get_base_type(s, ret) == TCG_TYPE_I64) {
nb_rets = 2;
rets_2[0] = ret;
rets_2[1] = ret + 1;
rets = rets_2;
}
}
args2 = alloca((nb_params * 2) * sizeof(TCGArg));
j = 0;
call_type = (flags & TCG_CALL_TYPE_MASK);
for(i = 0; i < nb_params; i++) {
arg = args1[i];
if (tcg_get_base_type(s, arg) == TCG_TYPE_I64) {
#ifdef TCG_TARGET_I386
/* REGPARM case: if the third parameter is 64 bit, it is
allocated on the stack */
if (j == 2 && call_type == TCG_CALL_TYPE_REGPARM) {
call_type = TCG_CALL_TYPE_REGPARM_2;
flags = (flags & ~TCG_CALL_TYPE_MASK) | call_type;
}
args2[j++] = arg;
args2[j++] = arg + 1;
#else
#ifdef TCG_TARGET_WORDS_BIGENDIAN
args2[j++] = arg + 1;
args2[j++] = arg;
#else
args2[j++] = arg;
args2[j++] = arg + 1;
#endif
#endif
} else {
args2[j++] = arg;
}
}
tcg_gen_call_internal(s, func, flags,
nb_rets, rets, j, args2);
}
#else
void tcg_gen_call(TCGContext *s, TCGArg func, unsigned int flags,
unsigned int nb_rets, const TCGArg *rets,
unsigned int nb_params, const TCGArg *args1)
{
tcg_gen_call_internal(s, func, flags,
nb_rets, rets, nb_params, args1);
}
#endif
void tcg_gen_shifti_i64(TCGArg ret, TCGArg arg1,
int c, int right, int arith)
{
if (c == 0)
return;
if (c >= 32) {
c -= 32;
if (right) {
if (arith) {
tcg_gen_sari_i32(ret, arg1 + 1, c);
tcg_gen_sari_i32(ret + 1, arg1 + 1, 31);
} else {
tcg_gen_shri_i32(ret, arg1 + 1, c);
tcg_gen_movi_i32(ret + 1, 0);
}
} else {
tcg_gen_shli_i32(ret + 1, arg1, c);
tcg_gen_movi_i32(ret, 0);
}
} else {
int t0, t1;
t0 = tcg_temp_new(TCG_TYPE_I32);
t1 = tcg_temp_new(TCG_TYPE_I32);
if (right) {
tcg_gen_shli_i32(t0, arg1 + 1, 32 - c);
if (arith)
tcg_gen_sari_i32(t1, arg1 + 1, c);
else
tcg_gen_shri_i32(t1, arg1 + 1, c);
tcg_gen_shri_i32(ret, arg1, c);
tcg_gen_or_i32(ret, ret, t0);
tcg_gen_mov_i32(ret + 1, t1);
} else {
tcg_gen_shri_i32(t0, arg1, 32 - c);
/* Note: ret can be the same as arg1, so we use t1 */
tcg_gen_shli_i32(t1, arg1, c);
tcg_gen_shli_i32(ret + 1, arg1 + 1, c);
tcg_gen_or_i32(ret + 1, ret + 1, t0);
tcg_gen_mov_i32(ret, t1);
}
}
}
void tcg_reg_alloc_start(TCGContext *s)
{
int i;
TCGTemp *ts;
for(i = 0; i < s->nb_globals; i++) {
ts = &s->temps[i];
if (ts->fixed_reg) {
ts->val_type = TEMP_VAL_REG;
} else {
ts->val_type = TEMP_VAL_MEM;
}
}
for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
s->reg_to_temp[i] = -1;
}
}
char *tcg_get_arg_str(TCGContext *s, char *buf, int buf_size, TCGArg arg)
{
TCGTemp *ts;
if (arg < s->nb_globals) {
pstrcpy(buf, buf_size, s->temps[arg].name);
} else {
ts = &s->temps[arg];
if (ts->val_type == TEMP_VAL_CONST) {
snprintf(buf, buf_size, "$0x%" TCG_PRIlx , ts->val);
} else {
snprintf(buf, buf_size, "tmp%d", (int)arg - s->nb_globals);
}
}
return buf;
}
void tcg_dump_ops(TCGContext *s, FILE *outfile)
{
const uint16_t *opc_ptr;
const TCGArg *args;
TCGArg arg;
int c, i, k, nb_oargs, nb_iargs, nb_cargs;
const TCGOpDef *def;
char buf[128];
opc_ptr = gen_opc_buf;
args = gen_opparam_buf;
while (opc_ptr < gen_opc_ptr) {
c = *opc_ptr++;
def = &tcg_op_defs[c];
fprintf(outfile, " %s ", def->name);
if (c == INDEX_op_call) {
TCGArg arg;
/* variable number of arguments */
arg = *args++;
nb_oargs = arg >> 16;
nb_iargs = arg & 0xffff;
nb_cargs = def->nb_cargs;
} else if (c == INDEX_op_nopn) {
/* variable number of arguments */
nb_cargs = *args;
nb_oargs = 0;
nb_iargs = 0;
} else {
nb_oargs = def->nb_oargs;
nb_iargs = def->nb_iargs;
nb_cargs = def->nb_cargs;
}
k = 0;
for(i = 0; i < nb_oargs; i++) {
if (k != 0)
fprintf(outfile, ",");
fprintf(outfile, "%s", tcg_get_arg_str(s, buf, sizeof(buf), args[k++]));
}
for(i = 0; i < nb_iargs; i++) {
if (k != 0)
fprintf(outfile, ",");
/* XXX: dump helper name for call */
fprintf(outfile, "%s", tcg_get_arg_str(s, buf, sizeof(buf), args[k++]));
}
for(i = 0; i < nb_cargs; i++) {
if (k != 0)
fprintf(outfile, ",");
arg = args[k++];
fprintf(outfile, "$0x%" TCG_PRIlx, arg);
}
fprintf(outfile, "\n");
args += nb_iargs + nb_oargs + nb_cargs;
}
}
/* we give more priority to constraints with less registers */
static int get_constraint_priority(const TCGOpDef *def, int k)
{
const TCGArgConstraint *arg_ct;
int i, n;
arg_ct = &def->args_ct[k];
if (arg_ct->ct & TCG_CT_ALIAS) {
/* an alias is equivalent to a single register */
n = 1;
} else {
if (!(arg_ct->ct & TCG_CT_REG))
return 0;
n = 0;
for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
if (tcg_regset_test_reg(arg_ct->u.regs, i))
n++;
}
}
return TCG_TARGET_NB_REGS - n + 1;
}
/* sort from highest priority to lowest */
static void sort_constraints(TCGOpDef *def, int start, int n)
{
int i, j, p1, p2, tmp;
for(i = 0; i < n; i++)
def->sorted_args[start + i] = start + i;
if (n <= 1)
return;
for(i = 0; i < n - 1; i++) {
for(j = i + 1; j < n; j++) {
p1 = get_constraint_priority(def, def->sorted_args[start + i]);
p2 = get_constraint_priority(def, def->sorted_args[start + j]);
if (p1 < p2) {
tmp = def->sorted_args[start + i];
def->sorted_args[start + i] = def->sorted_args[start + j];
def->sorted_args[start + j] = tmp;
}
}
}
}
void tcg_add_target_add_op_defs(const TCGTargetOpDef *tdefs)
{
int op;
TCGOpDef *def;
const char *ct_str;
int i, nb_args;
for(;;) {
if (tdefs->op < 0)
break;
op = tdefs->op;
assert(op >= 0 && op < NB_OPS);
def = &tcg_op_defs[op];
nb_args = def->nb_iargs + def->nb_oargs;
for(i = 0; i < nb_args; i++) {
ct_str = tdefs->args_ct_str[i];
tcg_regset_clear(def->args_ct[i].u.regs);
def->args_ct[i].ct = 0;
if (ct_str[0] >= '0' && ct_str[0] <= '9') {
int oarg;
oarg = ct_str[0] - '0';
assert(oarg < def->nb_oargs);
assert(def->args_ct[oarg].ct & TCG_CT_REG);
/* TCG_CT_ALIAS is for the output arguments. The input
argument is tagged with TCG_CT_IALIAS for
informative purposes. */
def->args_ct[i] = def->args_ct[oarg];
def->args_ct[oarg].ct = i | TCG_CT_ALIAS;
def->args_ct[i].ct |= TCG_CT_IALIAS;
} else {
for(;;) {
if (*ct_str == '\0')
break;
switch(*ct_str) {
case 'i':
def->args_ct[i].ct |= TCG_CT_CONST;
ct_str++;
break;
default:
if (target_parse_constraint(&def->args_ct[i], &ct_str) < 0) {
fprintf(stderr, "Invalid constraint '%s' for arg %d of operation '%s'\n",
ct_str, i, def->name);
exit(1);
}
}
}
}
}
/* sort the constraints (XXX: this is just an heuristic) */
sort_constraints(def, 0, def->nb_oargs);
sort_constraints(def, def->nb_oargs, def->nb_iargs);
#if 0
{
int i;
printf("%s: sorted=", def->name);
for(i = 0; i < def->nb_oargs + def->nb_iargs; i++)
printf(" %d", def->sorted_args[i]);
printf("\n");
}
#endif
tdefs++;
}
}
#ifdef USE_LIVENESS_ANALYSIS
/* set a nop for an operation using 'nb_args' */
static inline void tcg_set_nop(TCGContext *s, uint16_t *opc_ptr,
TCGArg *args, int nb_args)
{
if (nb_args == 0) {
*opc_ptr = INDEX_op_nop;
} else {
*opc_ptr = INDEX_op_nopn;
args[0] = nb_args;
args[nb_args - 1] = nb_args;
}
}
/* liveness analysis: end of basic block: globals are live, temps are dead */
static inline void tcg_la_bb_end(TCGContext *s, uint8_t *dead_temps)
{
memset(dead_temps, 0, s->nb_globals);
memset(dead_temps + s->nb_globals, 1, s->nb_temps - s->nb_globals);
}
/* Liveness analysis : update the opc_dead_iargs array to tell if a
given input arguments is dead. Instructions updating dead
temporaries are removed. */
void tcg_liveness_analysis(TCGContext *s)
{
int i, op_index, op, nb_args, nb_iargs, nb_oargs, arg, nb_ops;
TCGArg *args;
const TCGOpDef *def;
uint8_t *dead_temps;
unsigned int dead_iargs;
gen_opc_ptr++; /* skip end */
nb_ops = gen_opc_ptr - gen_opc_buf;
/* XXX: make it really dynamic */
s->op_dead_iargs = tcg_malloc(OPC_BUF_SIZE * sizeof(uint16_t));
dead_temps = tcg_malloc(s->nb_temps);
memset(dead_temps, 1, s->nb_temps);
args = gen_opparam_ptr;
op_index = nb_ops - 1;
while (op_index >= 0) {
op = gen_opc_buf[op_index];
def = &tcg_op_defs[op];
switch(op) {
case INDEX_op_call:
nb_args = args[-1];
args -= nb_args;
nb_iargs = args[0] & 0xffff;
nb_oargs = args[0] >> 16;
args++;
/* output args are dead */
for(i = 0; i < nb_oargs; i++) {
arg = args[i];
dead_temps[arg] = 1;
}
/* globals are live (they may be used by the call) */
memset(dead_temps, 0, s->nb_globals);
/* input args are live */
dead_iargs = 0;
for(i = 0; i < nb_iargs; i++) {
arg = args[i + nb_oargs];
if (dead_temps[arg]) {
dead_iargs |= (1 << i);
}
dead_temps[arg] = 0;
}
s->op_dead_iargs[op_index] = dead_iargs;
args--;
break;
case INDEX_op_set_label:
args--;
/* mark end of basic block */
tcg_la_bb_end(s, dead_temps);
break;
case INDEX_op_nopn:
nb_args = args[-1];
args -= nb_args;
break;
case INDEX_op_macro_2:
{
int dead_args[2], macro_id;
int saved_op_index, saved_arg_index;
int macro_op_index, macro_arg_index;
int macro_end_op_index, macro_end_arg_index;
int last_nb_temps;
nb_args = 3;
args -= nb_args;
dead_args[0] = dead_temps[args[0]];
dead_args[1] = dead_temps[args[1]];
macro_id = args[2];
/* call the macro function which generate code
depending on the live outputs */
saved_op_index = op_index;
saved_arg_index = args - gen_opparam_buf;
/* add a macro start instruction */
*gen_opc_ptr++ = INDEX_op_macro_start;
*gen_opparam_ptr++ = saved_op_index;
*gen_opparam_ptr++ = saved_arg_index;
macro_op_index = gen_opc_ptr - gen_opc_buf;
macro_arg_index = gen_opparam_ptr - gen_opparam_buf;
last_nb_temps = s->nb_temps;
s->macro_func(s, macro_id, dead_args);
/* realloc temp info (XXX: make it faster) */
if (s->nb_temps > last_nb_temps) {
uint8_t *new_dead_temps;
new_dead_temps = tcg_malloc(s->nb_temps);
memcpy(new_dead_temps, dead_temps, last_nb_temps);
memset(new_dead_temps + last_nb_temps, 1,
s->nb_temps - last_nb_temps);
dead_temps = new_dead_temps;
}
macro_end_op_index = gen_opc_ptr - gen_opc_buf;
macro_end_arg_index = gen_opparam_ptr - gen_opparam_buf;
/* end of macro: add a goto to the next instruction */
*gen_opc_ptr++ = INDEX_op_macro_end;
*gen_opparam_ptr++ = op_index + 1;
*gen_opparam_ptr++ = saved_arg_index + nb_args;
/* modify the macro operation to be a macro_goto */
gen_opc_buf[op_index] = INDEX_op_macro_goto;
args[0] = macro_op_index;
args[1] = macro_arg_index;
args[2] = 0; /* dummy third arg to match the
macro parameters */
/* set the next instruction to the end of the macro */
op_index = macro_end_op_index;
args = macro_end_arg_index + gen_opparam_buf;
}
break;
case INDEX_op_macro_start:
args -= 2;
op_index = args[0];
args = gen_opparam_buf + args[1];
break;
case INDEX_op_macro_goto:
case INDEX_op_macro_end:
tcg_abort(); /* should never happen in liveness analysis */
case INDEX_op_end:
break;
/* XXX: optimize by hardcoding common cases (e.g. triadic ops) */
default:
if (op > INDEX_op_end) {
args -= def->nb_args;
nb_iargs = def->nb_iargs;
nb_oargs = def->nb_oargs;
/* Test if the operation can be removed because all
its outputs are dead. We may add a flag to
explicitely tell if the op has side
effects. Currently we assume that if nb_oargs == 0
or OPF_BB_END is set, the operation has side
effects and cannot be removed */
if (nb_oargs != 0 && !(def->flags & TCG_OPF_BB_END)) {
for(i = 0; i < nb_oargs; i++) {
arg = args[i];
if (!dead_temps[arg])
goto do_not_remove;
}
tcg_set_nop(s, gen_opc_buf + op_index, args, def->nb_args);
#ifdef CONFIG_PROFILER
{
extern int64_t dyngen_tcg_del_op_count;
dyngen_tcg_del_op_count++;
}
#endif
} else {
do_not_remove:
/* output args are dead */
for(i = 0; i < nb_oargs; i++) {
arg = args[i];
dead_temps[arg] = 1;
}
/* if end of basic block, update */
if (def->flags & TCG_OPF_BB_END) {
tcg_la_bb_end(s, dead_temps);
}
/* input args are live */
dead_iargs = 0;
for(i = 0; i < nb_iargs; i++) {
arg = args[i + nb_oargs];
if (dead_temps[arg]) {
dead_iargs |= (1 << i);
}
dead_temps[arg] = 0;
}
s->op_dead_iargs[op_index] = dead_iargs;
}
} else {
/* legacy dyngen operations */
args -= def->nb_args;
/* mark end of basic block */
tcg_la_bb_end(s, dead_temps);
}
break;
}
op_index--;
}
if (args != gen_opparam_buf)
tcg_abort();
}
#else
/* dummy liveness analysis */
void tcg_liveness_analysis(TCGContext *s)
{
int nb_ops;
nb_ops = gen_opc_ptr - gen_opc_buf;
s->op_dead_iargs = tcg_malloc(nb_ops * sizeof(uint16_t));
memset(s->op_dead_iargs, 0, nb_ops * sizeof(uint16_t));
}
#endif
#ifndef NDEBUG
static void dump_regs(TCGContext *s)
{
TCGTemp *ts;
int i;
char buf[64];
for(i = 0; i < s->nb_temps; i++) {
ts = &s->temps[i];
printf(" %10s: ", tcg_get_arg_str(s, buf, sizeof(buf), i));
switch(ts->val_type) {
case TEMP_VAL_REG:
printf("%s", tcg_target_reg_names[ts->reg]);
break;
case TEMP_VAL_MEM:
printf("%d(%s)", (int)ts->mem_offset, tcg_target_reg_names[ts->mem_reg]);
break;
case TEMP_VAL_CONST:
printf("$0x%" TCG_PRIlx, ts->val);
break;
case TEMP_VAL_DEAD:
printf("D");
break;
default:
printf("???");
break;
}
printf("\n");
}
for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
if (s->reg_to_temp[i] >= 0) {
printf("%s: %s\n",
tcg_target_reg_names[i],
tcg_get_arg_str(s, buf, sizeof(buf), s->reg_to_temp[i]));
}
}
}
static void check_regs(TCGContext *s)
{
int reg, k;
TCGTemp *ts;
char buf[64];
for(reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
k = s->reg_to_temp[reg];
if (k >= 0) {
ts = &s->temps[k];
if (ts->val_type != TEMP_VAL_REG ||
ts->reg != reg) {
printf("Inconsistency for register %s:\n",
tcg_target_reg_names[reg]);
printf("reg state:\n");
dump_regs(s);
tcg_abort();
}
}
}
for(k = 0; k < s->nb_temps; k++) {
ts = &s->temps[k];
if (ts->val_type == TEMP_VAL_REG &&
!ts->fixed_reg &&
s->reg_to_temp[ts->reg] != k) {
printf("Inconsistency for temp %s:\n",
tcg_get_arg_str(s, buf, sizeof(buf), k));
printf("reg state:\n");
dump_regs(s);
tcg_abort();
}
}
}
#endif
static void temp_allocate_frame(TCGContext *s, int temp)
{
TCGTemp *ts;
ts = &s->temps[temp];
s->current_frame_offset = (s->current_frame_offset + sizeof(tcg_target_long) - 1) & ~(sizeof(tcg_target_long) - 1);
if (s->current_frame_offset + sizeof(tcg_target_long) > s->frame_end)
abort();
ts->mem_offset = s->current_frame_offset;
ts->mem_reg = s->frame_reg;
ts->mem_allocated = 1;
s->current_frame_offset += sizeof(tcg_target_long);
}
/* free register 'reg' by spilling the corresponding temporary if necessary */
static void tcg_reg_free(TCGContext *s, int reg)
{
TCGTemp *ts;
int temp;
temp = s->reg_to_temp[reg];
if (temp != -1) {
ts = &s->temps[temp];
assert(ts->val_type == TEMP_VAL_REG);
if (!ts->mem_coherent) {
if (!ts->mem_allocated)
temp_allocate_frame(s, temp);
tcg_out_st(s, reg, ts->mem_reg, ts->mem_offset);
}
ts->val_type = TEMP_VAL_MEM;
s->reg_to_temp[reg] = -1;
}
}
/* Allocate a register belonging to reg1 & ~reg2 */
static int tcg_reg_alloc(TCGContext *s, TCGRegSet reg1, TCGRegSet reg2)
{
int i, reg;
TCGRegSet reg_ct;
tcg_regset_andnot(reg_ct, reg1, reg2);
/* first try free registers */
for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
reg = tcg_target_reg_alloc_order[i];
if (tcg_regset_test_reg(reg_ct, reg) && s->reg_to_temp[reg] == -1)
return reg;
}
/* XXX: do better spill choice */
for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
reg = tcg_target_reg_alloc_order[i];
if (tcg_regset_test_reg(reg_ct, reg)) {
tcg_reg_free(s, reg);
return reg;
}
}
tcg_abort();
}
/* at the end of a basic block, we assume all temporaries are dead and
all globals are stored at their canonical location */
/* XXX: optimize by handling constants in another array ? */
void tcg_reg_alloc_bb_end(TCGContext *s)
{
TCGTemp *ts;
int i;
for(i = 0; i < s->nb_globals; i++) {
ts = &s->temps[i];
if (!ts->fixed_reg) {
if (ts->val_type == TEMP_VAL_REG) {
tcg_reg_free(s, ts->reg);
}
}
}
for(i = s->nb_globals; i < s->nb_temps; i++) {
ts = &s->temps[i];
if (ts->val_type != TEMP_VAL_CONST) {
if (ts->val_type == TEMP_VAL_REG) {
s->reg_to_temp[ts->reg] = -1;
}
ts->val_type = TEMP_VAL_DEAD;
}
}
}
#define IS_DEAD_IARG(n) ((dead_iargs >> (n)) & 1)
static void tcg_reg_alloc_mov(TCGContext *s, const TCGOpDef *def,
const TCGArg *args,
unsigned int dead_iargs)
{
TCGTemp *ts, *ots;
int reg;
const TCGArgConstraint *arg_ct;
ots = &s->temps[args[0]];
ts = &s->temps[args[1]];
arg_ct = &def->args_ct[0];
if (ts->val_type == TEMP_VAL_REG) {
if (IS_DEAD_IARG(0) && !ts->fixed_reg && !ots->fixed_reg) {
/* the mov can be suppressed */
if (ots->val_type == TEMP_VAL_REG)
s->reg_to_temp[ots->reg] = -1;
reg = ts->reg;
s->reg_to_temp[reg] = -1;
ts->val_type = TEMP_VAL_DEAD;
} else {
if (ots->val_type == TEMP_VAL_REG) {
reg = ots->reg;
} else {
reg = tcg_reg_alloc(s, arg_ct->u.regs, s->reserved_regs);
}
if (ts->reg != reg) {
tcg_out_mov(s, reg, ts->reg);
}
}
} else if (ts->val_type == TEMP_VAL_MEM) {
if (ots->val_type == TEMP_VAL_REG) {
reg = ots->reg;
} else {
reg = tcg_reg_alloc(s, arg_ct->u.regs, s->reserved_regs);
}
tcg_out_ld(s, reg, ts->mem_reg, ts->mem_offset);
} else if (ts->val_type == TEMP_VAL_CONST) {
if (ots->val_type == TEMP_VAL_REG) {
reg = ots->reg;
} else {
reg = tcg_reg_alloc(s, arg_ct->u.regs, s->reserved_regs);
}
tcg_out_movi(s, ots->type, reg, ts->val);
} else {
tcg_abort();
}
s->reg_to_temp[reg] = args[0];
ots->reg = reg;
ots->val_type = TEMP_VAL_REG;
ots->mem_coherent = 0;
}
static void tcg_reg_alloc_op(TCGContext *s,
const TCGOpDef *def, int opc,
const TCGArg *args,
unsigned int dead_iargs)
{
TCGRegSet allocated_regs;
int i, k, nb_iargs, nb_oargs, reg;
TCGArg arg;
const TCGArgConstraint *arg_ct;
TCGTemp *ts;
TCGArg new_args[TCG_MAX_OP_ARGS];
int const_args[TCG_MAX_OP_ARGS];
nb_oargs = def->nb_oargs;
nb_iargs = def->nb_iargs;
/* copy constants */
memcpy(new_args + nb_oargs + nb_iargs,
args + nb_oargs + nb_iargs,
sizeof(TCGArg) * def->nb_cargs);
/* satisfy input constraints */
tcg_regset_set(allocated_regs, s->reserved_regs);
for(k = 0; k < nb_iargs; k++) {
i = def->sorted_args[nb_oargs + k];
arg = args[i];
arg_ct = &def->args_ct[i];
ts = &s->temps[arg];
if (ts->val_type == TEMP_VAL_MEM) {
reg = tcg_reg_alloc(s, arg_ct->u.regs, allocated_regs);
tcg_out_ld(s, reg, ts->mem_reg, ts->mem_offset);
ts->val_type = TEMP_VAL_REG;
ts->reg = reg;
ts->mem_coherent = 1;
s->reg_to_temp[reg] = arg;
} else if (ts->val_type == TEMP_VAL_CONST) {
if (tcg_target_const_match(ts->val, arg_ct)) {
/* constant is OK for instruction */
const_args[i] = 1;
new_args[i] = ts->val;
goto iarg_end;
} else {
/* need to move to a register*/
reg = tcg_reg_alloc(s, arg_ct->u.regs, allocated_regs);
tcg_out_movi(s, ts->type, reg, ts->val);
goto iarg_end1;
}
}
assert(ts->val_type == TEMP_VAL_REG);
if ((arg_ct->ct & TCG_CT_IALIAS) &&
!IS_DEAD_IARG(i - nb_oargs)) {
/* if the input is aliased to an output and if it is
not dead after the instruction, we must allocate
a new register and move it */
goto allocate_in_reg;
}
reg = ts->reg;
if (tcg_regset_test_reg(arg_ct->u.regs, reg)) {
/* nothing to do : the constraint is satisfied */
} else {
allocate_in_reg:
/* allocate a new register matching the constraint
and move the temporary register into it */
reg = tcg_reg_alloc(s, arg_ct->u.regs, allocated_regs);
tcg_out_mov(s, reg, ts->reg);
}
iarg_end1:
new_args[i] = reg;
const_args[i] = 0;
tcg_regset_set_reg(allocated_regs, reg);
iarg_end: ;
}
/* mark dead temporaries and free the associated registers */
for(i = 0; i < nb_iargs; i++) {
arg = args[nb_oargs + i];
if (IS_DEAD_IARG(i)) {
ts = &s->temps[arg];
if (ts->val_type != TEMP_VAL_CONST && !ts->fixed_reg) {
if (ts->val_type == TEMP_VAL_REG)
s->reg_to_temp[ts->reg] = -1;
ts->val_type = TEMP_VAL_DEAD;
}
}
}
/* XXX: permit generic clobber register list ? */
if (def->flags & TCG_OPF_CALL_CLOBBER) {
for(reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
if (tcg_regset_test_reg(tcg_target_call_clobber_regs, reg)) {
tcg_reg_free(s, reg);
}
}
}
/* satisfy the output constraints */
tcg_regset_set(allocated_regs, s->reserved_regs);
for(k = 0; k < nb_oargs; k++) {
i = def->sorted_args[k];
arg = args[i];
arg_ct = &def->args_ct[i];
ts = &s->temps[arg];
if (arg_ct->ct & TCG_CT_ALIAS) {
reg = new_args[arg_ct->ct & ~TCG_CT_ALIAS];
} else {
/* if fixed register, we try to use it */
reg = ts->reg;
if (ts->fixed_reg &&
tcg_regset_test_reg(arg_ct->u.regs, reg)) {
goto oarg_end;
}
reg = tcg_reg_alloc(s, arg_ct->u.regs, allocated_regs);
}
tcg_regset_set_reg(allocated_regs, reg);
/* if a fixed register is used, then a move will be done afterwards */
if (!ts->fixed_reg) {
if (ts->val_type == TEMP_VAL_REG)
s->reg_to_temp[ts->reg] = -1;
ts->val_type = TEMP_VAL_REG;
ts->reg = reg;
/* temp value is modified, so the value kept in memory is
potentially not the same */
ts->mem_coherent = 0;
s->reg_to_temp[reg] = arg;
}
oarg_end:
new_args[i] = reg;
}
if (def->flags & TCG_OPF_BB_END)
tcg_reg_alloc_bb_end(s);
/* emit instruction */
tcg_out_op(s, opc, new_args, const_args);
/* move the outputs in the correct register if needed */
for(i = 0; i < nb_oargs; i++) {
ts = &s->temps[args[i]];
reg = new_args[i];
if (ts->fixed_reg && ts->reg != reg) {
tcg_out_mov(s, ts->reg, reg);
}
}
}
static int tcg_reg_alloc_call(TCGContext *s, const TCGOpDef *def,
int opc, const TCGArg *args,
unsigned int dead_iargs)
{
int nb_iargs, nb_oargs, flags, nb_regs, i, reg, nb_params;
TCGArg arg, func_arg;
TCGTemp *ts;
tcg_target_long stack_offset, call_stack_size;
int const_func_arg;
TCGRegSet allocated_regs;
const TCGArgConstraint *arg_ct;
arg = *args++;
nb_oargs = arg >> 16;
nb_iargs = arg & 0xffff;
nb_params = nb_iargs - 1;
flags = args[nb_oargs + nb_iargs];
nb_regs = tcg_target_get_call_iarg_regs_count(flags);
if (nb_regs > nb_params)
nb_regs = nb_params;
/* assign stack slots first */
/* XXX: preallocate call stack */
call_stack_size = (nb_params - nb_regs) * sizeof(tcg_target_long);
call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) &
~(TCG_TARGET_STACK_ALIGN - 1);
tcg_out_addi(s, TCG_REG_CALL_STACK, -call_stack_size);
stack_offset = 0;
for(i = nb_regs; i < nb_params; i++) {
arg = args[nb_oargs + i];
ts = &s->temps[arg];
if (ts->val_type == TEMP_VAL_REG) {
tcg_out_st(s, ts->reg, TCG_REG_CALL_STACK, stack_offset);
} else if (ts->val_type == TEMP_VAL_MEM) {
reg = tcg_reg_alloc(s, tcg_target_available_regs[ts->type],
s->reserved_regs);
/* XXX: not correct if reading values from the stack */
tcg_out_ld(s, reg, ts->mem_reg, ts->mem_offset);
tcg_out_st(s, reg, TCG_REG_CALL_STACK, stack_offset);
} else if (ts->val_type == TEMP_VAL_CONST) {
reg = tcg_reg_alloc(s, tcg_target_available_regs[ts->type],
s->reserved_regs);
/* XXX: sign extend may be needed on some targets */
tcg_out_movi(s, ts->type, reg, ts->val);
tcg_out_st(s, reg, TCG_REG_CALL_STACK, stack_offset);
} else {
tcg_abort();
}
stack_offset += sizeof(tcg_target_long);
}
/* assign input registers */
tcg_regset_set(allocated_regs, s->reserved_regs);
for(i = 0; i < nb_regs; i++) {
arg = args[nb_oargs + i];
ts = &s->temps[arg];
reg = tcg_target_call_iarg_regs[i];
tcg_reg_free(s, reg);
if (ts->val_type == TEMP_VAL_REG) {
if (ts->reg != reg) {
tcg_out_mov(s, reg, ts->reg);
}
} else if (ts->val_type == TEMP_VAL_MEM) {
tcg_out_ld(s, reg, ts->mem_reg, ts->mem_offset);
} else if (ts->val_type == TEMP_VAL_CONST) {
/* XXX: sign extend ? */
tcg_out_movi(s, ts->type, reg, ts->val);
} else {
tcg_abort();
}
tcg_regset_set_reg(allocated_regs, reg);
}
/* assign function address */
func_arg = args[nb_oargs + nb_iargs - 1];
arg_ct = &def->args_ct[0];
ts = &s->temps[func_arg];
const_func_arg = 0;
if (ts->val_type == TEMP_VAL_MEM) {
reg = tcg_reg_alloc(s, arg_ct->u.regs, allocated_regs);
tcg_out_ld(s, reg, ts->mem_reg, ts->mem_offset);
func_arg = reg;
} else if (ts->val_type == TEMP_VAL_REG) {
reg = ts->reg;
if (!tcg_regset_test_reg(arg_ct->u.regs, reg)) {
reg = tcg_reg_alloc(s, arg_ct->u.regs, allocated_regs);
tcg_out_mov(s, reg, ts->reg);
}
func_arg = reg;
} else if (ts->val_type == TEMP_VAL_CONST) {
if (tcg_target_const_match(ts->val, arg_ct)) {
const_func_arg = 1;
func_arg = ts->val;
} else {
reg = tcg_reg_alloc(s, arg_ct->u.regs, allocated_regs);
tcg_out_movi(s, ts->type, reg, ts->val);
func_arg = reg;
}
} else {
tcg_abort();
}
/* mark dead temporaries and free the associated registers */
for(i = 0; i < nb_params; i++) {
arg = args[nb_oargs + i];
if (IS_DEAD_IARG(i)) {
ts = &s->temps[arg];
if (ts->val_type != TEMP_VAL_CONST && !ts->fixed_reg) {
if (ts->val_type == TEMP_VAL_REG)
s->reg_to_temp[ts->reg] = -1;
ts->val_type = TEMP_VAL_DEAD;
}
}
}
/* clobber call registers */
for(reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
if (tcg_regset_test_reg(tcg_target_call_clobber_regs, reg)) {
tcg_reg_free(s, reg);
}
}
/* store globals and free associated registers (we assume the call
can modify any global. */
for(i = 0; i < s->nb_globals; i++) {
ts = &s->temps[i];
if (!ts->fixed_reg) {
if (ts->val_type == TEMP_VAL_REG) {
tcg_reg_free(s, ts->reg);
}
}
}
tcg_out_op(s, opc, &func_arg, &const_func_arg);
tcg_out_addi(s, TCG_REG_CALL_STACK, call_stack_size);
/* assign output registers and emit moves if needed */
for(i = 0; i < nb_oargs; i++) {
arg = args[i];
ts = &s->temps[arg];
reg = tcg_target_call_oarg_regs[i];
tcg_reg_free(s, reg);
if (ts->fixed_reg) {
if (ts->reg != reg) {
tcg_out_mov(s, ts->reg, reg);
}
} else {
if (ts->val_type == TEMP_VAL_REG)
s->reg_to_temp[ts->reg] = -1;
ts->val_type = TEMP_VAL_REG;
ts->reg = reg;
ts->mem_coherent = 0;
s->reg_to_temp[reg] = arg;
}
}
return nb_iargs + nb_oargs + def->nb_cargs + 1;
}
#ifdef CONFIG_PROFILER
static int64_t dyngen_table_op_count[NB_OPS];
void dump_op_count(void)
{
int i;
FILE *f;
f = fopen("/tmp/op1.log", "w");
for(i = 0; i < INDEX_op_end; i++) {
fprintf(f, "%s %" PRId64 "\n", tcg_op_defs[i].name, dyngen_table_op_count[i]);
}
fclose(f);
f = fopen("/tmp/op2.log", "w");
for(i = INDEX_op_end; i < NB_OPS; i++) {
fprintf(f, "%s %" PRId64 "\n", tcg_op_defs[i].name, dyngen_table_op_count[i]);
}
fclose(f);
}
#endif
static inline int tcg_gen_code_common(TCGContext *s, uint8_t *gen_code_buf,
int do_search_pc,
const uint8_t *searched_pc)
{
int opc, op_index, macro_op_index;
const TCGOpDef *def;
unsigned int dead_iargs;
const TCGArg *args;
#ifdef DEBUG_DISAS
if (unlikely(loglevel & CPU_LOG_TB_OP)) {
fprintf(logfile, "OP:\n");
tcg_dump_ops(s, logfile);
fprintf(logfile, "\n");
}
#endif
tcg_liveness_analysis(s);
#ifdef DEBUG_DISAS
if (unlikely(loglevel & CPU_LOG_TB_OP_OPT)) {
fprintf(logfile, "OP after la:\n");
tcg_dump_ops(s, logfile);
fprintf(logfile, "\n");
}
#endif
tcg_reg_alloc_start(s);
s->code_buf = gen_code_buf;
s->code_ptr = gen_code_buf;
macro_op_index = -1;
args = gen_opparam_buf;
op_index = 0;
for(;;) {
opc = gen_opc_buf[op_index];
#ifdef CONFIG_PROFILER
dyngen_table_op_count[opc]++;
#endif
def = &tcg_op_defs[opc];
#if 0
printf("%s: %d %d %d\n", def->name,
def->nb_oargs, def->nb_iargs, def->nb_cargs);
// dump_regs(s);
#endif
switch(opc) {
case INDEX_op_mov_i32:
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_mov_i64:
#endif
dead_iargs = s->op_dead_iargs[op_index];
tcg_reg_alloc_mov(s, def, args, dead_iargs);
break;
case INDEX_op_nop:
case INDEX_op_nop1:
case INDEX_op_nop2:
case INDEX_op_nop3:
break;
case INDEX_op_nopn:
args += args[0];
goto next;
case INDEX_op_macro_goto:
macro_op_index = op_index; /* only used for exceptions */
op_index = args[0] - 1;
args = gen_opparam_buf + args[1];
goto next;
case INDEX_op_macro_end:
macro_op_index = -1; /* only used for exceptions */
op_index = args[0] - 1;
args = gen_opparam_buf + args[1];
goto next;
case INDEX_op_macro_start:
/* must never happen here */
tcg_abort();
case INDEX_op_set_label:
tcg_reg_alloc_bb_end(s);
tcg_out_label(s, args[0], (long)s->code_ptr);
break;
case INDEX_op_call:
dead_iargs = s->op_dead_iargs[op_index];
args += tcg_reg_alloc_call(s, def, opc, args, dead_iargs);
goto next;
case INDEX_op_end:
goto the_end;
case 0 ... INDEX_op_end - 1:
/* legacy dyngen ops */
#ifdef CONFIG_PROFILER
{
extern int64_t dyngen_old_op_count;
dyngen_old_op_count++;
}
#endif
tcg_reg_alloc_bb_end(s);
if (do_search_pc) {
s->code_ptr += def->copy_size;
args += def->nb_args;
} else {
args = dyngen_op(s, opc, args);
}
goto next;
default:
/* Note: in order to speed up the code, it would be much
faster to have specialized register allocator functions for
some common argument patterns */
dead_iargs = s->op_dead_iargs[op_index];
tcg_reg_alloc_op(s, def, opc, args, dead_iargs);
break;
}
args += def->nb_args;
next: ;
if (do_search_pc) {
if (searched_pc < s->code_ptr) {
if (macro_op_index >= 0)
return macro_op_index;
else
return op_index;
}
}
op_index++;
#ifndef NDEBUG
check_regs(s);
#endif
}
the_end:
return -1;
}
int dyngen_code(TCGContext *s, uint8_t *gen_code_buf)
{
#ifdef CONFIG_PROFILER
{
extern int64_t dyngen_op_count;
extern int dyngen_op_count_max;
int n;
n = (gen_opc_ptr - gen_opc_buf);
dyngen_op_count += n;
if (n > dyngen_op_count_max)
dyngen_op_count_max = n;
}
#endif
tcg_gen_code_common(s, gen_code_buf, 0, NULL);
/* flush instruction cache */
flush_icache_range((unsigned long)gen_code_buf,
(unsigned long)s->code_ptr);
return s->code_ptr - gen_code_buf;
}
/* return the index of the micro operation such as the pc after is <
search_pc. Note: gen_code_buf is accessed during the operation, but
its content should not be modified. Return -1 if not found. */
int dyngen_code_search_pc(TCGContext *s, uint8_t *gen_code_buf,
const uint8_t *searched_pc)
{
return tcg_gen_code_common(s, gen_code_buf, 1, searched_pc);
}