2011-09-13 08:30:52 +00:00
|
|
|
/*
|
|
|
|
* QEMU System Emulator
|
|
|
|
*
|
|
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
|
|
* in the Software without restriction, including without limitation the rights
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
* THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
2016-01-29 17:50:05 +00:00
|
|
|
#include "qemu/osdep.h"
|
include/qemu/osdep.h: Don't include qapi/error.h
Commit 57cb38b included qapi/error.h into qemu/osdep.h to get the
Error typedef. Since then, we've moved to include qemu/osdep.h
everywhere. Its file comment explains: "To avoid getting into
possible circular include dependencies, this file should not include
any other QEMU headers, with the exceptions of config-host.h,
compiler.h, os-posix.h and os-win32.h, all of which are doing a
similar job to this file and are under similar constraints."
qapi/error.h doesn't do a similar job, and it doesn't adhere to
similar constraints: it includes qapi-types.h. That's in excess of
100KiB of crap most .c files don't actually need.
Add the typedef to qemu/typedefs.h, and include that instead of
qapi/error.h. Include qapi/error.h in .c files that need it and don't
get it now. Include qapi-types.h in qom/object.h for uint16List.
Update scripts/clean-includes accordingly. Update it further to match
reality: replace config.h by config-target.h, add sysemu/os-posix.h,
sysemu/os-win32.h. Update the list of includes in the qemu/osdep.h
comment quoted above similarly.
This reduces the number of objects depending on qapi/error.h from "all
of them" to less than a third. Unfortunately, the number depending on
qapi-types.h shrinks only a little. More work is needed for that one.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
[Fix compilation without the spice devel packages. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-03-14 08:01:28 +00:00
|
|
|
#include "qapi/error.h"
|
2016-03-20 17:16:19 +00:00
|
|
|
#include "qemu/cutils.h"
|
2012-12-17 17:20:00 +00:00
|
|
|
#include "qemu/timer.h"
|
2014-03-13 14:17:29 +00:00
|
|
|
#include "sysemu/qtest.h"
|
2020-08-19 11:17:19 +00:00
|
|
|
#include "sysemu/cpu-timers.h"
|
2018-02-27 09:52:48 +00:00
|
|
|
#include "sysemu/replay.h"
|
2012-12-17 17:20:00 +00:00
|
|
|
#include "qemu/main-loop.h"
|
2012-12-17 17:19:44 +00:00
|
|
|
#include "block/aio.h"
|
2017-09-11 19:52:53 +00:00
|
|
|
#include "qemu/error-report.h"
|
2019-07-12 17:34:35 +00:00
|
|
|
#include "qemu/queue.h"
|
|
|
|
|
|
|
|
#ifndef _WIN32
|
|
|
|
#include <sys/wait.h>
|
|
|
|
#endif
|
2011-09-13 08:30:52 +00:00
|
|
|
|
|
|
|
#ifndef _WIN32
|
|
|
|
|
|
|
|
/* If we have signalfd, we mask out the signals we want to handle and then
|
|
|
|
* use signalfd to listen for them. We rely on whatever the current signal
|
|
|
|
* handler is to dispatch the signals when we receive them.
|
|
|
|
*/
|
|
|
|
static void sigfd_handler(void *opaque)
|
|
|
|
{
|
|
|
|
int fd = (intptr_t)opaque;
|
|
|
|
struct qemu_signalfd_siginfo info;
|
|
|
|
struct sigaction action;
|
|
|
|
ssize_t len;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
do {
|
|
|
|
len = read(fd, &info, sizeof(info));
|
|
|
|
} while (len == -1 && errno == EINTR);
|
|
|
|
|
|
|
|
if (len == -1 && errno == EAGAIN) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (len != sizeof(info)) {
|
2019-10-18 13:07:16 +00:00
|
|
|
error_report("read from sigfd returned %zd: %s", len,
|
|
|
|
g_strerror(errno));
|
2011-09-13 08:30:52 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
sigaction(info.ssi_signo, NULL, &action);
|
|
|
|
if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
|
2017-02-08 12:22:12 +00:00
|
|
|
sigaction_invoke(&action, &info);
|
2011-09-13 08:30:52 +00:00
|
|
|
} else if (action.sa_handler) {
|
|
|
|
action.sa_handler(info.ssi_signo);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-01-13 14:08:45 +00:00
|
|
|
static int qemu_signal_init(Error **errp)
|
2011-09-13 08:30:52 +00:00
|
|
|
{
|
|
|
|
int sigfd;
|
|
|
|
sigset_t set;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SIG_IPI must be blocked in the main thread and must not be caught
|
|
|
|
* by sigwait() in the signal thread. Otherwise, the cpu thread will
|
|
|
|
* not catch it reliably.
|
|
|
|
*/
|
|
|
|
sigemptyset(&set);
|
|
|
|
sigaddset(&set, SIG_IPI);
|
|
|
|
sigaddset(&set, SIGIO);
|
|
|
|
sigaddset(&set, SIGALRM);
|
|
|
|
sigaddset(&set, SIGBUS);
|
2014-10-27 14:13:02 +00:00
|
|
|
/* SIGINT cannot be handled via signalfd, so that ^C can be used
|
|
|
|
* to interrupt QEMU when it is being run under gdb. SIGHUP and
|
|
|
|
* SIGTERM are also handled asynchronously, even though it is not
|
|
|
|
* strictly necessary, because they use the same handler as SIGINT.
|
|
|
|
*/
|
2011-09-13 08:30:52 +00:00
|
|
|
pthread_sigmask(SIG_BLOCK, &set, NULL);
|
|
|
|
|
2012-01-12 09:05:35 +00:00
|
|
|
sigdelset(&set, SIG_IPI);
|
2011-09-13 08:30:52 +00:00
|
|
|
sigfd = qemu_signalfd(&set);
|
|
|
|
if (sigfd == -1) {
|
2019-01-13 14:08:45 +00:00
|
|
|
error_setg_errno(errp, errno, "failed to create signalfd");
|
2011-09-13 08:30:52 +00:00
|
|
|
return -errno;
|
|
|
|
}
|
|
|
|
|
|
|
|
fcntl_setfl(sigfd, O_NONBLOCK);
|
|
|
|
|
Change qemu_set_fd_handler2(..., NULL, ...) to qemu_set_fd_handler
Done with following Coccinelle semantic patch, plus manual cosmetic changes in
net/*.c.
@@
expression E1, E2, E3, E4;
@@
- qemu_set_fd_handler2(E1, NULL, E2, E3, E4);
+ qemu_set_fd_handler(E1, E2, E3, E4);
Signed-off-by: Fam Zheng <famz@redhat.com>
Message-id: 1433400324-7358-8-git-send-email-famz@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-06-04 06:45:18 +00:00
|
|
|
qemu_set_fd_handler(sigfd, sigfd_handler, NULL, (void *)(intptr_t)sigfd);
|
2011-09-13 08:30:52 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* _WIN32 */
|
|
|
|
|
2019-01-13 14:08:45 +00:00
|
|
|
static int qemu_signal_init(Error **errp)
|
2011-09-13 08:30:52 +00:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2010-05-24 15:27:14 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
static AioContext *qemu_aio_context;
|
2015-07-24 11:42:55 +00:00
|
|
|
static QEMUBH *qemu_notify_bh;
|
|
|
|
|
|
|
|
static void notify_event_cb(void *opaque)
|
|
|
|
{
|
|
|
|
/* No need to do anything; this bottom half is only used to
|
|
|
|
* kick the kernel out of ppoll/poll/WaitForMultipleObjects.
|
|
|
|
*/
|
|
|
|
}
|
2011-09-13 08:30:52 +00:00
|
|
|
|
2013-03-07 12:41:44 +00:00
|
|
|
AioContext *qemu_get_aio_context(void)
|
|
|
|
{
|
|
|
|
return qemu_aio_context;
|
|
|
|
}
|
|
|
|
|
2011-09-13 08:30:52 +00:00
|
|
|
void qemu_notify_event(void)
|
|
|
|
{
|
2010-05-24 15:27:14 +00:00
|
|
|
if (!qemu_aio_context) {
|
2012-01-21 01:08:27 +00:00
|
|
|
return;
|
|
|
|
}
|
2015-07-24 11:42:55 +00:00
|
|
|
qemu_bh_schedule(qemu_notify_bh);
|
2011-09-13 08:30:52 +00:00
|
|
|
}
|
|
|
|
|
2013-02-20 10:28:25 +00:00
|
|
|
static GArray *gpollfds;
|
|
|
|
|
2014-09-18 11:30:49 +00:00
|
|
|
int qemu_init_main_loop(Error **errp)
|
2011-09-13 08:30:52 +00:00
|
|
|
{
|
|
|
|
int ret;
|
2012-09-24 13:07:08 +00:00
|
|
|
GSource *src;
|
2011-09-13 08:30:52 +00:00
|
|
|
|
2017-03-03 10:50:29 +00:00
|
|
|
init_clocks(qemu_timer_notify_cb);
|
2012-10-29 14:28:36 +00:00
|
|
|
|
2019-01-13 14:08:45 +00:00
|
|
|
ret = qemu_signal_init(errp);
|
2011-09-13 08:30:52 +00:00
|
|
|
if (ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
error: Eliminate error_propagate() with Coccinelle, part 1
When all we do with an Error we receive into a local variable is
propagating to somewhere else, we can just as well receive it there
right away. Convert
if (!foo(..., &err)) {
...
error_propagate(errp, err);
...
return ...
}
to
if (!foo(..., errp)) {
...
...
return ...
}
where nothing else needs @err. Coccinelle script:
@rule1 forall@
identifier fun, err, errp, lbl;
expression list args, args2;
binary operator op;
constant c1, c2;
symbol false;
@@
if (
(
- fun(args, &err, args2)
+ fun(args, errp, args2)
|
- !fun(args, &err, args2)
+ !fun(args, errp, args2)
|
- fun(args, &err, args2) op c1
+ fun(args, errp, args2) op c1
)
)
{
... when != err
when != lbl:
when strict
- error_propagate(errp, err);
... when != err
(
return;
|
return c2;
|
return false;
)
}
@rule2 forall@
identifier fun, err, errp, lbl;
expression list args, args2;
expression var;
binary operator op;
constant c1, c2;
symbol false;
@@
- var = fun(args, &err, args2);
+ var = fun(args, errp, args2);
... when != err
if (
(
var
|
!var
|
var op c1
)
)
{
... when != err
when != lbl:
when strict
- error_propagate(errp, err);
... when != err
(
return;
|
return c2;
|
return false;
|
return var;
)
}
@depends on rule1 || rule2@
identifier err;
@@
- Error *err = NULL;
... when != err
Not exactly elegant, I'm afraid.
The "when != lbl:" is necessary to avoid transforming
if (fun(args, &err)) {
goto out
}
...
out:
error_propagate(errp, err);
even though other paths to label out still need the error_propagate().
For an actual example, see sclp_realize().
Without the "when strict", Coccinelle transforms vfio_msix_setup(),
incorrectly. I don't know what exactly "when strict" does, only that
it helps here.
The match of return is narrower than what I want, but I can't figure
out how to express "return where the operand doesn't use @err". For
an example where it's too narrow, see vfio_intx_enable().
Silently fails to convert hw/arm/armsse.c, because Coccinelle gets
confused by ARMSSE being used both as typedef and function-like macro
there. Converted manually.
Line breaks tidied up manually. One nested declaration of @local_err
deleted manually. Preexisting unwanted blank line dropped in
hw/riscv/sifive_e.c.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200707160613.848843-35-armbru@redhat.com>
2020-07-07 16:06:02 +00:00
|
|
|
qemu_aio_context = aio_context_new(errp);
|
2014-09-18 11:30:49 +00:00
|
|
|
if (!qemu_aio_context) {
|
|
|
|
return -EMFILE;
|
|
|
|
}
|
2016-07-06 10:08:59 +00:00
|
|
|
qemu_notify_bh = qemu_bh_new(notify_event_cb, NULL);
|
2013-02-20 10:28:25 +00:00
|
|
|
gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD));
|
2012-09-24 13:07:08 +00:00
|
|
|
src = aio_get_g_source(qemu_aio_context);
|
2016-09-30 14:34:24 +00:00
|
|
|
g_source_set_name(src, "aio-context");
|
2012-09-24 13:07:08 +00:00
|
|
|
g_source_attach(src, NULL);
|
|
|
|
g_source_unref(src);
|
2015-09-07 03:28:58 +00:00
|
|
|
src = iohandler_get_g_source();
|
2016-09-30 14:34:24 +00:00
|
|
|
g_source_set_name(src, "io-handler");
|
2015-09-07 03:28:58 +00:00
|
|
|
g_source_attach(src, NULL);
|
|
|
|
g_source_unref(src);
|
2011-09-13 08:30:52 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int max_priority;
|
|
|
|
|
2012-03-20 09:49:21 +00:00
|
|
|
#ifndef _WIN32
|
2013-02-20 10:28:26 +00:00
|
|
|
static int glib_pollfds_idx;
|
|
|
|
static int glib_n_poll_fds;
|
|
|
|
|
2020-09-02 11:17:24 +00:00
|
|
|
void qemu_fd_register(int fd)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2013-08-21 15:02:54 +00:00
|
|
|
static void glib_pollfds_fill(int64_t *cur_timeout)
|
2011-09-13 08:30:52 +00:00
|
|
|
{
|
|
|
|
GMainContext *context = g_main_context_default();
|
2012-03-20 09:49:17 +00:00
|
|
|
int timeout = 0;
|
2013-08-21 15:02:54 +00:00
|
|
|
int64_t timeout_ns;
|
2013-02-20 10:28:26 +00:00
|
|
|
int n;
|
2011-09-13 08:30:52 +00:00
|
|
|
|
|
|
|
g_main_context_prepare(context, &max_priority);
|
|
|
|
|
2013-02-20 10:28:26 +00:00
|
|
|
glib_pollfds_idx = gpollfds->len;
|
|
|
|
n = glib_n_poll_fds;
|
|
|
|
do {
|
|
|
|
GPollFD *pfds;
|
|
|
|
glib_n_poll_fds = n;
|
|
|
|
g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds);
|
|
|
|
pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx);
|
|
|
|
n = g_main_context_query(context, max_priority, &timeout, pfds,
|
|
|
|
glib_n_poll_fds);
|
|
|
|
} while (n != glib_n_poll_fds);
|
2011-09-13 08:30:52 +00:00
|
|
|
|
2013-08-21 15:02:54 +00:00
|
|
|
if (timeout < 0) {
|
|
|
|
timeout_ns = -1;
|
|
|
|
} else {
|
|
|
|
timeout_ns = (int64_t)timeout * (int64_t)SCALE_MS;
|
2011-09-13 08:30:52 +00:00
|
|
|
}
|
2013-08-21 15:02:54 +00:00
|
|
|
|
|
|
|
*cur_timeout = qemu_soonest_timeout(timeout_ns, *cur_timeout);
|
2011-09-13 08:30:52 +00:00
|
|
|
}
|
|
|
|
|
2013-02-20 10:28:26 +00:00
|
|
|
static void glib_pollfds_poll(void)
|
2011-09-13 08:30:52 +00:00
|
|
|
{
|
|
|
|
GMainContext *context = g_main_context_default();
|
2013-02-20 10:28:26 +00:00
|
|
|
GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx);
|
2011-09-13 08:30:52 +00:00
|
|
|
|
2013-02-20 10:28:26 +00:00
|
|
|
if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) {
|
2011-09-13 08:30:52 +00:00
|
|
|
g_main_context_dispatch(context);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-04-05 13:46:00 +00:00
|
|
|
#define MAX_MAIN_LOOP_SPIN (1000)
|
|
|
|
|
2013-08-21 15:02:54 +00:00
|
|
|
static int os_host_main_loop_wait(int64_t timeout)
|
2012-03-20 09:49:18 +00:00
|
|
|
{
|
main-loop: Acquire main_context lock around os_host_main_loop_wait.
When running virt-rescue the serial console hangs from time to time.
Virt-rescue runs an ordinary Linux kernel "appliance", but there is
only a single idle process running inside, so the qemu main loop is
largely idle. With virt-rescue >= 1.37 you may be able to observe the
hang by doing:
$ virt-rescue -e ^] --scratch
><rescue> while true; do ls -l /usr/bin; done
The hang in virt-rescue can be resolved by pressing a key on the
serial console.
Possibly with the same root cause, we also observed hangs during very
early boot of regular Linux VMs with a serial console. Those hangs
are extremely rare, but you may be able to observe them by running
this command on baremetal for a sufficiently long time:
$ while libguestfs-test-tool -t 60 >& /tmp/log ; do echo -n . ; done
(Check in /tmp/log that the failure was caused by a hang during early
boot, and not some other reason)
During investigation of this bug, Paolo Bonzini wrote:
> glib is expecting QEMU to use g_main_context_acquire around accesses to
> GMainContext. However QEMU is not doing that, instead it is taking its
> own mutex. So we should add g_main_context_acquire and
> g_main_context_release in the two implementations of
> os_host_main_loop_wait; these should undo the effect of Frediano's
> glib patch.
This patch exactly implements Paolo's suggestion in that paragraph.
This fixes the serial console hang in my testing, across 3 different
physical machines (AMD, Intel Core i7 and Intel Xeon), over many hours
of automated testing. I wasn't able to reproduce the early boot hangs
(but as noted above, these are extremely rare in any case).
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1435432
Reported-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Message-Id: <20170331205133.23906-1-rjones@redhat.com>
[Paolo: this is actually a glib bug: recent glib versions are also
expecting g_main_context_acquire around g_poll---but that is not
documented and probably not even intended].
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-03-31 20:51:33 +00:00
|
|
|
GMainContext *context = g_main_context_default();
|
2012-03-20 09:49:18 +00:00
|
|
|
int ret;
|
|
|
|
|
main-loop: Acquire main_context lock around os_host_main_loop_wait.
When running virt-rescue the serial console hangs from time to time.
Virt-rescue runs an ordinary Linux kernel "appliance", but there is
only a single idle process running inside, so the qemu main loop is
largely idle. With virt-rescue >= 1.37 you may be able to observe the
hang by doing:
$ virt-rescue -e ^] --scratch
><rescue> while true; do ls -l /usr/bin; done
The hang in virt-rescue can be resolved by pressing a key on the
serial console.
Possibly with the same root cause, we also observed hangs during very
early boot of regular Linux VMs with a serial console. Those hangs
are extremely rare, but you may be able to observe them by running
this command on baremetal for a sufficiently long time:
$ while libguestfs-test-tool -t 60 >& /tmp/log ; do echo -n . ; done
(Check in /tmp/log that the failure was caused by a hang during early
boot, and not some other reason)
During investigation of this bug, Paolo Bonzini wrote:
> glib is expecting QEMU to use g_main_context_acquire around accesses to
> GMainContext. However QEMU is not doing that, instead it is taking its
> own mutex. So we should add g_main_context_acquire and
> g_main_context_release in the two implementations of
> os_host_main_loop_wait; these should undo the effect of Frediano's
> glib patch.
This patch exactly implements Paolo's suggestion in that paragraph.
This fixes the serial console hang in my testing, across 3 different
physical machines (AMD, Intel Core i7 and Intel Xeon), over many hours
of automated testing. I wasn't able to reproduce the early boot hangs
(but as noted above, these are extremely rare in any case).
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1435432
Reported-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Message-Id: <20170331205133.23906-1-rjones@redhat.com>
[Paolo: this is actually a glib bug: recent glib versions are also
expecting g_main_context_acquire around g_poll---but that is not
documented and probably not even intended].
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-03-31 20:51:33 +00:00
|
|
|
g_main_context_acquire(context);
|
|
|
|
|
2013-02-20 10:28:26 +00:00
|
|
|
glib_pollfds_fill(&timeout);
|
2012-03-20 09:49:18 +00:00
|
|
|
|
2018-02-27 09:52:48 +00:00
|
|
|
qemu_mutex_unlock_iothread();
|
|
|
|
replay_mutex_unlock();
|
2012-03-20 09:49:18 +00:00
|
|
|
|
2013-08-21 15:02:54 +00:00
|
|
|
ret = qemu_poll_ns((GPollFD *)gpollfds->data, gpollfds->len, timeout);
|
2013-02-20 10:28:25 +00:00
|
|
|
|
2018-02-27 09:52:48 +00:00
|
|
|
replay_mutex_lock();
|
|
|
|
qemu_mutex_lock_iothread();
|
2012-03-20 09:49:18 +00:00
|
|
|
|
2013-02-20 10:28:26 +00:00
|
|
|
glib_pollfds_poll();
|
main-loop: Acquire main_context lock around os_host_main_loop_wait.
When running virt-rescue the serial console hangs from time to time.
Virt-rescue runs an ordinary Linux kernel "appliance", but there is
only a single idle process running inside, so the qemu main loop is
largely idle. With virt-rescue >= 1.37 you may be able to observe the
hang by doing:
$ virt-rescue -e ^] --scratch
><rescue> while true; do ls -l /usr/bin; done
The hang in virt-rescue can be resolved by pressing a key on the
serial console.
Possibly with the same root cause, we also observed hangs during very
early boot of regular Linux VMs with a serial console. Those hangs
are extremely rare, but you may be able to observe them by running
this command on baremetal for a sufficiently long time:
$ while libguestfs-test-tool -t 60 >& /tmp/log ; do echo -n . ; done
(Check in /tmp/log that the failure was caused by a hang during early
boot, and not some other reason)
During investigation of this bug, Paolo Bonzini wrote:
> glib is expecting QEMU to use g_main_context_acquire around accesses to
> GMainContext. However QEMU is not doing that, instead it is taking its
> own mutex. So we should add g_main_context_acquire and
> g_main_context_release in the two implementations of
> os_host_main_loop_wait; these should undo the effect of Frediano's
> glib patch.
This patch exactly implements Paolo's suggestion in that paragraph.
This fixes the serial console hang in my testing, across 3 different
physical machines (AMD, Intel Core i7 and Intel Xeon), over many hours
of automated testing. I wasn't able to reproduce the early boot hangs
(but as noted above, these are extremely rare in any case).
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1435432
Reported-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Message-Id: <20170331205133.23906-1-rjones@redhat.com>
[Paolo: this is actually a glib bug: recent glib versions are also
expecting g_main_context_acquire around g_poll---but that is not
documented and probably not even intended].
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-03-31 20:51:33 +00:00
|
|
|
|
|
|
|
g_main_context_release(context);
|
|
|
|
|
2012-03-20 09:49:18 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
#else
|
2011-09-13 08:30:52 +00:00
|
|
|
/***********************************************************/
|
|
|
|
/* Polling handling */
|
|
|
|
|
|
|
|
typedef struct PollingEntry {
|
|
|
|
PollingFunc *func;
|
|
|
|
void *opaque;
|
|
|
|
struct PollingEntry *next;
|
|
|
|
} PollingEntry;
|
|
|
|
|
|
|
|
static PollingEntry *first_polling_entry;
|
|
|
|
|
|
|
|
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
|
|
|
|
{
|
|
|
|
PollingEntry **ppe, *pe;
|
|
|
|
pe = g_malloc0(sizeof(PollingEntry));
|
|
|
|
pe->func = func;
|
|
|
|
pe->opaque = opaque;
|
|
|
|
for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
|
|
|
|
*ppe = pe;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
|
|
|
|
{
|
|
|
|
PollingEntry **ppe, *pe;
|
|
|
|
for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
|
|
|
|
pe = *ppe;
|
|
|
|
if (pe->func == func && pe->opaque == opaque) {
|
|
|
|
*ppe = pe->next;
|
|
|
|
g_free(pe);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/***********************************************************/
|
|
|
|
/* Wait objects support */
|
|
|
|
typedef struct WaitObjects {
|
|
|
|
int num;
|
2012-03-20 09:49:20 +00:00
|
|
|
int revents[MAXIMUM_WAIT_OBJECTS + 1];
|
2011-09-13 08:30:52 +00:00
|
|
|
HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
|
|
|
|
WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
|
|
|
|
void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
|
|
|
|
} WaitObjects;
|
|
|
|
|
|
|
|
static WaitObjects wait_objects = {0};
|
|
|
|
|
|
|
|
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
|
|
|
|
{
|
|
|
|
WaitObjects *w = &wait_objects;
|
|
|
|
if (w->num >= MAXIMUM_WAIT_OBJECTS) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
w->events[w->num] = handle;
|
|
|
|
w->func[w->num] = func;
|
|
|
|
w->opaque[w->num] = opaque;
|
2012-03-20 09:49:20 +00:00
|
|
|
w->revents[w->num] = 0;
|
2011-09-13 08:30:52 +00:00
|
|
|
w->num++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
|
|
|
|
{
|
|
|
|
int i, found;
|
|
|
|
WaitObjects *w = &wait_objects;
|
|
|
|
|
|
|
|
found = 0;
|
|
|
|
for (i = 0; i < w->num; i++) {
|
|
|
|
if (w->events[i] == handle) {
|
|
|
|
found = 1;
|
|
|
|
}
|
|
|
|
if (found) {
|
|
|
|
w->events[i] = w->events[i + 1];
|
|
|
|
w->func[i] = w->func[i + 1];
|
|
|
|
w->opaque[i] = w->opaque[i + 1];
|
2012-03-20 09:49:20 +00:00
|
|
|
w->revents[i] = w->revents[i + 1];
|
2011-09-13 08:30:52 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
if (found) {
|
|
|
|
w->num--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-20 09:49:19 +00:00
|
|
|
void qemu_fd_register(int fd)
|
|
|
|
{
|
2010-05-24 15:27:14 +00:00
|
|
|
WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier),
|
|
|
|
FD_READ | FD_ACCEPT | FD_CLOSE |
|
2012-03-20 09:49:19 +00:00
|
|
|
FD_CONNECT | FD_WRITE | FD_OOB);
|
|
|
|
}
|
|
|
|
|
2013-02-20 10:28:25 +00:00
|
|
|
static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds,
|
|
|
|
fd_set *xfds)
|
|
|
|
{
|
|
|
|
int nfds = -1;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < pollfds->len; i++) {
|
|
|
|
GPollFD *pfd = &g_array_index(pollfds, GPollFD, i);
|
|
|
|
int fd = pfd->fd;
|
|
|
|
int events = pfd->events;
|
2013-05-16 15:36:00 +00:00
|
|
|
if (events & G_IO_IN) {
|
2013-02-20 10:28:25 +00:00
|
|
|
FD_SET(fd, rfds);
|
|
|
|
nfds = MAX(nfds, fd);
|
|
|
|
}
|
2013-05-16 15:36:00 +00:00
|
|
|
if (events & G_IO_OUT) {
|
2013-02-20 10:28:25 +00:00
|
|
|
FD_SET(fd, wfds);
|
|
|
|
nfds = MAX(nfds, fd);
|
|
|
|
}
|
|
|
|
if (events & G_IO_PRI) {
|
|
|
|
FD_SET(fd, xfds);
|
|
|
|
nfds = MAX(nfds, fd);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nfds;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds,
|
|
|
|
fd_set *wfds, fd_set *xfds)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < pollfds->len; i++) {
|
|
|
|
GPollFD *pfd = &g_array_index(pollfds, GPollFD, i);
|
|
|
|
int fd = pfd->fd;
|
|
|
|
int revents = 0;
|
|
|
|
|
|
|
|
if (FD_ISSET(fd, rfds)) {
|
2013-05-16 15:36:00 +00:00
|
|
|
revents |= G_IO_IN;
|
2013-02-20 10:28:25 +00:00
|
|
|
}
|
|
|
|
if (FD_ISSET(fd, wfds)) {
|
2013-05-16 15:36:00 +00:00
|
|
|
revents |= G_IO_OUT;
|
2013-02-20 10:28:25 +00:00
|
|
|
}
|
|
|
|
if (FD_ISSET(fd, xfds)) {
|
|
|
|
revents |= G_IO_PRI;
|
|
|
|
}
|
|
|
|
pfd->revents = revents & pfd->events;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-08-21 15:02:54 +00:00
|
|
|
static int os_host_main_loop_wait(int64_t timeout)
|
2011-09-13 08:30:52 +00:00
|
|
|
{
|
2012-03-20 09:49:21 +00:00
|
|
|
GMainContext *context = g_main_context_default();
|
2013-02-20 10:28:26 +00:00
|
|
|
GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
|
2013-02-20 10:28:24 +00:00
|
|
|
int select_ret = 0;
|
2013-02-20 10:28:26 +00:00
|
|
|
int g_poll_ret, ret, i, n_poll_fds;
|
2011-09-13 08:30:52 +00:00
|
|
|
PollingEntry *pe;
|
2012-03-20 09:49:19 +00:00
|
|
|
WaitObjects *w = &wait_objects;
|
2012-04-27 15:02:08 +00:00
|
|
|
gint poll_timeout;
|
2013-08-21 15:02:54 +00:00
|
|
|
int64_t poll_timeout_ns;
|
2012-03-20 09:49:18 +00:00
|
|
|
static struct timeval tv0;
|
2013-02-20 10:28:30 +00:00
|
|
|
fd_set rfds, wfds, xfds;
|
|
|
|
int nfds;
|
2011-09-13 08:30:52 +00:00
|
|
|
|
main-loop: Acquire main_context lock around os_host_main_loop_wait.
When running virt-rescue the serial console hangs from time to time.
Virt-rescue runs an ordinary Linux kernel "appliance", but there is
only a single idle process running inside, so the qemu main loop is
largely idle. With virt-rescue >= 1.37 you may be able to observe the
hang by doing:
$ virt-rescue -e ^] --scratch
><rescue> while true; do ls -l /usr/bin; done
The hang in virt-rescue can be resolved by pressing a key on the
serial console.
Possibly with the same root cause, we also observed hangs during very
early boot of regular Linux VMs with a serial console. Those hangs
are extremely rare, but you may be able to observe them by running
this command on baremetal for a sufficiently long time:
$ while libguestfs-test-tool -t 60 >& /tmp/log ; do echo -n . ; done
(Check in /tmp/log that the failure was caused by a hang during early
boot, and not some other reason)
During investigation of this bug, Paolo Bonzini wrote:
> glib is expecting QEMU to use g_main_context_acquire around accesses to
> GMainContext. However QEMU is not doing that, instead it is taking its
> own mutex. So we should add g_main_context_acquire and
> g_main_context_release in the two implementations of
> os_host_main_loop_wait; these should undo the effect of Frediano's
> glib patch.
This patch exactly implements Paolo's suggestion in that paragraph.
This fixes the serial console hang in my testing, across 3 different
physical machines (AMD, Intel Core i7 and Intel Xeon), over many hours
of automated testing. I wasn't able to reproduce the early boot hangs
(but as noted above, these are extremely rare in any case).
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1435432
Reported-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Message-Id: <20170331205133.23906-1-rjones@redhat.com>
[Paolo: this is actually a glib bug: recent glib versions are also
expecting g_main_context_acquire around g_poll---but that is not
documented and probably not even intended].
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-03-31 20:51:33 +00:00
|
|
|
g_main_context_acquire(context);
|
|
|
|
|
2011-09-13 08:30:52 +00:00
|
|
|
/* XXX: need to suppress polling by better using win32 events */
|
|
|
|
ret = 0;
|
|
|
|
for (pe = first_polling_entry; pe != NULL; pe = pe->next) {
|
|
|
|
ret |= pe->func(pe->opaque);
|
|
|
|
}
|
2012-03-20 09:49:19 +00:00
|
|
|
if (ret != 0) {
|
main-loop: Acquire main_context lock around os_host_main_loop_wait.
When running virt-rescue the serial console hangs from time to time.
Virt-rescue runs an ordinary Linux kernel "appliance", but there is
only a single idle process running inside, so the qemu main loop is
largely idle. With virt-rescue >= 1.37 you may be able to observe the
hang by doing:
$ virt-rescue -e ^] --scratch
><rescue> while true; do ls -l /usr/bin; done
The hang in virt-rescue can be resolved by pressing a key on the
serial console.
Possibly with the same root cause, we also observed hangs during very
early boot of regular Linux VMs with a serial console. Those hangs
are extremely rare, but you may be able to observe them by running
this command on baremetal for a sufficiently long time:
$ while libguestfs-test-tool -t 60 >& /tmp/log ; do echo -n . ; done
(Check in /tmp/log that the failure was caused by a hang during early
boot, and not some other reason)
During investigation of this bug, Paolo Bonzini wrote:
> glib is expecting QEMU to use g_main_context_acquire around accesses to
> GMainContext. However QEMU is not doing that, instead it is taking its
> own mutex. So we should add g_main_context_acquire and
> g_main_context_release in the two implementations of
> os_host_main_loop_wait; these should undo the effect of Frediano's
> glib patch.
This patch exactly implements Paolo's suggestion in that paragraph.
This fixes the serial console hang in my testing, across 3 different
physical machines (AMD, Intel Core i7 and Intel Xeon), over many hours
of automated testing. I wasn't able to reproduce the early boot hangs
(but as noted above, these are extremely rare in any case).
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1435432
Reported-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Message-Id: <20170331205133.23906-1-rjones@redhat.com>
[Paolo: this is actually a glib bug: recent glib versions are also
expecting g_main_context_acquire around g_poll---but that is not
documented and probably not even intended].
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-03-31 20:51:33 +00:00
|
|
|
g_main_context_release(context);
|
2012-03-20 09:49:19 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2011-09-13 08:30:52 +00:00
|
|
|
|
2013-05-16 15:36:01 +00:00
|
|
|
FD_ZERO(&rfds);
|
|
|
|
FD_ZERO(&wfds);
|
|
|
|
FD_ZERO(&xfds);
|
|
|
|
nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds);
|
|
|
|
if (nfds >= 0) {
|
|
|
|
select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0);
|
|
|
|
if (select_ret != 0) {
|
|
|
|
timeout = 0;
|
|
|
|
}
|
|
|
|
if (select_ret > 0) {
|
|
|
|
pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-20 09:49:21 +00:00
|
|
|
g_main_context_prepare(context, &max_priority);
|
2012-04-27 15:02:08 +00:00
|
|
|
n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout,
|
2012-03-20 09:49:21 +00:00
|
|
|
poll_fds, ARRAY_SIZE(poll_fds));
|
2019-06-19 19:14:47 +00:00
|
|
|
g_assert(n_poll_fds + w->num <= ARRAY_SIZE(poll_fds));
|
2012-03-20 09:49:21 +00:00
|
|
|
|
2012-03-20 09:49:20 +00:00
|
|
|
for (i = 0; i < w->num; i++) {
|
2012-04-12 18:42:34 +00:00
|
|
|
poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i];
|
2012-03-20 09:49:21 +00:00
|
|
|
poll_fds[n_poll_fds + i].events = G_IO_IN;
|
2012-03-20 09:49:20 +00:00
|
|
|
}
|
|
|
|
|
2013-08-21 15:02:54 +00:00
|
|
|
if (poll_timeout < 0) {
|
|
|
|
poll_timeout_ns = -1;
|
|
|
|
} else {
|
|
|
|
poll_timeout_ns = (int64_t)poll_timeout * (int64_t)SCALE_MS;
|
2012-04-29 17:15:02 +00:00
|
|
|
}
|
|
|
|
|
2013-08-21 15:02:54 +00:00
|
|
|
poll_timeout_ns = qemu_soonest_timeout(poll_timeout_ns, timeout);
|
|
|
|
|
2012-03-20 09:49:19 +00:00
|
|
|
qemu_mutex_unlock_iothread();
|
2018-02-27 09:52:48 +00:00
|
|
|
|
|
|
|
replay_mutex_unlock();
|
|
|
|
|
2013-08-21 15:02:54 +00:00
|
|
|
g_poll_ret = qemu_poll_ns(poll_fds, n_poll_fds + w->num, poll_timeout_ns);
|
|
|
|
|
2018-02-27 09:52:48 +00:00
|
|
|
replay_mutex_lock();
|
|
|
|
|
2012-03-20 09:49:19 +00:00
|
|
|
qemu_mutex_lock_iothread();
|
2013-01-08 15:30:56 +00:00
|
|
|
if (g_poll_ret > 0) {
|
2012-03-20 09:49:20 +00:00
|
|
|
for (i = 0; i < w->num; i++) {
|
2012-03-20 09:49:21 +00:00
|
|
|
w->revents[i] = poll_fds[n_poll_fds + i].revents;
|
2012-03-20 09:49:19 +00:00
|
|
|
}
|
2012-03-20 09:49:20 +00:00
|
|
|
for (i = 0; i < w->num; i++) {
|
|
|
|
if (w->revents[i] && w->func[i]) {
|
|
|
|
w->func[i](w->opaque[i]);
|
2011-09-13 08:30:52 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-20 09:49:21 +00:00
|
|
|
if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
|
|
|
|
g_main_context_dispatch(context);
|
|
|
|
}
|
|
|
|
|
main-loop: Acquire main_context lock around os_host_main_loop_wait.
When running virt-rescue the serial console hangs from time to time.
Virt-rescue runs an ordinary Linux kernel "appliance", but there is
only a single idle process running inside, so the qemu main loop is
largely idle. With virt-rescue >= 1.37 you may be able to observe the
hang by doing:
$ virt-rescue -e ^] --scratch
><rescue> while true; do ls -l /usr/bin; done
The hang in virt-rescue can be resolved by pressing a key on the
serial console.
Possibly with the same root cause, we also observed hangs during very
early boot of regular Linux VMs with a serial console. Those hangs
are extremely rare, but you may be able to observe them by running
this command on baremetal for a sufficiently long time:
$ while libguestfs-test-tool -t 60 >& /tmp/log ; do echo -n . ; done
(Check in /tmp/log that the failure was caused by a hang during early
boot, and not some other reason)
During investigation of this bug, Paolo Bonzini wrote:
> glib is expecting QEMU to use g_main_context_acquire around accesses to
> GMainContext. However QEMU is not doing that, instead it is taking its
> own mutex. So we should add g_main_context_acquire and
> g_main_context_release in the two implementations of
> os_host_main_loop_wait; these should undo the effect of Frediano's
> glib patch.
This patch exactly implements Paolo's suggestion in that paragraph.
This fixes the serial console hang in my testing, across 3 different
physical machines (AMD, Intel Core i7 and Intel Xeon), over many hours
of automated testing. I wasn't able to reproduce the early boot hangs
(but as noted above, these are extremely rare in any case).
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1435432
Reported-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Message-Id: <20170331205133.23906-1-rjones@redhat.com>
[Paolo: this is actually a glib bug: recent glib versions are also
expecting g_main_context_acquire around g_poll---but that is not
documented and probably not even intended].
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-03-31 20:51:33 +00:00
|
|
|
g_main_context_release(context);
|
|
|
|
|
2013-01-08 15:30:56 +00:00
|
|
|
return select_ret || g_poll_ret;
|
2011-09-13 08:30:52 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-01-17 11:43:55 +00:00
|
|
|
static NotifierList main_loop_poll_notifiers =
|
|
|
|
NOTIFIER_LIST_INITIALIZER(main_loop_poll_notifiers);
|
|
|
|
|
|
|
|
void main_loop_poll_add_notifier(Notifier *notify)
|
|
|
|
{
|
|
|
|
notifier_list_add(&main_loop_poll_notifiers, notify);
|
|
|
|
}
|
|
|
|
|
|
|
|
void main_loop_poll_remove_notifier(Notifier *notify)
|
|
|
|
{
|
|
|
|
notifier_remove(notify);
|
|
|
|
}
|
|
|
|
|
2017-06-27 17:32:49 +00:00
|
|
|
void main_loop_wait(int nonblocking)
|
2011-09-13 08:30:52 +00:00
|
|
|
{
|
2019-01-17 11:43:55 +00:00
|
|
|
MainLoopPoll mlpoll = {
|
|
|
|
.state = MAIN_LOOP_POLL_FILL,
|
|
|
|
.timeout = UINT32_MAX,
|
|
|
|
.pollfds = gpollfds,
|
|
|
|
};
|
2012-04-13 18:35:04 +00:00
|
|
|
int ret;
|
2013-08-21 15:02:54 +00:00
|
|
|
int64_t timeout_ns;
|
2011-09-13 08:30:52 +00:00
|
|
|
|
|
|
|
if (nonblocking) {
|
2019-01-17 11:43:55 +00:00
|
|
|
mlpoll.timeout = 0;
|
2011-09-13 08:30:52 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* poll any events */
|
2013-02-20 10:28:25 +00:00
|
|
|
g_array_set_size(gpollfds, 0); /* reset for new iteration */
|
2011-09-13 08:30:52 +00:00
|
|
|
/* XXX: separate device handlers from system ones */
|
2019-01-17 11:43:55 +00:00
|
|
|
notifier_list_notify(&main_loop_poll_notifiers, &mlpoll);
|
2013-08-21 15:02:54 +00:00
|
|
|
|
2019-01-17 11:43:55 +00:00
|
|
|
if (mlpoll.timeout == UINT32_MAX) {
|
2013-08-21 15:02:54 +00:00
|
|
|
timeout_ns = -1;
|
|
|
|
} else {
|
2019-01-17 11:43:55 +00:00
|
|
|
timeout_ns = (uint64_t)mlpoll.timeout * (int64_t)(SCALE_MS);
|
2013-08-21 15:02:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
timeout_ns = qemu_soonest_timeout(timeout_ns,
|
|
|
|
timerlistgroup_deadline_ns(
|
|
|
|
&main_loop_tlg));
|
|
|
|
|
|
|
|
ret = os_host_main_loop_wait(timeout_ns);
|
2019-01-17 11:43:55 +00:00
|
|
|
mlpoll.state = ret < 0 ? MAIN_LOOP_POLL_ERR : MAIN_LOOP_POLL_OK;
|
|
|
|
notifier_list_notify(&main_loop_poll_notifiers, &mlpoll);
|
2011-09-13 08:30:52 +00:00
|
|
|
|
2020-08-19 11:17:19 +00:00
|
|
|
if (icount_enabled()) {
|
|
|
|
/*
|
|
|
|
* CPU thread can infinitely wait for event after
|
|
|
|
* missing the warp
|
|
|
|
*/
|
|
|
|
qemu_start_warp_timer();
|
|
|
|
}
|
2013-08-21 15:03:02 +00:00
|
|
|
qemu_clock_run_all_timers();
|
2011-09-13 08:30:52 +00:00
|
|
|
}
|
2012-10-29 22:45:23 +00:00
|
|
|
|
|
|
|
/* Functions to operate on the main QEMU AioContext. */
|
|
|
|
|
|
|
|
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
|
|
|
|
{
|
|
|
|
return aio_bh_new(qemu_aio_context, cb, opaque);
|
|
|
|
}
|
2019-07-12 17:34:35 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Functions to operate on the I/O handler AioContext.
|
|
|
|
* This context runs on top of main loop. We can't reuse qemu_aio_context
|
|
|
|
* because iohandlers mustn't be polled by aio_poll(qemu_aio_context).
|
|
|
|
*/
|
|
|
|
static AioContext *iohandler_ctx;
|
|
|
|
|
|
|
|
static void iohandler_init(void)
|
|
|
|
{
|
|
|
|
if (!iohandler_ctx) {
|
|
|
|
iohandler_ctx = aio_context_new(&error_abort);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
AioContext *iohandler_get_aio_context(void)
|
|
|
|
{
|
|
|
|
iohandler_init();
|
|
|
|
return iohandler_ctx;
|
|
|
|
}
|
|
|
|
|
|
|
|
GSource *iohandler_get_g_source(void)
|
|
|
|
{
|
|
|
|
iohandler_init();
|
|
|
|
return aio_get_g_source(iohandler_ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
void qemu_set_fd_handler(int fd,
|
|
|
|
IOHandler *fd_read,
|
|
|
|
IOHandler *fd_write,
|
|
|
|
void *opaque)
|
|
|
|
{
|
|
|
|
iohandler_init();
|
|
|
|
aio_set_fd_handler(iohandler_ctx, fd, false,
|
|
|
|
fd_read, fd_write, NULL, opaque);
|
|
|
|
}
|
|
|
|
|
|
|
|
void event_notifier_set_handler(EventNotifier *e,
|
|
|
|
EventNotifierHandler *handler)
|
|
|
|
{
|
|
|
|
iohandler_init();
|
|
|
|
aio_set_event_notifier(iohandler_ctx, e, false,
|
|
|
|
handler, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* reaping of zombies. right now we're not passing the status to
|
|
|
|
anyone, but it would be possible to add a callback. */
|
|
|
|
#ifndef _WIN32
|
|
|
|
typedef struct ChildProcessRecord {
|
|
|
|
int pid;
|
|
|
|
QLIST_ENTRY(ChildProcessRecord) next;
|
|
|
|
} ChildProcessRecord;
|
|
|
|
|
|
|
|
static QLIST_HEAD(, ChildProcessRecord) child_watches =
|
|
|
|
QLIST_HEAD_INITIALIZER(child_watches);
|
|
|
|
|
|
|
|
static QEMUBH *sigchld_bh;
|
|
|
|
|
|
|
|
static void sigchld_handler(int signal)
|
|
|
|
{
|
|
|
|
qemu_bh_schedule(sigchld_bh);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void sigchld_bh_handler(void *opaque)
|
|
|
|
{
|
|
|
|
ChildProcessRecord *rec, *next;
|
|
|
|
|
|
|
|
QLIST_FOREACH_SAFE(rec, &child_watches, next, next) {
|
|
|
|
if (waitpid(rec->pid, NULL, WNOHANG) == rec->pid) {
|
|
|
|
QLIST_REMOVE(rec, next);
|
|
|
|
g_free(rec);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void qemu_init_child_watch(void)
|
|
|
|
{
|
|
|
|
struct sigaction act;
|
|
|
|
sigchld_bh = qemu_bh_new(sigchld_bh_handler, NULL);
|
|
|
|
|
|
|
|
memset(&act, 0, sizeof(act));
|
|
|
|
act.sa_handler = sigchld_handler;
|
|
|
|
act.sa_flags = SA_NOCLDSTOP;
|
|
|
|
sigaction(SIGCHLD, &act, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
int qemu_add_child_watch(pid_t pid)
|
|
|
|
{
|
|
|
|
ChildProcessRecord *rec;
|
|
|
|
|
|
|
|
if (!sigchld_bh) {
|
|
|
|
qemu_init_child_watch();
|
|
|
|
}
|
|
|
|
|
|
|
|
QLIST_FOREACH(rec, &child_watches, next) {
|
|
|
|
if (rec->pid == pid) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
rec = g_malloc0(sizeof(ChildProcessRecord));
|
|
|
|
rec->pid = pid;
|
|
|
|
QLIST_INSERT_HEAD(&child_watches, rec, next);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|