xemu/target-mips/op.c

642 lines
9.6 KiB
C
Raw Normal View History

/*
* MIPS emulation micro-operations for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "exec.h"
#define REG 1
#include "op_template.c"
#undef REG
#define REG 2
#include "op_template.c"
#undef REG
#define REG 3
#include "op_template.c"
#undef REG
#define REG 4
#include "op_template.c"
#undef REG
#define REG 5
#include "op_template.c"
#undef REG
#define REG 6
#include "op_template.c"
#undef REG
#define REG 7
#include "op_template.c"
#undef REG
#define REG 8
#include "op_template.c"
#undef REG
#define REG 9
#include "op_template.c"
#undef REG
#define REG 10
#include "op_template.c"
#undef REG
#define REG 11
#include "op_template.c"
#undef REG
#define REG 12
#include "op_template.c"
#undef REG
#define REG 13
#include "op_template.c"
#undef REG
#define REG 14
#include "op_template.c"
#undef REG
#define REG 15
#include "op_template.c"
#undef REG
#define REG 16
#include "op_template.c"
#undef REG
#define REG 17
#include "op_template.c"
#undef REG
#define REG 18
#include "op_template.c"
#undef REG
#define REG 19
#include "op_template.c"
#undef REG
#define REG 20
#include "op_template.c"
#undef REG
#define REG 21
#include "op_template.c"
#undef REG
#define REG 22
#include "op_template.c"
#undef REG
#define REG 23
#include "op_template.c"
#undef REG
#define REG 24
#include "op_template.c"
#undef REG
#define REG 25
#include "op_template.c"
#undef REG
#define REG 26
#include "op_template.c"
#undef REG
#define REG 27
#include "op_template.c"
#undef REG
#define REG 28
#include "op_template.c"
#undef REG
#define REG 29
#include "op_template.c"
#undef REG
#define REG 30
#include "op_template.c"
#undef REG
#define REG 31
#include "op_template.c"
#undef REG
#define TN T0
#include "op_template.c"
#undef TN
#define TN T1
#include "op_template.c"
#undef TN
#define TN T2
#include "op_template.c"
#undef TN
void op_dup_T0 (void)
{
T2 = T0;
RETURN();
}
void op_load_HI (void)
{
T0 = env->HI;
RETURN();
}
void op_store_HI (void)
{
env->HI = T0;
RETURN();
}
void op_load_LO (void)
{
T0 = env->LO;
RETURN();
}
void op_store_LO (void)
{
env->LO = T0;
RETURN();
}
/* Load and store */
#define MEMSUFFIX _raw
#include "op_mem.c"
#undef MEMSUFFIX
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.c"
#undef MEMSUFFIX
#define MEMSUFFIX _kernel
#include "op_mem.c"
#undef MEMSUFFIX
#endif
/* Arithmetic */
void op_add (void)
{
T0 += T1;
RETURN();
}
void op_addo (void)
{
target_ulong tmp;
tmp = T0;
T0 += T1;
if ((T0 >> 31) ^ (T1 >> 31) ^ (tmp >> 31)) {
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
}
RETURN();
}
void op_sub (void)
{
T0 -= T1;
RETURN();
}
void op_subo (void)
{
target_ulong tmp;
tmp = T0;
T0 = (int32_t)T0 - (int32_t)T1;
if (!((T0 >> 31) ^ (T1 >> 31) ^ (tmp >> 31))) {
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
}
RETURN();
}
void op_mul (void)
{
T0 = (int32_t)T0 * (int32_t)T1;
RETURN();
}
void op_div (void)
{
if (T1 != 0) {
env->LO = (int32_t)T0 / (int32_t)T1;
env->HI = (int32_t)T0 % (int32_t)T1;
}
RETURN();
}
void op_divu (void)
{
if (T1 != 0) {
env->LO = T0 / T1;
env->HI = T0 % T1;
}
RETURN();
}
/* Logical */
void op_and (void)
{
T0 &= T1;
RETURN();
}
void op_nor (void)
{
T0 = ~(T0 | T1);
RETURN();
}
void op_or (void)
{
T0 |= T1;
RETURN();
}
void op_xor (void)
{
T0 ^= T1;
RETURN();
}
void op_sll (void)
{
T0 = T0 << T1;
RETURN();
}
void op_sra (void)
{
T0 = (int32_t)T0 >> T1;
RETURN();
}
void op_srl (void)
{
T0 = T0 >> T1;
RETURN();
}
void op_sllv (void)
{
T0 = T1 << (T0 & 0x1F);
RETURN();
}
void op_srav (void)
{
T0 = (int32_t)T1 >> (T0 & 0x1F);
RETURN();
}
void op_srlv (void)
{
T0 = T1 >> (T0 & 0x1F);
RETURN();
}
void op_clo (void)
{
int n;
if (T0 == (target_ulong)-1) {
T0 = 32;
} else {
for (n = 0; n < 32; n++) {
if (!(T0 & (1 << 31)))
break;
T0 = T0 << 1;
}
T0 = n;
}
RETURN();
}
void op_clz (void)
{
int n;
if (T0 == 0) {
T0 = 32;
} else {
for (n = 0; n < 32; n++) {
if (T0 & (1 << 31))
break;
T0 = T0 << 1;
}
T0 = n;
}
RETURN();
}
/* 64 bits arithmetic */
#if (HOST_LONG_BITS == 64)
static inline uint64_t get_HILO (void)
{
return ((uint64_t)env->HI << 32) | (uint64_t)env->LO;
}
static inline void set_HILO (uint64_t HILO)
{
env->LO = HILO & 0xFFFFFFFF;
env->HI = HILO >> 32;
}
void op_mult (void)
{
set_HILO((int64_t)T0 * (int64_t)T1);
RETURN();
}
void op_multu (void)
{
set_HILO((uint64_t)T0 * (uint64_t)T1);
RETURN();
}
void op_madd (void)
{
int64_t tmp;
tmp = ((int64_t)T0 * (int64_t)T1);
set_HILO((int64_t)get_HILO() + tmp);
RETURN();
}
void op_maddu (void)
{
uint64_t tmp;
tmp = ((uint64_t)T0 * (uint64_t)T1);
set_HILO(get_HILO() + tmp);
RETURN();
}
void op_msub (void)
{
int64_t tmp;
tmp = ((int64_t)T0 * (int64_t)T1);
set_HILO((int64_t)get_HILO() - tmp);
RETURN();
}
void op_msubu (void)
{
uint64_t tmp;
tmp = ((uint64_t)T0 * (uint64_t)T1);
set_HILO(get_HILO() - tmp);
RETURN();
}
#else
void op_mult (void)
{
CALL_FROM_TB0(do_mult);
RETURN();
}
void op_multu (void)
{
CALL_FROM_TB0(do_multu);
RETURN();
}
void op_madd (void)
{
CALL_FROM_TB0(do_madd);
RETURN();
}
void op_maddu (void)
{
CALL_FROM_TB0(do_maddu);
RETURN();
}
void op_msub (void)
{
CALL_FROM_TB0(do_msub);
RETURN();
}
void op_msubu (void)
{
CALL_FROM_TB0(do_msubu);
RETURN();
}
#endif
/* Conditional moves */
void op_movn (void)
{
if (T1 != 0)
env->gpr[PARAM1] = T0;
RETURN();
}
void op_movz (void)
{
if (T1 == 0)
env->gpr[PARAM1] = T0;
RETURN();
}
/* Tests */
#define OP_COND(name, cond) \
void glue(op_, name) (void) \
{ \
if (cond) { \
T0 = 1; \
} else { \
T0 = 0; \
} \
RETURN(); \
}
OP_COND(eq, T0 == T1);
OP_COND(ne, T0 != T1);
OP_COND(ge, (int32_t)T0 >= (int32_t)T1);
OP_COND(geu, T0 >= T1);
OP_COND(lt, (int32_t)T0 < (int32_t)T1);
OP_COND(ltu, T0 < T1);
OP_COND(gez, (int32_t)T0 >= 0);
OP_COND(gtz, (int32_t)T0 > 0);
OP_COND(lez, (int32_t)T0 <= 0);
OP_COND(ltz, (int32_t)T0 < 0);
/* Branchs */
//#undef USE_DIRECT_JUMP
#define EIP env->PC
/* Branch to register */
void op_save_breg_target (void)
{
env->btarget = T2;
}
void op_restore_breg_target (void)
{
T2 = env->btarget;
}
void op_breg (void)
{
env->PC = T2;
RETURN();
}
/* Unconditional branch */
void op_branch (void)
{
JUMP_TB(branch, PARAM1, 0, PARAM2);
RETURN();
}
void op_save_btarget (void)
{
env->btarget = PARAM1;
RETURN();
}
/* Conditional branch */
void op_set_bcond (void)
{
T2 = T0;
RETURN();
}
void op_save_bcond (void)
{
env->bcond = T2;
RETURN();
}
void op_restore_bcond (void)
{
T2 = env->bcond;
RETURN();
}
void op_bcond (void)
{
if (T2) {
JUMP_TB(bcond, PARAM1, 0, PARAM2);
} else {
JUMP_TB(bcond, PARAM1, 1, PARAM3);
}
RETURN();
}
/* Likely branch (used to skip the delay slot) */
void op_blikely (void)
{
/* If the test is false, skip the delay slot */
if (T2 == 0) {
env->hflags = PARAM3;
JUMP_TB(blikely, PARAM1, 1, PARAM2);
}
RETURN();
}
/* CP0 functions */
void op_mfc0 (void)
{
CALL_FROM_TB2(do_mfc0, PARAM1, PARAM2);
RETURN();
}
void op_mtc0 (void)
{
CALL_FROM_TB2(do_mtc0, PARAM1, PARAM2);
RETURN();
}
#if defined(MIPS_USES_R4K_TLB)
void op_tlbwi (void)
{
CALL_FROM_TB0(do_tlbwi);
RETURN();
}
void op_tlbwr (void)
{
CALL_FROM_TB0(do_tlbwr);
RETURN();
}
void op_tlbp (void)
{
CALL_FROM_TB0(do_tlbp);
RETURN();
}
void op_tlbr (void)
{
CALL_FROM_TB0(do_tlbr);
RETURN();
}
#endif
/* Specials */
void op_pmon (void)
{
CALL_FROM_TB1(do_pmon, PARAM1);
}
void op_trap (void)
{
if (T0) {
CALL_FROM_TB1(do_raise_exception, EXCP_TRAP);
}
RETURN();
}
void op_set_lladdr (void)
{
env->CP0_LLAddr = T2;
}
void debug_eret (void);
void op_eret (void)
{
CALL_FROM_TB0(debug_eret);
if (env->hflags & MIPS_HFLAG_ERL)
env->PC = env->CP0_ErrorEPC;
else
env->PC = env->CP0_EPC;
env->CP0_LLAddr = 1;
}
void op_deret (void)
{
CALL_FROM_TB0(debug_eret);
env->PC = env->CP0_DEPC;
}
void op_save_state (void)
{
env->hflags = PARAM1;
RETURN();
}
void op_save_pc (void)
{
env->PC = PARAM1;
RETURN();
}
void op_raise_exception (void)
{
CALL_FROM_TB1(do_raise_exception, PARAM1);
RETURN();
}
void op_raise_exception_err (void)
{
CALL_FROM_TB2(do_raise_exception_err, PARAM1, PARAM2);
RETURN();
}
void op_exit_tb (void)
{
EXIT_TB();
}