xemu/target-arm/helper.c

2630 lines
71 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cpu.h"
#include "exec-all.h"
#include "gdbstub.h"
#include "helpers.h"
#include "qemu-common.h"
static uint32_t cortexa8_cp15_c0_c1[8] =
{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
static uint32_t cortexa8_cp15_c0_c2[8] =
{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
static uint32_t mpcore_cp15_c0_c1[8] =
{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
static uint32_t mpcore_cp15_c0_c2[8] =
{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
static uint32_t arm1136_cp15_c0_c1[8] =
{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
static uint32_t arm1136_cp15_c0_c2[8] =
{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
static uint32_t cpu_arm_find_by_name(const char *name);
static inline void set_feature(CPUARMState *env, int feature)
{
env->features |= 1u << feature;
}
static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
{
env->cp15.c0_cpuid = id;
switch (id) {
case ARM_CPUID_ARM926:
set_feature(env, ARM_FEATURE_VFP);
env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
env->cp15.c0_cachetype = 0x1dd20d2;
env->cp15.c1_sys = 0x00090078;
break;
case ARM_CPUID_ARM946:
set_feature(env, ARM_FEATURE_MPU);
env->cp15.c0_cachetype = 0x0f004006;
env->cp15.c1_sys = 0x00000078;
break;
case ARM_CPUID_ARM1026:
set_feature(env, ARM_FEATURE_VFP);
set_feature(env, ARM_FEATURE_AUXCR);
env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
env->cp15.c0_cachetype = 0x1dd20d2;
env->cp15.c1_sys = 0x00090078;
break;
case ARM_CPUID_ARM1136_R2:
case ARM_CPUID_ARM1136:
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_VFP);
set_feature(env, ARM_FEATURE_AUXCR);
env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
env->cp15.c0_cachetype = 0x1dd20d2;
break;
case ARM_CPUID_ARM11MPCORE:
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_V6K);
set_feature(env, ARM_FEATURE_VFP);
set_feature(env, ARM_FEATURE_AUXCR);
env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
env->cp15.c0_cachetype = 0x1dd20d2;
break;
case ARM_CPUID_CORTEXA8:
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_V6K);
set_feature(env, ARM_FEATURE_V7);
set_feature(env, ARM_FEATURE_AUXCR);
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_VFP);
set_feature(env, ARM_FEATURE_VFP3);
set_feature(env, ARM_FEATURE_NEON);
set_feature(env, ARM_FEATURE_THUMB2EE);
env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
env->cp15.c0_cachetype = 0x82048004;
env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
break;
case ARM_CPUID_CORTEXM3:
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_V7);
set_feature(env, ARM_FEATURE_M);
set_feature(env, ARM_FEATURE_DIV);
break;
case ARM_CPUID_ANY: /* For userspace emulation. */
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_V6K);
set_feature(env, ARM_FEATURE_V7);
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_VFP);
set_feature(env, ARM_FEATURE_VFP3);
set_feature(env, ARM_FEATURE_NEON);
set_feature(env, ARM_FEATURE_THUMB2EE);
set_feature(env, ARM_FEATURE_DIV);
break;
case ARM_CPUID_TI915T:
case ARM_CPUID_TI925T:
set_feature(env, ARM_FEATURE_OMAPCP);
env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
env->cp15.c0_cachetype = 0x5109149;
env->cp15.c1_sys = 0x00000070;
env->cp15.c15_i_max = 0x000;
env->cp15.c15_i_min = 0xff0;
break;
case ARM_CPUID_PXA250:
case ARM_CPUID_PXA255:
case ARM_CPUID_PXA260:
case ARM_CPUID_PXA261:
case ARM_CPUID_PXA262:
set_feature(env, ARM_FEATURE_XSCALE);
/* JTAG_ID is ((id << 28) | 0x09265013) */
env->cp15.c0_cachetype = 0xd172172;
env->cp15.c1_sys = 0x00000078;
break;
case ARM_CPUID_PXA270_A0:
case ARM_CPUID_PXA270_A1:
case ARM_CPUID_PXA270_B0:
case ARM_CPUID_PXA270_B1:
case ARM_CPUID_PXA270_C0:
case ARM_CPUID_PXA270_C5:
set_feature(env, ARM_FEATURE_XSCALE);
/* JTAG_ID is ((id << 28) | 0x09265013) */
set_feature(env, ARM_FEATURE_IWMMXT);
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
env->cp15.c0_cachetype = 0xd172172;
env->cp15.c1_sys = 0x00000078;
break;
default:
cpu_abort(env, "Bad CPU ID: %x\n", id);
break;
}
}
void cpu_reset(CPUARMState *env)
{
uint32_t id;
id = env->cp15.c0_cpuid;
memset(env, 0, offsetof(CPUARMState, breakpoints));
if (id)
cpu_reset_model_id(env, id);
#if defined (CONFIG_USER_ONLY)
env->uncached_cpsr = ARM_CPU_MODE_USR;
env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
#else
/* SVC mode with interrupts disabled. */
env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
/* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
clear at reset. */
if (IS_M(env))
env->uncached_cpsr &= ~CPSR_I;
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
env->cp15.c2_base_mask = 0xffffc000u;
#endif
env->regs[15] = 0;
tlb_flush(env, 1);
}
static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
{
int nregs;
/* VFP data registers are always little-endian. */
nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
if (reg < nregs) {
stfq_le_p(buf, env->vfp.regs[reg]);
return 8;
}
if (arm_feature(env, ARM_FEATURE_NEON)) {
/* Aliases for Q regs. */
nregs += 16;
if (reg < nregs) {
stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
return 16;
}
}
switch (reg - nregs) {
case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
}
return 0;
}
static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
{
int nregs;
nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
if (reg < nregs) {
env->vfp.regs[reg] = ldfq_le_p(buf);
return 8;
}
if (arm_feature(env, ARM_FEATURE_NEON)) {
nregs += 16;
if (reg < nregs) {
env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
return 16;
}
}
switch (reg - nregs) {
case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
}
return 0;
}
CPUARMState *cpu_arm_init(const char *cpu_model)
{
CPUARMState *env;
uint32_t id;
static int inited = 0;
id = cpu_arm_find_by_name(cpu_model);
if (id == 0)
return NULL;
env = qemu_mallocz(sizeof(CPUARMState));
if (!env)
return NULL;
cpu_exec_init(env);
if (!inited) {
inited = 1;
arm_translate_init();
}
env->cpu_model_str = cpu_model;
env->cp15.c0_cpuid = id;
cpu_reset(env);
if (arm_feature(env, ARM_FEATURE_NEON)) {
gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
51, "arm-neon.xml", 0);
} else if (arm_feature(env, ARM_FEATURE_VFP3)) {
gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
35, "arm-vfp3.xml", 0);
} else if (arm_feature(env, ARM_FEATURE_VFP)) {
gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
19, "arm-vfp.xml", 0);
}
return env;
}
struct arm_cpu_t {
uint32_t id;
const char *name;
};
static const struct arm_cpu_t arm_cpu_names[] = {
{ ARM_CPUID_ARM926, "arm926"},
{ ARM_CPUID_ARM946, "arm946"},
{ ARM_CPUID_ARM1026, "arm1026"},
{ ARM_CPUID_ARM1136, "arm1136"},
{ ARM_CPUID_ARM1136_R2, "arm1136-r2"},
{ ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
{ ARM_CPUID_CORTEXM3, "cortex-m3"},
{ ARM_CPUID_CORTEXA8, "cortex-a8"},
{ ARM_CPUID_TI925T, "ti925t" },
{ ARM_CPUID_PXA250, "pxa250" },
{ ARM_CPUID_PXA255, "pxa255" },
{ ARM_CPUID_PXA260, "pxa260" },
{ ARM_CPUID_PXA261, "pxa261" },
{ ARM_CPUID_PXA262, "pxa262" },
{ ARM_CPUID_PXA270, "pxa270" },
{ ARM_CPUID_PXA270_A0, "pxa270-a0" },
{ ARM_CPUID_PXA270_A1, "pxa270-a1" },
{ ARM_CPUID_PXA270_B0, "pxa270-b0" },
{ ARM_CPUID_PXA270_B1, "pxa270-b1" },
{ ARM_CPUID_PXA270_C0, "pxa270-c0" },
{ ARM_CPUID_PXA270_C5, "pxa270-c5" },
{ ARM_CPUID_ANY, "any"},
{ 0, NULL}
};
void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
{
int i;
(*cpu_fprintf)(f, "Available CPUs:\n");
for (i = 0; arm_cpu_names[i].name; i++) {
(*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
}
}
/* return 0 if not found */
static uint32_t cpu_arm_find_by_name(const char *name)
{
int i;
uint32_t id;
id = 0;
for (i = 0; arm_cpu_names[i].name; i++) {
if (strcmp(name, arm_cpu_names[i].name) == 0) {
id = arm_cpu_names[i].id;
break;
}
}
return id;
}
void cpu_arm_close(CPUARMState *env)
{
free(env);
}
uint32_t cpsr_read(CPUARMState *env)
{
int ZF;
ZF = (env->ZF == 0);
return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
(env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
| (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
| ((env->condexec_bits & 0xfc) << 8)
| (env->GE << 16);
}
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
if (mask & CPSR_NZCV) {
env->ZF = (~val) & CPSR_Z;
env->NF = val;
env->CF = (val >> 29) & 1;
env->VF = (val << 3) & 0x80000000;
}
if (mask & CPSR_Q)
env->QF = ((val & CPSR_Q) != 0);
if (mask & CPSR_T)
env->thumb = ((val & CPSR_T) != 0);
if (mask & CPSR_IT_0_1) {
env->condexec_bits &= ~3;
env->condexec_bits |= (val >> 25) & 3;
}
if (mask & CPSR_IT_2_7) {
env->condexec_bits &= 3;
env->condexec_bits |= (val >> 8) & 0xfc;
}
if (mask & CPSR_GE) {
env->GE = (val >> 16) & 0xf;
}
if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
switch_mode(env, val & CPSR_M);
}
mask &= ~CACHED_CPSR_BITS;
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(int8_t)x;
res |= (uint32_t)(int8_t)(x >> 16) << 16;
return res;
}
uint32_t HELPER(uxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(uint8_t)x;
res |= (uint32_t)(uint8_t)(x >> 16) << 16;
return res;
}
uint32_t HELPER(clz)(uint32_t x)
{
int count;
for (count = 32; x; count--)
x >>= 1;
return count;
}
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
if (den == 0)
return 0;
return num / den;
}
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
if (den == 0)
return 0;
return num / den;
}
uint32_t HELPER(rbit)(uint32_t x)
{
x = ((x & 0xff000000) >> 24)
| ((x & 0x00ff0000) >> 8)
| ((x & 0x0000ff00) << 8)
| ((x & 0x000000ff) << 24);
x = ((x & 0xf0f0f0f0) >> 4)
| ((x & 0x0f0f0f0f) << 4);
x = ((x & 0x88888888) >> 3)
| ((x & 0x44444444) >> 1)
| ((x & 0x22222222) << 1)
| ((x & 0x11111111) << 3);
return x;
}
uint32_t HELPER(abs)(uint32_t x)
{
return ((int32_t)x < 0) ? -x : x;
}
#if defined(CONFIG_USER_ONLY)
void do_interrupt (CPUState *env)
{
env->exception_index = -1;
}
/* Structure used to record exclusive memory locations. */
typedef struct mmon_state {
struct mmon_state *next;
CPUARMState *cpu_env;
uint32_t addr;
} mmon_state;
/* Chain of current locks. */
static mmon_state* mmon_head = NULL;
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
int mmu_idx, int is_softmmu)
{
if (rw == 2) {
env->exception_index = EXCP_PREFETCH_ABORT;
env->cp15.c6_insn = address;
} else {
env->exception_index = EXCP_DATA_ABORT;
env->cp15.c6_data = address;
}
return 1;
}
static void allocate_mmon_state(CPUState *env)
{
env->mmon_entry = malloc(sizeof (mmon_state));
if (!env->mmon_entry)
abort();
memset (env->mmon_entry, 0, sizeof (mmon_state));
env->mmon_entry->cpu_env = env;
mmon_head = env->mmon_entry;
}
/* Flush any monitor locks for the specified address. */
static void flush_mmon(uint32_t addr)
{
mmon_state *mon;
for (mon = mmon_head; mon; mon = mon->next)
{
if (mon->addr != addr)
continue;
mon->addr = 0;
break;
}
}
/* Mark an address for exclusive access. */
void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
{
if (!env->mmon_entry)
allocate_mmon_state(env);
/* Clear any previous locks. */
flush_mmon(addr);
env->mmon_entry->addr = addr;
}
/* Test if an exclusive address is still exclusive. Returns zero
if the address is still exclusive. */
uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
{
int res;
if (!env->mmon_entry)
return 1;
if (env->mmon_entry->addr == addr)
res = 0;
else
res = 1;
flush_mmon(addr);
return res;
}
void HELPER(clrex)(CPUState *env)
{
if (!(env->mmon_entry && env->mmon_entry->addr))
return;
flush_mmon(env->mmon_entry->addr);
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
return addr;
}
/* These should probably raise undefined insn exceptions. */
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
{
int op1 = (insn >> 8) & 0xf;
cpu_abort(env, "cp%i insn %08x\n", op1, insn);
return;
}
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
{
int op1 = (insn >> 8) & 0xf;
cpu_abort(env, "cp%i insn %08x\n", op1, insn);
return 0;
}
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
{
cpu_abort(env, "cp15 insn %08x\n", insn);
}
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
{
cpu_abort(env, "cp15 insn %08x\n", insn);
return 0;
}
/* These should probably raise undefined insn exceptions. */
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
{
cpu_abort(env, "v7m_mrs %d\n", reg);
}
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
{
cpu_abort(env, "v7m_mrs %d\n", reg);
return 0;
}
void switch_mode(CPUState *env, int mode)
{
if (mode != ARM_CPU_MODE_USR)
cpu_abort(env, "Tried to switch out of user mode\n");
}
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
{
cpu_abort(env, "banked r13 write\n");
}
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
{
cpu_abort(env, "banked r13 read\n");
return 0;
}
#else
extern int semihosting_enabled;
/* Map CPU modes onto saved register banks. */
static inline int bank_number (int mode)
{
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
return 0;
case ARM_CPU_MODE_SVC:
return 1;
case ARM_CPU_MODE_ABT:
return 2;
case ARM_CPU_MODE_UND:
return 3;
case ARM_CPU_MODE_IRQ:
return 4;
case ARM_CPU_MODE_FIQ:
return 5;
}
cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
return -1;
}
void switch_mode(CPUState *env, int mode)
{
int old_mode;
int i;
old_mode = env->uncached_cpsr & CPSR_M;
if (mode == old_mode)
return;
if (old_mode == ARM_CPU_MODE_FIQ) {
memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
} else if (mode == ARM_CPU_MODE_FIQ) {
memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
}
i = bank_number(old_mode);
env->banked_r13[i] = env->regs[13];
env->banked_r14[i] = env->regs[14];
env->banked_spsr[i] = env->spsr;
i = bank_number(mode);
env->regs[13] = env->banked_r13[i];
env->regs[14] = env->banked_r14[i];
env->spsr = env->banked_spsr[i];
}
static void v7m_push(CPUARMState *env, uint32_t val)
{
env->regs[13] -= 4;
stl_phys(env->regs[13], val);
}
static uint32_t v7m_pop(CPUARMState *env)
{
uint32_t val;
val = ldl_phys(env->regs[13]);
env->regs[13] += 4;
return val;
}
/* Switch to V7M main or process stack pointer. */
static void switch_v7m_sp(CPUARMState *env, int process)
{
uint32_t tmp;
if (env->v7m.current_sp != process) {
tmp = env->v7m.other_sp;
env->v7m.other_sp = env->regs[13];
env->regs[13] = tmp;
env->v7m.current_sp = process;
}
}
static void do_v7m_exception_exit(CPUARMState *env)
{
uint32_t type;
uint32_t xpsr;
type = env->regs[15];
if (env->v7m.exception != 0)
armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
/* Switch to the target stack. */
switch_v7m_sp(env, (type & 4) != 0);
/* Pop registers. */
env->regs[0] = v7m_pop(env);
env->regs[1] = v7m_pop(env);
env->regs[2] = v7m_pop(env);
env->regs[3] = v7m_pop(env);
env->regs[12] = v7m_pop(env);
env->regs[14] = v7m_pop(env);
env->regs[15] = v7m_pop(env);
xpsr = v7m_pop(env);
xpsr_write(env, xpsr, 0xfffffdff);
/* Undo stack alignment. */
if (xpsr & 0x200)
env->regs[13] |= 4;
/* ??? The exception return type specifies Thread/Handler mode. However
this is also implied by the xPSR value. Not sure what to do
if there is a mismatch. */
/* ??? Likewise for mismatches between the CONTROL register and the stack
pointer. */
}
void do_interrupt_v7m(CPUARMState *env)
{
uint32_t xpsr = xpsr_read(env);
uint32_t lr;
uint32_t addr;
lr = 0xfffffff1;
if (env->v7m.current_sp)
lr |= 4;
if (env->v7m.exception == 0)
lr |= 8;
/* For exceptions we just mark as pending on the NVIC, and let that
handle it. */
/* TODO: Need to escalate if the current priority is higher than the
one we're raising. */
switch (env->exception_index) {
case EXCP_UDEF:
armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
return;
case EXCP_SWI:
env->regs[15] += 2;
armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
return;
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
return;
case EXCP_BKPT:
if (semihosting_enabled) {
int nr;
nr = lduw_code(env->regs[15]) & 0xff;
if (nr == 0xab) {
env->regs[15] += 2;
env->regs[0] = do_arm_semihosting(env);
return;
}
}
armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
return;
case EXCP_IRQ:
env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
break;
case EXCP_EXCEPTION_EXIT:
do_v7m_exception_exit(env);
return;
default:
cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
return; /* Never happens. Keep compiler happy. */
}
/* Align stack pointer. */
/* ??? Should only do this if Configuration Control Register
STACKALIGN bit is set. */
if (env->regs[13] & 4) {
env->regs[13] -= 4;
xpsr |= 0x200;
}
/* Switch to the handler mode. */
v7m_push(env, xpsr);
v7m_push(env, env->regs[15]);
v7m_push(env, env->regs[14]);
v7m_push(env, env->regs[12]);
v7m_push(env, env->regs[3]);
v7m_push(env, env->regs[2]);
v7m_push(env, env->regs[1]);
v7m_push(env, env->regs[0]);
switch_v7m_sp(env, 0);
env->uncached_cpsr &= ~CPSR_IT;
env->regs[14] = lr;
addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
env->regs[15] = addr & 0xfffffffe;
env->thumb = addr & 1;
}
/* Handle a CPU exception. */
void do_interrupt(CPUARMState *env)
{
uint32_t addr;
uint32_t mask;
int new_mode;
uint32_t offset;
if (IS_M(env)) {
do_interrupt_v7m(env);
return;
}
/* TODO: Vectored interrupt controller. */
switch (env->exception_index) {
case EXCP_UDEF:
new_mode = ARM_CPU_MODE_UND;
addr = 0x04;
mask = CPSR_I;
if (env->thumb)
offset = 2;
else
offset = 4;
break;
case EXCP_SWI:
if (semihosting_enabled) {
/* Check for semihosting interrupt. */
if (env->thumb) {
mask = lduw_code(env->regs[15] - 2) & 0xff;
} else {
mask = ldl_code(env->regs[15] - 4) & 0xffffff;
}
/* Only intercept calls from privileged modes, to provide some
semblance of security. */
if (((mask == 0x123456 && !env->thumb)
|| (mask == 0xab && env->thumb))
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
env->regs[0] = do_arm_semihosting(env);
return;
}
}
new_mode = ARM_CPU_MODE_SVC;
addr = 0x08;
mask = CPSR_I;
/* The PC already points to the next instruction. */
offset = 0;
break;
case EXCP_BKPT:
/* See if this is a semihosting syscall. */
if (env->thumb && semihosting_enabled) {
mask = lduw_code(env->regs[15]) & 0xff;
if (mask == 0xab
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
env->regs[15] += 2;
env->regs[0] = do_arm_semihosting(env);
return;
}
}
/* Fall through to prefetch abort. */
case EXCP_PREFETCH_ABORT:
new_mode = ARM_CPU_MODE_ABT;
addr = 0x0c;
mask = CPSR_A | CPSR_I;
offset = 4;
break;
case EXCP_DATA_ABORT:
new_mode = ARM_CPU_MODE_ABT;
addr = 0x10;
mask = CPSR_A | CPSR_I;
offset = 8;
break;
case EXCP_IRQ:
new_mode = ARM_CPU_MODE_IRQ;
addr = 0x18;
/* Disable IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I;
offset = 4;
break;
case EXCP_FIQ:
new_mode = ARM_CPU_MODE_FIQ;
addr = 0x1c;
/* Disable FIQ, IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I | CPSR_F;
offset = 4;
break;
default:
cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
return; /* Never happens. Keep compiler happy. */
}
/* High vectors. */
if (env->cp15.c1_sys & (1 << 13)) {
addr += 0xffff0000;
}
switch_mode (env, new_mode);
env->spsr = cpsr_read(env);
/* Clear IT bits. */
env->condexec_bits = 0;
/* Switch to the new mode, and switch to Arm mode. */
/* ??? Thumb interrupt handlers not implemented. */
env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
env->uncached_cpsr |= mask;
env->thumb = 0;
env->regs[14] = env->regs[15] + offset;
env->regs[15] = addr;
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
/* Check section/page access permissions.
Returns the page protection flags, or zero if the access is not
permitted. */
static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
int is_user)
{
int prot_ro;
if (domain == 3)
return PAGE_READ | PAGE_WRITE;
if (access_type == 1)
prot_ro = 0;
else
prot_ro = PAGE_READ;
switch (ap) {
case 0:
if (access_type == 1)
return 0;
switch ((env->cp15.c1_sys >> 8) & 3) {
case 1:
return is_user ? 0 : PAGE_READ;
case 2:
return PAGE_READ;
default:
return 0;
}
case 1:
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
case 2:
if (is_user)
return prot_ro;
else
return PAGE_READ | PAGE_WRITE;
case 3:
return PAGE_READ | PAGE_WRITE;
case 4: /* Reserved. */
return 0;
case 5:
return is_user ? 0 : prot_ro;
case 6:
return prot_ro;
case 7:
if (!arm_feature (env, ARM_FEATURE_V7))
return 0;
return prot_ro;
default:
abort();
}
}
static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
{
uint32_t table;
if (address & env->cp15.c2_mask)
table = env->cp15.c2_base1 & 0xffffc000;
else
table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
table |= (address >> 18) & 0x3ffc;
return table;
}
static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
int is_user, uint32_t *phys_ptr, int *prot)
{
int code;
uint32_t table;
uint32_t desc;
int type;
int ap;
int domain;
uint32_t phys_addr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
table = get_level1_table_address(env, address);
desc = ldl_phys(table);
type = (desc & 3);
domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
if (type == 0) {
/* Section translation fault. */
code = 5;
goto do_fault;
}
if (domain == 0 || domain == 2) {
if (type == 2)
code = 9; /* Section domain fault. */
else
code = 11; /* Page domain fault. */
goto do_fault;
}
if (type == 2) {
/* 1Mb section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
ap = (desc >> 10) & 3;
code = 13;
} else {
/* Lookup l2 entry. */
if (type == 1) {
/* Coarse pagetable. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
} else {
/* Fine pagetable. */
table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
}
desc = ldl_phys(table);
switch (desc & 3) {
case 0: /* Page translation fault. */
code = 7;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
break;
case 2: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
break;
case 3: /* 1k page. */
if (type == 1) {
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
} else {
/* Page translation fault. */
code = 7;
goto do_fault;
}
} else {
phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
}
ap = (desc >> 4) & 3;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
code = 15;
}
*prot = check_ap(env, ap, domain, access_type, is_user);
if (!*prot) {
/* Access permission fault. */
goto do_fault;
}
*phys_ptr = phys_addr;
return 0;
do_fault:
return code | (domain << 4);
}
static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
int is_user, uint32_t *phys_ptr, int *prot)
{
int code;
uint32_t table;
uint32_t desc;
uint32_t xn;
int type;
int ap;
int domain;
uint32_t phys_addr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
table = get_level1_table_address(env, address);
desc = ldl_phys(table);
type = (desc & 3);
if (type == 0) {
/* Section translation fault. */
code = 5;
domain = 0;
goto do_fault;
} else if (type == 2 && (desc & (1 << 18))) {
/* Supersection. */
domain = 0;
} else {
/* Section or page. */
domain = (desc >> 4) & 0x1e;
}
domain = (env->cp15.c3 >> domain) & 3;
if (domain == 0 || domain == 2) {
if (type == 2)
code = 9; /* Section domain fault. */
else
code = 11; /* Page domain fault. */
goto do_fault;
}
if (type == 2) {
if (desc & (1 << 18)) {
/* Supersection. */
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
} else {
/* Section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
}
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
xn = desc & (1 << 4);
code = 13;
} else {
/* Lookup l2 entry. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
desc = ldl_phys(table);
ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
switch (desc & 3) {
case 0: /* Page translation fault. */
code = 7;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
xn = desc & (1 << 15);
break;
case 2: case 3: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
xn = desc & 1;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
code = 15;
}
if (xn && access_type == 2)
goto do_fault;
/* The simplified model uses AP[0] as an access control bit. */
if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
/* Access flag fault. */
code = (code == 15) ? 6 : 3;
goto do_fault;
}
*prot = check_ap(env, ap, domain, access_type, is_user);
if (!*prot) {
/* Access permission fault. */
goto do_fault;
}
*phys_ptr = phys_addr;
return 0;
do_fault:
return code | (domain << 4);
}
static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
int is_user, uint32_t *phys_ptr, int *prot)
{
int n;
uint32_t mask;
uint32_t base;
*phys_ptr = address;
for (n = 7; n >= 0; n--) {
base = env->cp15.c6_region[n];
if ((base & 1) == 0)
continue;
mask = 1 << ((base >> 1) & 0x1f);
/* Keep this shift separate from the above to avoid an
(undefined) << 32. */
mask = (mask << 1) - 1;
if (((base ^ address) & ~mask) == 0)
break;
}
if (n < 0)
return 2;
if (access_type == 2) {
mask = env->cp15.c5_insn;
} else {
mask = env->cp15.c5_data;
}
mask = (mask >> (n * 4)) & 0xf;
switch (mask) {
case 0:
return 1;
case 1:
if (is_user)
return 1;
*prot = PAGE_READ | PAGE_WRITE;
break;
case 2:
*prot = PAGE_READ;
if (!is_user)
*prot |= PAGE_WRITE;
break;
case 3:
*prot = PAGE_READ | PAGE_WRITE;
break;
case 5:
if (is_user)
return 1;
*prot = PAGE_READ;
break;
case 6:
*prot = PAGE_READ;
break;
default:
/* Bad permission. */
return 1;
}
return 0;
}
static inline int get_phys_addr(CPUState *env, uint32_t address,
int access_type, int is_user,
uint32_t *phys_ptr, int *prot)
{
/* Fast Context Switch Extension. */
if (address < 0x02000000)
address += env->cp15.c13_fcse;
if ((env->cp15.c1_sys & 1) == 0) {
/* MMU/MPU disabled. */
*phys_ptr = address;
*prot = PAGE_READ | PAGE_WRITE;
return 0;
} else if (arm_feature(env, ARM_FEATURE_MPU)) {
return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
prot);
} else if (env->cp15.c1_sys & (1 << 23)) {
return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
prot);
} else {
return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
prot);
}
}
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
int access_type, int mmu_idx, int is_softmmu)
{
uint32_t phys_addr;
int prot;
int ret, is_user;
is_user = mmu_idx == MMU_USER_IDX;
ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
if (ret == 0) {
/* Map a single [sub]page. */
phys_addr &= ~(uint32_t)0x3ff;
address &= ~(uint32_t)0x3ff;
return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
is_softmmu);
}
if (access_type == 2) {
env->cp15.c5_insn = ret;
env->cp15.c6_insn = address;
env->exception_index = EXCP_PREFETCH_ABORT;
} else {
env->cp15.c5_data = ret;
if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
env->cp15.c5_data |= (1 << 11);
env->cp15.c6_data = address;
env->exception_index = EXCP_DATA_ABORT;
}
return 1;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
uint32_t phys_addr;
int prot;
int ret;
ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
if (ret != 0)
return -1;
return phys_addr;
}
/* Not really implemented. Need to figure out a sane way of doing this.
Maybe add generic watchpoint support and use that. */
void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
{
env->mmon_addr = addr;
}
uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
{
return (env->mmon_addr != addr);
}
void HELPER(clrex)(CPUState *env)
{
env->mmon_addr = -1;
}
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
{
int cp_num = (insn >> 8) & 0xf;
int cp_info = (insn >> 5) & 7;
int src = (insn >> 16) & 0xf;
int operand = insn & 0xf;
if (env->cp[cp_num].cp_write)
env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
cp_info, src, operand, val);
}
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
{
int cp_num = (insn >> 8) & 0xf;
int cp_info = (insn >> 5) & 7;
int dest = (insn >> 16) & 0xf;
int operand = insn & 0xf;
if (env->cp[cp_num].cp_read)
return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
cp_info, dest, operand);
return 0;
}
/* Return basic MPU access permission bits. */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
uint32_t ret;
uint32_t mask;
int i;
ret = 0;
mask = 3;
for (i = 0; i < 16; i += 2) {
ret |= (val >> i) & mask;
mask <<= 2;
}
return ret;
}
/* Pad basic MPU access permission bits to extended format. */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
uint32_t ret;
uint32_t mask;
int i;
ret = 0;
mask = 3;
for (i = 0; i < 16; i += 2) {
ret |= (val & mask) << i;
mask <<= 2;
}
return ret;
}
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
{
int op1;
int op2;
int crm;
op1 = (insn >> 21) & 7;
op2 = (insn >> 5) & 7;
crm = insn & 0xf;
switch ((insn >> 16) & 0xf) {
case 0:
/* ID codes. */
if (arm_feature(env, ARM_FEATURE_XSCALE))
break;
if (arm_feature(env, ARM_FEATURE_OMAPCP))
break;
if (arm_feature(env, ARM_FEATURE_V7)
&& op1 == 2 && crm == 0 && op2 == 0) {
env->cp15.c0_cssel = val & 0xf;
break;
}
goto bad_reg;
case 1: /* System configuration. */
if (arm_feature(env, ARM_FEATURE_OMAPCP))
op2 = 0;
switch (op2) {
case 0:
if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
env->cp15.c1_sys = val;
/* ??? Lots of these bits are not implemented. */
/* This may enable/disable the MMU, so do a TLB flush. */
tlb_flush(env, 1);
break;
case 1: /* Auxiliary cotrol register. */
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
env->cp15.c1_xscaleauxcr = val;
break;
}
/* Not implemented. */
break;
case 2:
if (arm_feature(env, ARM_FEATURE_XSCALE))
goto bad_reg;
if (env->cp15.c1_coproc != val) {
env->cp15.c1_coproc = val;
/* ??? Is this safe when called from within a TB? */
tb_flush(env);
}
break;
default:
goto bad_reg;
}
break;
case 2: /* MMU Page table control / MPU cache control. */
if (arm_feature(env, ARM_FEATURE_MPU)) {
switch (op2) {
case 0:
env->cp15.c2_data = val;
break;
case 1:
env->cp15.c2_insn = val;
break;
default:
goto bad_reg;
}
} else {
switch (op2) {
case 0:
env->cp15.c2_base0 = val;
break;
case 1:
env->cp15.c2_base1 = val;
break;
case 2:
val &= 7;
env->cp15.c2_control = val;
env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
break;
default:
goto bad_reg;
}
}
break;
case 3: /* MMU Domain access control / MPU write buffer control. */
env->cp15.c3 = val;
tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
break;
case 4: /* Reserved. */
goto bad_reg;
case 5: /* MMU Fault status / MPU access permission. */
if (arm_feature(env, ARM_FEATURE_OMAPCP))
op2 = 0;
switch (op2) {
case 0:
if (arm_feature(env, ARM_FEATURE_MPU))
val = extended_mpu_ap_bits(val);
env->cp15.c5_data = val;
break;
case 1:
if (arm_feature(env, ARM_FEATURE_MPU))
val = extended_mpu_ap_bits(val);
env->cp15.c5_insn = val;
break;
case 2:
if (!arm_feature(env, ARM_FEATURE_MPU))
goto bad_reg;
env->cp15.c5_data = val;
break;
case 3:
if (!arm_feature(env, ARM_FEATURE_MPU))
goto bad_reg;
env->cp15.c5_insn = val;
break;
default:
goto bad_reg;
}
break;
case 6: /* MMU Fault address / MPU base/size. */
if (arm_feature(env, ARM_FEATURE_MPU)) {
if (crm >= 8)
goto bad_reg;
env->cp15.c6_region[crm] = val;
} else {
if (arm_feature(env, ARM_FEATURE_OMAPCP))
op2 = 0;
switch (op2) {
case 0:
env->cp15.c6_data = val;
break;
case 1: /* ??? This is WFAR on armv6 */
case 2:
env->cp15.c6_insn = val;
break;
default:
goto bad_reg;
}
}
break;
case 7: /* Cache control. */
env->cp15.c15_i_max = 0x000;
env->cp15.c15_i_min = 0xff0;
/* No cache, so nothing to do. */
/* ??? MPCore has VA to PA translation functions. */
break;
case 8: /* MMU TLB control. */
switch (op2) {
case 0: /* Invalidate all. */
tlb_flush(env, 0);
break;
case 1: /* Invalidate single TLB entry. */
#if 0
/* ??? This is wrong for large pages and sections. */
/* As an ugly hack to make linux work we always flush a 4K
pages. */
val &= 0xfffff000;
tlb_flush_page(env, val);
tlb_flush_page(env, val + 0x400);
tlb_flush_page(env, val + 0x800);
tlb_flush_page(env, val + 0xc00);
#else
tlb_flush(env, 1);
#endif
break;
case 2: /* Invalidate on ASID. */
tlb_flush(env, val == 0);
break;
case 3: /* Invalidate single entry on MVA. */
/* ??? This is like case 1, but ignores ASID. */
tlb_flush(env, 1);
break;
default:
goto bad_reg;
}
break;
case 9:
if (arm_feature(env, ARM_FEATURE_OMAPCP))
break;
switch (crm) {
case 0: /* Cache lockdown. */
switch (op1) {
case 0: /* L1 cache. */
switch (op2) {
case 0:
env->cp15.c9_data = val;
break;
case 1:
env->cp15.c9_insn = val;
break;
default:
goto bad_reg;
}
break;
case 1: /* L2 cache. */
/* Ignore writes to L2 lockdown/auxiliary registers. */
break;
default:
goto bad_reg;
}
break;
case 1: /* TCM memory region registers. */
/* Not implemented. */
goto bad_reg;
default:
goto bad_reg;
}
break;
case 10: /* MMU TLB lockdown. */
/* ??? TLB lockdown not implemented. */
break;
case 12: /* Reserved. */
goto bad_reg;
case 13: /* Process ID. */
switch (op2) {
case 0:
/* Unlike real hardware the qemu TLB uses virtual addresses,
not modified virtual addresses, so this causes a TLB flush.
*/
if (env->cp15.c13_fcse != val)
tlb_flush(env, 1);
env->cp15.c13_fcse = val;
break;
case 1:
/* This changes the ASID, so do a TLB flush. */
if (env->cp15.c13_context != val
&& !arm_feature(env, ARM_FEATURE_MPU))
tlb_flush(env, 0);
env->cp15.c13_context = val;
break;
case 2:
env->cp15.c13_tls1 = val;
break;
case 3:
env->cp15.c13_tls2 = val;
break;
case 4:
env->cp15.c13_tls3 = val;
break;
default:
goto bad_reg;
}
break;
case 14: /* Reserved. */
goto bad_reg;
case 15: /* Implementation specific. */
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
if (op2 == 0 && crm == 1) {
if (env->cp15.c15_cpar != (val & 0x3fff)) {
/* Changes cp0 to cp13 behavior, so needs a TB flush. */
tb_flush(env);
env->cp15.c15_cpar = val & 0x3fff;
}
break;
}
goto bad_reg;
}
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
switch (crm) {
case 0:
break;
case 1: /* Set TI925T configuration. */
env->cp15.c15_ticonfig = val & 0xe7;
env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
ARM_CPUID_TI915T : ARM_CPUID_TI925T;
break;
case 2: /* Set I_max. */
env->cp15.c15_i_max = val;
break;
case 3: /* Set I_min. */
env->cp15.c15_i_min = val;
break;
case 4: /* Set thread-ID. */
env->cp15.c15_threadid = val & 0xffff;
break;
case 8: /* Wait-for-interrupt (deprecated). */
cpu_interrupt(env, CPU_INTERRUPT_HALT);
break;
default:
goto bad_reg;
}
}
break;
}
return;
bad_reg:
/* ??? For debugging only. Should raise illegal instruction exception. */
cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
(insn >> 16) & 0xf, crm, op1, op2);
}
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
{
int op1;
int op2;
int crm;
op1 = (insn >> 21) & 7;
op2 = (insn >> 5) & 7;
crm = insn & 0xf;
switch ((insn >> 16) & 0xf) {
case 0: /* ID codes. */
switch (op1) {
case 0:
switch (crm) {
case 0:
switch (op2) {
case 0: /* Device ID. */
return env->cp15.c0_cpuid;
case 1: /* Cache Type. */
return env->cp15.c0_cachetype;
case 2: /* TCM status. */
return 0;
case 3: /* TLB type register. */
return 0; /* No lockable TLB entries. */
case 5: /* CPU ID */
return env->cpu_index;
default:
goto bad_reg;
}
case 1:
if (!arm_feature(env, ARM_FEATURE_V6))
goto bad_reg;
return env->cp15.c0_c1[op2];
case 2:
if (!arm_feature(env, ARM_FEATURE_V6))
goto bad_reg;
return env->cp15.c0_c2[op2];
case 3: case 4: case 5: case 6: case 7:
return 0;
default:
goto bad_reg;
}
case 1:
/* These registers aren't documented on arm11 cores. However
Linux looks at them anyway. */
if (!arm_feature(env, ARM_FEATURE_V6))
goto bad_reg;
if (crm != 0)
goto bad_reg;
if (!arm_feature(env, ARM_FEATURE_V7))
return 0;
switch (op2) {
case 0:
return env->cp15.c0_ccsid[env->cp15.c0_cssel];
case 1:
return env->cp15.c0_clid;
case 7:
return 0;
}
goto bad_reg;
case 2:
if (op2 != 0 || crm != 0)
goto bad_reg;
return env->cp15.c0_cssel;
default:
goto bad_reg;
}
case 1: /* System configuration. */
if (arm_feature(env, ARM_FEATURE_OMAPCP))
op2 = 0;
switch (op2) {
case 0: /* Control register. */
return env->cp15.c1_sys;
case 1: /* Auxiliary control register. */
if (arm_feature(env, ARM_FEATURE_XSCALE))
return env->cp15.c1_xscaleauxcr;
if (!arm_feature(env, ARM_FEATURE_AUXCR))
goto bad_reg;
switch (ARM_CPUID(env)) {
case ARM_CPUID_ARM1026:
return 1;
case ARM_CPUID_ARM1136:
case ARM_CPUID_ARM1136_R2:
return 7;
case ARM_CPUID_ARM11MPCORE:
return 1;
case ARM_CPUID_CORTEXA8:
return 0;
default:
goto bad_reg;
}
case 2: /* Coprocessor access register. */
if (arm_feature(env, ARM_FEATURE_XSCALE))
goto bad_reg;
return env->cp15.c1_coproc;
default:
goto bad_reg;
}
case 2: /* MMU Page table control / MPU cache control. */
if (arm_feature(env, ARM_FEATURE_MPU)) {
switch (op2) {
case 0:
return env->cp15.c2_data;
break;
case 1:
return env->cp15.c2_insn;
break;
default:
goto bad_reg;
}
} else {
switch (op2) {
case 0:
return env->cp15.c2_base0;
case 1:
return env->cp15.c2_base1;
case 2:
return env->cp15.c2_control;
default:
goto bad_reg;
}
}
case 3: /* MMU Domain access control / MPU write buffer control. */
return env->cp15.c3;
case 4: /* Reserved. */
goto bad_reg;
case 5: /* MMU Fault status / MPU access permission. */
if (arm_feature(env, ARM_FEATURE_OMAPCP))
op2 = 0;
switch (op2) {
case 0:
if (arm_feature(env, ARM_FEATURE_MPU))
return simple_mpu_ap_bits(env->cp15.c5_data);
return env->cp15.c5_data;
case 1:
if (arm_feature(env, ARM_FEATURE_MPU))
return simple_mpu_ap_bits(env->cp15.c5_data);
return env->cp15.c5_insn;
case 2:
if (!arm_feature(env, ARM_FEATURE_MPU))
goto bad_reg;
return env->cp15.c5_data;
case 3:
if (!arm_feature(env, ARM_FEATURE_MPU))
goto bad_reg;
return env->cp15.c5_insn;
default:
goto bad_reg;
}
case 6: /* MMU Fault address. */
if (arm_feature(env, ARM_FEATURE_MPU)) {
if (crm >= 8)
goto bad_reg;
return env->cp15.c6_region[crm];
} else {
if (arm_feature(env, ARM_FEATURE_OMAPCP))
op2 = 0;
switch (op2) {
case 0:
return env->cp15.c6_data;
case 1:
if (arm_feature(env, ARM_FEATURE_V6)) {
/* Watchpoint Fault Adrress. */
return 0; /* Not implemented. */
} else {
/* Instruction Fault Adrress. */
/* Arm9 doesn't have an IFAR, but implementing it anyway
shouldn't do any harm. */
return env->cp15.c6_insn;
}
case 2:
if (arm_feature(env, ARM_FEATURE_V6)) {
/* Instruction Fault Adrress. */
return env->cp15.c6_insn;
} else {
goto bad_reg;
}
default:
goto bad_reg;
}
}
case 7: /* Cache control. */
/* FIXME: Should only clear Z flag if destination is r15. */
env->ZF = 0;
return 0;
case 8: /* MMU TLB control. */
goto bad_reg;
case 9: /* Cache lockdown. */
switch (op1) {
case 0: /* L1 cache. */
if (arm_feature(env, ARM_FEATURE_OMAPCP))
return 0;
switch (op2) {
case 0:
return env->cp15.c9_data;
case 1:
return env->cp15.c9_insn;
default:
goto bad_reg;
}
case 1: /* L2 cache */
if (crm != 0)
goto bad_reg;
/* L2 Lockdown and Auxiliary control. */
return 0;
default:
goto bad_reg;
}
case 10: /* MMU TLB lockdown. */
/* ??? TLB lockdown not implemented. */
return 0;
case 11: /* TCM DMA control. */
case 12: /* Reserved. */
goto bad_reg;
case 13: /* Process ID. */
switch (op2) {
case 0:
return env->cp15.c13_fcse;
case 1:
return env->cp15.c13_context;
case 2:
return env->cp15.c13_tls1;
case 3:
return env->cp15.c13_tls2;
case 4:
return env->cp15.c13_tls3;
default:
goto bad_reg;
}
case 14: /* Reserved. */
goto bad_reg;
case 15: /* Implementation specific. */
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
if (op2 == 0 && crm == 1)
return env->cp15.c15_cpar;
goto bad_reg;
}
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
switch (crm) {
case 0:
return 0;
case 1: /* Read TI925T configuration. */
return env->cp15.c15_ticonfig;
case 2: /* Read I_max. */
return env->cp15.c15_i_max;
case 3: /* Read I_min. */
return env->cp15.c15_i_min;
case 4: /* Read thread-ID. */
return env->cp15.c15_threadid;
case 8: /* TI925T_status */
return 0;
}
/* TODO: Peripheral port remap register:
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
* controller base address at $rn & ~0xfff and map size of
* 0x200 << ($rn & 0xfff), when MMU is off. */
goto bad_reg;
}
return 0;
}
bad_reg:
/* ??? For debugging only. Should raise illegal instruction exception. */
cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
(insn >> 16) & 0xf, crm, op1, op2);
return 0;
}
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
{
env->banked_r13[bank_number(mode)] = val;
}
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
{
return env->banked_r13[bank_number(mode)];
}
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
{
switch (reg) {
case 0: /* APSR */
return xpsr_read(env) & 0xf8000000;
case 1: /* IAPSR */
return xpsr_read(env) & 0xf80001ff;
case 2: /* EAPSR */
return xpsr_read(env) & 0xff00fc00;
case 3: /* xPSR */
return xpsr_read(env) & 0xff00fdff;
case 5: /* IPSR */
return xpsr_read(env) & 0x000001ff;
case 6: /* EPSR */
return xpsr_read(env) & 0x0700fc00;
case 7: /* IEPSR */
return xpsr_read(env) & 0x0700edff;
case 8: /* MSP */
return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
case 9: /* PSP */
return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
case 16: /* PRIMASK */
return (env->uncached_cpsr & CPSR_I) != 0;
case 17: /* FAULTMASK */
return (env->uncached_cpsr & CPSR_F) != 0;
case 18: /* BASEPRI */
case 19: /* BASEPRI_MAX */
return env->v7m.basepri;
case 20: /* CONTROL */
return env->v7m.control;
default:
/* ??? For debugging only. */
cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
return 0;
}
}
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
{
switch (reg) {
case 0: /* APSR */
xpsr_write(env, val, 0xf8000000);
break;
case 1: /* IAPSR */
xpsr_write(env, val, 0xf8000000);
break;
case 2: /* EAPSR */
xpsr_write(env, val, 0xfe00fc00);
break;
case 3: /* xPSR */
xpsr_write(env, val, 0xfe00fc00);
break;
case 5: /* IPSR */
/* IPSR bits are readonly. */
break;
case 6: /* EPSR */
xpsr_write(env, val, 0x0600fc00);
break;
case 7: /* IEPSR */
xpsr_write(env, val, 0x0600fc00);
break;
case 8: /* MSP */
if (env->v7m.current_sp)
env->v7m.other_sp = val;
else
env->regs[13] = val;
break;
case 9: /* PSP */
if (env->v7m.current_sp)
env->regs[13] = val;
else
env->v7m.other_sp = val;
break;
case 16: /* PRIMASK */
if (val & 1)
env->uncached_cpsr |= CPSR_I;
else
env->uncached_cpsr &= ~CPSR_I;
break;
case 17: /* FAULTMASK */
if (val & 1)
env->uncached_cpsr |= CPSR_F;
else
env->uncached_cpsr &= ~CPSR_F;
break;
case 18: /* BASEPRI */
env->v7m.basepri = val & 0xff;
break;
case 19: /* BASEPRI_MAX */
val &= 0xff;
if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
env->v7m.basepri = val;
break;
case 20: /* CONTROL */
env->v7m.control = val & 3;
switch_v7m_sp(env, (val & 2) != 0);
break;
default:
/* ??? For debugging only. */
cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
return;
}
}
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
void *opaque)
{
if (cpnum < 0 || cpnum > 14) {
cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
return;
}
env->cp[cpnum].cp_read = cp_read;
env->cp[cpnum].cp_write = cp_write;
env->cp[cpnum].opaque = opaque;
}
#endif
/* Note that signed overflow is undefined in C. The following routines are
careful to use unsigned types where modulo arithmetic is required.
Failure to do so _will_ break on newer gcc. */
/* Signed saturating arithmetic. */
/* Perform 16-bit signed saturating addition. */
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed saturating addition. */
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
/* Perform 16-bit signed saturating subtraction. */
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a - b;
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed saturating subtraction. */
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a - b;
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
#define PFX q
#include "op_addsub.h"
/* Unsigned saturating arithmetic. */
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (res < a)
res = 0xffff;
return res;
}
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
{
if (a < b)
return a - b;
else
return 0;
}
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (res < a)
res = 0xff;
return res;
}
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
if (a < b)
return a - b;
else
return 0;
}
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
#define PFX uq
#include "op_addsub.h"
/* Signed modulo arithmetic. */
#define SARITH16(a, b, n, op) do { \
int32_t sum; \
sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
RESULT(sum, n, 16); \
if (sum >= 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SARITH8(a, b, n, op) do { \
int32_t sum; \
sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
RESULT(sum, n, 8); \
if (sum >= 0) \
ge |= 1 << n; \
} while(0)
#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n) SARITH8(a, b, n, +)
#define SUB8(a, b, n) SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE
#include "op_addsub.h"
/* Unsigned modulo arithmetic. */
#define ADD16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 1) \
ge |= 3 << (n * 2); \
} while(0)
#define ADD8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 1) \
ge |= 1 << n; \
} while(0)
#define SUB16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SUB8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 0) \
ge |= 1 << n; \
} while(0)
#define PFX u
#define ARITH_GE
#include "op_addsub.h"
/* Halved signed arithmetic. */
#define ADD16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh
#include "op_addsub.h"
/* Halved unsigned arithmetic. */
#define ADD16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh
#include "op_addsub.h"
static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
if (a > b)
return a - b;
else
return b - a;
}
/* Unsigned sum of absolute byte differences. */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
uint32_t sum;
sum = do_usad(a, b);
sum += do_usad(a >> 8, b >> 8);
sum += do_usad(a >> 16, b >>16);
sum += do_usad(a >> 24, b >> 24);
return sum;
}
/* For ARMv6 SEL instruction. */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
uint32_t mask;
mask = 0;
if (flags & 1)
mask |= 0xff;
if (flags & 2)
mask |= 0xff00;
if (flags & 4)
mask |= 0xff0000;
if (flags & 8)
mask |= 0xff000000;
return (a & mask) | (b & ~mask);
}
uint32_t HELPER(logicq_cc)(uint64_t val)
{
return (val >> 32) | (val != 0);
}
/* VFP support. We follow the convention used for VFP instrunctions:
Single precition routines have a "s" suffix, double precision a
"d" suffix. */
/* Convert host exception flags to vfp form. */
static inline int vfp_exceptbits_from_host(int host_bits)
{
int target_bits = 0;
if (host_bits & float_flag_invalid)
target_bits |= 1;
if (host_bits & float_flag_divbyzero)
target_bits |= 2;
if (host_bits & float_flag_overflow)
target_bits |= 4;
if (host_bits & float_flag_underflow)
target_bits |= 8;
if (host_bits & float_flag_inexact)
target_bits |= 0x10;
return target_bits;
}
uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
{
int i;
uint32_t fpscr;
fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
| (env->vfp.vec_len << 16)
| (env->vfp.vec_stride << 20);
i = get_float_exception_flags(&env->vfp.fp_status);
fpscr |= vfp_exceptbits_from_host(i);
return fpscr;
}
/* Convert vfp exception flags to target form. */
static inline int vfp_exceptbits_to_host(int target_bits)
{
int host_bits = 0;
if (target_bits & 1)
host_bits |= float_flag_invalid;
if (target_bits & 2)
host_bits |= float_flag_divbyzero;
if (target_bits & 4)
host_bits |= float_flag_overflow;
if (target_bits & 8)
host_bits |= float_flag_underflow;
if (target_bits & 0x10)
host_bits |= float_flag_inexact;
return host_bits;
}
void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
{
int i;
uint32_t changed;
changed = env->vfp.xregs[ARM_VFP_FPSCR];
env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
env->vfp.vec_len = (val >> 16) & 7;
env->vfp.vec_stride = (val >> 20) & 3;
changed ^= val;
if (changed & (3 << 22)) {
i = (val >> 22) & 3;
switch (i) {
case 0:
i = float_round_nearest_even;
break;
case 1:
i = float_round_up;
break;
case 2:
i = float_round_down;
break;
case 3:
i = float_round_to_zero;
break;
}
set_float_rounding_mode(i, &env->vfp.fp_status);
}
if (changed & (1 << 24))
set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
if (changed & (1 << 25))
set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
set_float_exception_flags(i, &env->vfp.fp_status);
}
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
#define VFP_BINOP(name) \
float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
{ \
return float32_ ## name (a, b, &env->vfp.fp_status); \
} \
float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
{ \
return float64_ ## name (a, b, &env->vfp.fp_status); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
#undef VFP_BINOP
float32 VFP_HELPER(neg, s)(float32 a)
{
return float32_chs(a);
}
float64 VFP_HELPER(neg, d)(float64 a)
{
return float64_chs(a);
}
float32 VFP_HELPER(abs, s)(float32 a)
{
return float32_abs(a);
}
float64 VFP_HELPER(abs, d)(float64 a)
{
return float64_abs(a);
}
float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
{
return float32_sqrt(a, &env->vfp.fp_status);
}
float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
{
return float64_sqrt(a, &env->vfp.fp_status);
}
/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
{ \
uint32_t flags; \
switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
case 0: flags = 0x6; break; \
case -1: flags = 0x8; break; \
case 1: flags = 0x2; break; \
default: case 2: flags = 0x3; break; \
} \
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
{ \
uint32_t flags; \
switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
case 0: flags = 0x6; break; \
case -1: flags = 0x8; break; \
case 1: flags = 0x2; break; \
default: case 2: flags = 0x3; break; \
} \
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp
/* Helper routines to perform bitwise copies between float and int. */
static inline float32 vfp_itos(uint32_t i)
{
union {
uint32_t i;
float32 s;
} v;
v.i = i;
return v.s;
}
static inline uint32_t vfp_stoi(float32 s)
{
union {
uint32_t i;
float32 s;
} v;
v.s = s;
return v.i;
}
static inline float64 vfp_itod(uint64_t i)
{
union {
uint64_t i;
float64 d;
} v;
v.i = i;
return v.d;
}
static inline uint64_t vfp_dtoi(float64 d)
{
union {
uint64_t i;
float64 d;
} v;
v.d = d;
return v.i;
}
/* Integer to float conversion. */
float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
{
return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
}
float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
{
return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
}
float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
{
return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
}
float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
{
return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
}
/* Float to integer conversion. */
float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
{
return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
{
return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
{
return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
{
return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
{
return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
{
return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
{
return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
}
float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
{
return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
}
/* floating point conversion */
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
{
return float32_to_float64(x, &env->vfp.fp_status);
}
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
{
return float64_to_float32(x, &env->vfp.fp_status);
}
/* VFP3 fixed point conversion. */
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
{ \
ftype tmp; \
tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
&env->vfp.fp_status); \
return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
} \
ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
{ \
ftype tmp; \
tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
&env->vfp.fp_status)); \
}
VFP_CONV_FIX(sh, d, float64, int16, )
VFP_CONV_FIX(sl, d, float64, int32, )
VFP_CONV_FIX(uh, d, float64, uint16, u)
VFP_CONV_FIX(ul, d, float64, uint32, u)
VFP_CONV_FIX(sh, s, float32, int16, )
VFP_CONV_FIX(sl, s, float32, int32, )
VFP_CONV_FIX(uh, s, float32, uint16, u)
VFP_CONV_FIX(ul, s, float32, uint32, u)
#undef VFP_CONV_FIX
float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
{
float_status *s = &env->vfp.fp_status;
float32 two = int32_to_float32(2, s);
return float32_sub(two, float32_mul(a, b, s), s);
}
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
{
float_status *s = &env->vfp.fp_status;
float32 three = int32_to_float32(3, s);
return float32_sub(three, float32_mul(a, b, s), s);
}
/* NEON helpers. */
/* TODO: The architecture specifies the value that the estimate functions
should return. We return the exact reciprocal/root instead. */
float32 HELPER(recpe_f32)(float32 a, CPUState *env)
{
float_status *s = &env->vfp.fp_status;
float32 one = int32_to_float32(1, s);
return float32_div(one, a, s);
}
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
{
float_status *s = &env->vfp.fp_status;
float32 one = int32_to_float32(1, s);
return float32_div(one, float32_sqrt(a, s), s);
}
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
{
float_status *s = &env->vfp.fp_status;
float32 tmp;
tmp = int32_to_float32(a, s);
tmp = float32_scalbn(tmp, -32, s);
tmp = helper_recpe_f32(tmp, env);
tmp = float32_scalbn(tmp, 31, s);
return float32_to_int32(tmp, s);
}
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
{
float_status *s = &env->vfp.fp_status;
float32 tmp;
tmp = int32_to_float32(a, s);
tmp = float32_scalbn(tmp, -32, s);
tmp = helper_rsqrte_f32(tmp, env);
tmp = float32_scalbn(tmp, 31, s);
return float32_to_int32(tmp, s);
}
void HELPER(set_teecr)(CPUState *env, uint32_t val)
{
val &= 1;
if (env->teecr != val) {
env->teecr = val;
tb_flush(env);
}
}