mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-27 21:40:49 +00:00
257 lines
6.3 KiB
C
257 lines
6.3 KiB
C
|
/*
|
||
|
* Bitmap Module
|
||
|
*
|
||
|
* Stolen from linux/src/lib/bitmap.c
|
||
|
*
|
||
|
* Copyright (C) 2010 Corentin Chary
|
||
|
*
|
||
|
* This source code is licensed under the GNU General Public License,
|
||
|
* Version 2.
|
||
|
*/
|
||
|
|
||
|
#include "bitops.h"
|
||
|
#include "bitmap.h"
|
||
|
|
||
|
/*
|
||
|
* bitmaps provide an array of bits, implemented using an an
|
||
|
* array of unsigned longs. The number of valid bits in a
|
||
|
* given bitmap does _not_ need to be an exact multiple of
|
||
|
* BITS_PER_LONG.
|
||
|
*
|
||
|
* The possible unused bits in the last, partially used word
|
||
|
* of a bitmap are 'don't care'. The implementation makes
|
||
|
* no particular effort to keep them zero. It ensures that
|
||
|
* their value will not affect the results of any operation.
|
||
|
* The bitmap operations that return Boolean (bitmap_empty,
|
||
|
* for example) or scalar (bitmap_weight, for example) results
|
||
|
* carefully filter out these unused bits from impacting their
|
||
|
* results.
|
||
|
*
|
||
|
* These operations actually hold to a slightly stronger rule:
|
||
|
* if you don't input any bitmaps to these ops that have some
|
||
|
* unused bits set, then they won't output any set unused bits
|
||
|
* in output bitmaps.
|
||
|
*
|
||
|
* The byte ordering of bitmaps is more natural on little
|
||
|
* endian architectures.
|
||
|
*/
|
||
|
|
||
|
int slow_bitmap_empty(const unsigned long *bitmap, int bits)
|
||
|
{
|
||
|
int k, lim = bits/BITS_PER_LONG;
|
||
|
|
||
|
for (k = 0; k < lim; ++k) {
|
||
|
if (bitmap[k]) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
if (bits % BITS_PER_LONG) {
|
||
|
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int slow_bitmap_full(const unsigned long *bitmap, int bits)
|
||
|
{
|
||
|
int k, lim = bits/BITS_PER_LONG;
|
||
|
|
||
|
for (k = 0; k < lim; ++k) {
|
||
|
if (~bitmap[k]) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (bits % BITS_PER_LONG) {
|
||
|
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int slow_bitmap_equal(const unsigned long *bitmap1,
|
||
|
const unsigned long *bitmap2, int bits)
|
||
|
{
|
||
|
int k, lim = bits/BITS_PER_LONG;
|
||
|
|
||
|
for (k = 0; k < lim; ++k) {
|
||
|
if (bitmap1[k] != bitmap2[k]) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (bits % BITS_PER_LONG) {
|
||
|
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
|
||
|
int bits)
|
||
|
{
|
||
|
int k, lim = bits/BITS_PER_LONG;
|
||
|
|
||
|
for (k = 0; k < lim; ++k) {
|
||
|
dst[k] = ~src[k];
|
||
|
}
|
||
|
|
||
|
if (bits % BITS_PER_LONG) {
|
||
|
dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
|
||
|
const unsigned long *bitmap2, int bits)
|
||
|
{
|
||
|
int k;
|
||
|
int nr = BITS_TO_LONGS(bits);
|
||
|
unsigned long result = 0;
|
||
|
|
||
|
for (k = 0; k < nr; k++) {
|
||
|
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
|
||
|
}
|
||
|
return result != 0;
|
||
|
}
|
||
|
|
||
|
void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
|
||
|
const unsigned long *bitmap2, int bits)
|
||
|
{
|
||
|
int k;
|
||
|
int nr = BITS_TO_LONGS(bits);
|
||
|
|
||
|
for (k = 0; k < nr; k++) {
|
||
|
dst[k] = bitmap1[k] | bitmap2[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
|
||
|
const unsigned long *bitmap2, int bits)
|
||
|
{
|
||
|
int k;
|
||
|
int nr = BITS_TO_LONGS(bits);
|
||
|
|
||
|
for (k = 0; k < nr; k++) {
|
||
|
dst[k] = bitmap1[k] ^ bitmap2[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
|
||
|
const unsigned long *bitmap2, int bits)
|
||
|
{
|
||
|
int k;
|
||
|
int nr = BITS_TO_LONGS(bits);
|
||
|
unsigned long result = 0;
|
||
|
|
||
|
for (k = 0; k < nr; k++) {
|
||
|
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
|
||
|
}
|
||
|
return result != 0;
|
||
|
}
|
||
|
|
||
|
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
|
||
|
|
||
|
void bitmap_set(unsigned long *map, int start, int nr)
|
||
|
{
|
||
|
unsigned long *p = map + BIT_WORD(start);
|
||
|
const int size = start + nr;
|
||
|
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
|
||
|
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
|
||
|
|
||
|
while (nr - bits_to_set >= 0) {
|
||
|
*p |= mask_to_set;
|
||
|
nr -= bits_to_set;
|
||
|
bits_to_set = BITS_PER_LONG;
|
||
|
mask_to_set = ~0UL;
|
||
|
p++;
|
||
|
}
|
||
|
if (nr) {
|
||
|
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
|
||
|
*p |= mask_to_set;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void bitmap_clear(unsigned long *map, int start, int nr)
|
||
|
{
|
||
|
unsigned long *p = map + BIT_WORD(start);
|
||
|
const int size = start + nr;
|
||
|
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
|
||
|
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
|
||
|
|
||
|
while (nr - bits_to_clear >= 0) {
|
||
|
*p &= ~mask_to_clear;
|
||
|
nr -= bits_to_clear;
|
||
|
bits_to_clear = BITS_PER_LONG;
|
||
|
mask_to_clear = ~0UL;
|
||
|
p++;
|
||
|
}
|
||
|
if (nr) {
|
||
|
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
|
||
|
*p &= ~mask_to_clear;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
|
||
|
|
||
|
/**
|
||
|
* bitmap_find_next_zero_area - find a contiguous aligned zero area
|
||
|
* @map: The address to base the search on
|
||
|
* @size: The bitmap size in bits
|
||
|
* @start: The bitnumber to start searching at
|
||
|
* @nr: The number of zeroed bits we're looking for
|
||
|
* @align_mask: Alignment mask for zero area
|
||
|
*
|
||
|
* The @align_mask should be one less than a power of 2; the effect is that
|
||
|
* the bit offset of all zero areas this function finds is multiples of that
|
||
|
* power of 2. A @align_mask of 0 means no alignment is required.
|
||
|
*/
|
||
|
unsigned long bitmap_find_next_zero_area(unsigned long *map,
|
||
|
unsigned long size,
|
||
|
unsigned long start,
|
||
|
unsigned int nr,
|
||
|
unsigned long align_mask)
|
||
|
{
|
||
|
unsigned long index, end, i;
|
||
|
again:
|
||
|
index = find_next_zero_bit(map, size, start);
|
||
|
|
||
|
/* Align allocation */
|
||
|
index = ALIGN_MASK(index, align_mask);
|
||
|
|
||
|
end = index + nr;
|
||
|
if (end > size) {
|
||
|
return end;
|
||
|
}
|
||
|
i = find_next_bit(map, end, index);
|
||
|
if (i < end) {
|
||
|
start = i + 1;
|
||
|
goto again;
|
||
|
}
|
||
|
return index;
|
||
|
}
|
||
|
|
||
|
int slow_bitmap_intersects(const unsigned long *bitmap1,
|
||
|
const unsigned long *bitmap2, int bits)
|
||
|
{
|
||
|
int k, lim = bits/BITS_PER_LONG;
|
||
|
|
||
|
for (k = 0; k < lim; ++k) {
|
||
|
if (bitmap1[k] & bitmap2[k]) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (bits % BITS_PER_LONG) {
|
||
|
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|