xemu/hw/misc/allwinner-h3-dramc.c

359 lines
12 KiB
C
Raw Normal View History

/*
* Allwinner H3 SDRAM Controller emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "exec/address-spaces.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "hw/misc/allwinner-h3-dramc.h"
#include "trace.h"
#define REG_INDEX(offset) (offset / sizeof(uint32_t))
/* DRAMCOM register offsets */
enum {
REG_DRAMCOM_CR = 0x0000, /* Control Register */
};
/* DRAMCTL register offsets */
enum {
REG_DRAMCTL_PIR = 0x0000, /* PHY Initialization Register */
REG_DRAMCTL_PGSR = 0x0010, /* PHY General Status Register */
REG_DRAMCTL_STATR = 0x0018, /* Status Register */
};
/* DRAMCTL register flags */
enum {
REG_DRAMCTL_PGSR_INITDONE = (1 << 0),
};
enum {
REG_DRAMCTL_STATR_ACTIVE = (1 << 0),
};
static void allwinner_h3_dramc_map_rows(AwH3DramCtlState *s, uint8_t row_bits,
uint8_t bank_bits, uint16_t page_size)
{
/*
* This function simulates row addressing behavior when bootloader
* software attempts to detect the amount of available SDRAM. In U-Boot
* the controller is configured with the widest row addressing available.
* Then a pattern is written to RAM at an offset on the row boundary size.
* If the value read back equals the value read back from the
* start of RAM, the bootloader knows the amount of row bits.
*
* This function inserts a mirrored memory region when the configured row
* bits are not matching the actual emulated memory, to simulate the
* same behavior on hardware as expected by the bootloader.
*/
uint8_t row_bits_actual = 0;
/* Calculate the actual row bits using the ram_size property */
for (uint8_t i = 8; i < 12; i++) {
if (1 << i == s->ram_size) {
row_bits_actual = i + 3;
break;
}
}
if (s->ram_size == (1 << (row_bits - 3))) {
/* When row bits is the expected value, remove the mirror */
memory_region_set_enabled(&s->row_mirror_alias, false);
trace_allwinner_h3_dramc_rowmirror_disable();
} else if (row_bits_actual) {
/* Row bits not matching ram_size, install the rows mirror */
hwaddr row_mirror = s->ram_addr + ((1ULL << (row_bits_actual +
bank_bits)) * page_size);
memory_region_set_enabled(&s->row_mirror_alias, true);
memory_region_set_address(&s->row_mirror_alias, row_mirror);
trace_allwinner_h3_dramc_rowmirror_enable(row_mirror);
}
}
static uint64_t allwinner_h3_dramcom_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
if (idx >= AW_H3_DRAMCOM_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
trace_allwinner_h3_dramcom_read(offset, s->dramcom[idx], size);
return s->dramcom[idx];
}
static void allwinner_h3_dramcom_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
trace_allwinner_h3_dramcom_write(offset, val, size);
if (idx >= AW_H3_DRAMCOM_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
switch (offset) {
case REG_DRAMCOM_CR: /* Control Register */
allwinner_h3_dramc_map_rows(s, ((val >> 4) & 0xf) + 1,
((val >> 2) & 0x1) + 2,
1 << (((val >> 8) & 0xf) + 3));
break;
default:
break;
};
s->dramcom[idx] = (uint32_t) val;
}
static uint64_t allwinner_h3_dramctl_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
if (idx >= AW_H3_DRAMCTL_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
trace_allwinner_h3_dramctl_read(offset, s->dramctl[idx], size);
return s->dramctl[idx];
}
static void allwinner_h3_dramctl_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
trace_allwinner_h3_dramctl_write(offset, val, size);
if (idx >= AW_H3_DRAMCTL_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
switch (offset) {
case REG_DRAMCTL_PIR: /* PHY Initialization Register */
s->dramctl[REG_INDEX(REG_DRAMCTL_PGSR)] |= REG_DRAMCTL_PGSR_INITDONE;
s->dramctl[REG_INDEX(REG_DRAMCTL_STATR)] |= REG_DRAMCTL_STATR_ACTIVE;
break;
default:
break;
}
s->dramctl[idx] = (uint32_t) val;
}
static uint64_t allwinner_h3_dramphy_read(void *opaque, hwaddr offset,
unsigned size)
{
const AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
if (idx >= AW_H3_DRAMPHY_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return 0;
}
trace_allwinner_h3_dramphy_read(offset, s->dramphy[idx], size);
return s->dramphy[idx];
}
static void allwinner_h3_dramphy_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
AwH3DramCtlState *s = AW_H3_DRAMC(opaque);
const uint32_t idx = REG_INDEX(offset);
trace_allwinner_h3_dramphy_write(offset, val, size);
if (idx >= AW_H3_DRAMPHY_REGS_NUM) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
__func__, (uint32_t)offset);
return;
}
s->dramphy[idx] = (uint32_t) val;
}
static const MemoryRegionOps allwinner_h3_dramcom_ops = {
.read = allwinner_h3_dramcom_read,
.write = allwinner_h3_dramcom_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static const MemoryRegionOps allwinner_h3_dramctl_ops = {
.read = allwinner_h3_dramctl_read,
.write = allwinner_h3_dramctl_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static const MemoryRegionOps allwinner_h3_dramphy_ops = {
.read = allwinner_h3_dramphy_read,
.write = allwinner_h3_dramphy_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static void allwinner_h3_dramc_reset(DeviceState *dev)
{
AwH3DramCtlState *s = AW_H3_DRAMC(dev);
/* Set default values for registers */
memset(&s->dramcom, 0, sizeof(s->dramcom));
memset(&s->dramctl, 0, sizeof(s->dramctl));
memset(&s->dramphy, 0, sizeof(s->dramphy));
}
static void allwinner_h3_dramc_realize(DeviceState *dev, Error **errp)
{
AwH3DramCtlState *s = AW_H3_DRAMC(dev);
/* Only power of 2 RAM sizes from 256MiB up to 2048MiB are supported */
for (uint8_t i = 8; i < 13; i++) {
if (1 << i == s->ram_size) {
break;
} else if (i == 12) {
error_report("%s: ram-size %u MiB is not supported",
__func__, s->ram_size);
exit(1);
}
}
/* Setup row mirror mappings */
memory_region_init_ram(&s->row_mirror, OBJECT(s),
"allwinner-h3-dramc.row-mirror",
4 * KiB, &error_abort);
memory_region_add_subregion_overlap(get_system_memory(), s->ram_addr,
&s->row_mirror, 10);
memory_region_init_alias(&s->row_mirror_alias, OBJECT(s),
"allwinner-h3-dramc.row-mirror-alias",
&s->row_mirror, 0, 4 * KiB);
memory_region_add_subregion_overlap(get_system_memory(),
s->ram_addr + 1 * MiB,
&s->row_mirror_alias, 10);
memory_region_set_enabled(&s->row_mirror_alias, false);
}
static void allwinner_h3_dramc_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwH3DramCtlState *s = AW_H3_DRAMC(obj);
/* DRAMCOM registers */
memory_region_init_io(&s->dramcom_iomem, OBJECT(s),
&allwinner_h3_dramcom_ops, s,
TYPE_AW_H3_DRAMC, 4 * KiB);
sysbus_init_mmio(sbd, &s->dramcom_iomem);
/* DRAMCTL registers */
memory_region_init_io(&s->dramctl_iomem, OBJECT(s),
&allwinner_h3_dramctl_ops, s,
TYPE_AW_H3_DRAMC, 4 * KiB);
sysbus_init_mmio(sbd, &s->dramctl_iomem);
/* DRAMPHY registers */
memory_region_init_io(&s->dramphy_iomem, OBJECT(s),
&allwinner_h3_dramphy_ops, s,
TYPE_AW_H3_DRAMC, 4 * KiB);
sysbus_init_mmio(sbd, &s->dramphy_iomem);
}
static Property allwinner_h3_dramc_properties[] = {
DEFINE_PROP_UINT64("ram-addr", AwH3DramCtlState, ram_addr, 0x0),
DEFINE_PROP_UINT32("ram-size", AwH3DramCtlState, ram_size, 256 * MiB),
DEFINE_PROP_END_OF_LIST()
};
static const VMStateDescription allwinner_h3_dramc_vmstate = {
.name = "allwinner-h3-dramc",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(dramcom, AwH3DramCtlState, AW_H3_DRAMCOM_REGS_NUM),
VMSTATE_UINT32_ARRAY(dramctl, AwH3DramCtlState, AW_H3_DRAMCTL_REGS_NUM),
VMSTATE_UINT32_ARRAY(dramphy, AwH3DramCtlState, AW_H3_DRAMPHY_REGS_NUM),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_h3_dramc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_h3_dramc_reset;
dc->vmsd = &allwinner_h3_dramc_vmstate;
dc->realize = allwinner_h3_dramc_realize;
device_class_set_props(dc, allwinner_h3_dramc_properties);
}
static const TypeInfo allwinner_h3_dramc_info = {
.name = TYPE_AW_H3_DRAMC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_h3_dramc_init,
.instance_size = sizeof(AwH3DramCtlState),
.class_init = allwinner_h3_dramc_class_init,
};
static void allwinner_h3_dramc_register(void)
{
type_register_static(&allwinner_h3_dramc_info);
}
type_init(allwinner_h3_dramc_register)