mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-23 11:39:53 +00:00
atomics: convert to reStructuredText
No attempts to fix or update the text; these are left for the next patch in the series. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
278fb16273
commit
15e8699f00
446
docs/devel/atomics.rst
Normal file
446
docs/devel/atomics.rst
Normal file
@ -0,0 +1,446 @@
|
||||
=========================
|
||||
Atomic operations in QEMU
|
||||
=========================
|
||||
|
||||
CPUs perform independent memory operations effectively in random order.
|
||||
but this can be a problem for CPU-CPU interaction (including interactions
|
||||
between QEMU and the guest). Multi-threaded programs use various tools
|
||||
to instruct the compiler and the CPU to restrict the order to something
|
||||
that is consistent with the expectations of the programmer.
|
||||
|
||||
The most basic tool is locking. Mutexes, condition variables and
|
||||
semaphores are used in QEMU, and should be the default approach to
|
||||
synchronization. Anything else is considerably harder, but it's
|
||||
also justified more often than one would like. The two tools that
|
||||
are provided by ``qemu/atomic.h`` are memory barriers and atomic operations.
|
||||
|
||||
Macros defined by ``qemu/atomic.h`` fall in three camps:
|
||||
|
||||
- compiler barriers: ``barrier()``;
|
||||
|
||||
- weak atomic access and manual memory barriers: ``atomic_read()``,
|
||||
``atomic_set()``, ``smp_rmb()``, ``smp_wmb()``, ``smp_mb()``, ``smp_mb_acquire()``,
|
||||
``smp_mb_release()``, ``smp_read_barrier_depends()``;
|
||||
|
||||
- sequentially consistent atomic access: everything else.
|
||||
|
||||
|
||||
Compiler memory barrier
|
||||
=======================
|
||||
|
||||
``barrier()`` prevents the compiler from moving the memory accesses either
|
||||
side of it to the other side. The compiler barrier has no direct effect
|
||||
on the CPU, which may then reorder things however it wishes.
|
||||
|
||||
``barrier()`` is mostly used within ``qemu/atomic.h`` itself. On some
|
||||
architectures, CPU guarantees are strong enough that blocking compiler
|
||||
optimizations already ensures the correct order of execution. In this
|
||||
case, ``qemu/atomic.h`` will reduce stronger memory barriers to simple
|
||||
compiler barriers.
|
||||
|
||||
Still, ``barrier()`` can be useful when writing code that can be interrupted
|
||||
by signal handlers.
|
||||
|
||||
|
||||
Sequentially consistent atomic access
|
||||
=====================================
|
||||
|
||||
Most of the operations in the ``qemu/atomic.h`` header ensure *sequential
|
||||
consistency*, where "the result of any execution is the same as if the
|
||||
operations of all the processors were executed in some sequential order,
|
||||
and the operations of each individual processor appear in this sequence
|
||||
in the order specified by its program".
|
||||
|
||||
``qemu/atomic.h`` provides the following set of atomic read-modify-write
|
||||
operations::
|
||||
|
||||
void atomic_inc(ptr)
|
||||
void atomic_dec(ptr)
|
||||
void atomic_add(ptr, val)
|
||||
void atomic_sub(ptr, val)
|
||||
void atomic_and(ptr, val)
|
||||
void atomic_or(ptr, val)
|
||||
|
||||
typeof(*ptr) atomic_fetch_inc(ptr)
|
||||
typeof(*ptr) atomic_fetch_dec(ptr)
|
||||
typeof(*ptr) atomic_fetch_add(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_sub(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_and(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_or(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_xor(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_inc_nonzero(ptr)
|
||||
typeof(*ptr) atomic_xchg(ptr, val)
|
||||
typeof(*ptr) atomic_cmpxchg(ptr, old, new)
|
||||
|
||||
all of which return the old value of ``*ptr``. These operations are
|
||||
polymorphic; they operate on any type that is as wide as a pointer.
|
||||
|
||||
Similar operations return the new value of ``*ptr``::
|
||||
|
||||
typeof(*ptr) atomic_inc_fetch(ptr)
|
||||
typeof(*ptr) atomic_dec_fetch(ptr)
|
||||
typeof(*ptr) atomic_add_fetch(ptr, val)
|
||||
typeof(*ptr) atomic_sub_fetch(ptr, val)
|
||||
typeof(*ptr) atomic_and_fetch(ptr, val)
|
||||
typeof(*ptr) atomic_or_fetch(ptr, val)
|
||||
typeof(*ptr) atomic_xor_fetch(ptr, val)
|
||||
|
||||
Sequentially consistent loads and stores can be done using::
|
||||
|
||||
atomic_fetch_add(ptr, 0) for loads
|
||||
atomic_xchg(ptr, val) for stores
|
||||
|
||||
However, they are quite expensive on some platforms, notably POWER and
|
||||
Arm. Therefore, qemu/atomic.h provides two primitives with slightly
|
||||
weaker constraints::
|
||||
|
||||
typeof(*ptr) atomic_mb_read(ptr)
|
||||
void atomic_mb_set(ptr, val)
|
||||
|
||||
The semantics of these primitives map to Java volatile variables,
|
||||
and are strongly related to memory barriers as used in the Linux
|
||||
kernel (see below).
|
||||
|
||||
As long as you use atomic_mb_read and atomic_mb_set, accesses cannot
|
||||
be reordered with each other, and it is also not possible to reorder
|
||||
"normal" accesses around them.
|
||||
|
||||
However, and this is the important difference between
|
||||
atomic_mb_read/atomic_mb_set and sequential consistency, it is important
|
||||
for both threads to access the same volatile variable. It is not the
|
||||
case that everything visible to thread A when it writes volatile field f
|
||||
becomes visible to thread B after it reads volatile field g. The store
|
||||
and load have to "match" (i.e., be performed on the same volatile
|
||||
field) to achieve the right semantics.
|
||||
|
||||
|
||||
These operations operate on any type that is as wide as an int or smaller.
|
||||
|
||||
|
||||
Weak atomic access and manual memory barriers
|
||||
=============================================
|
||||
|
||||
Compared to sequentially consistent atomic access, programming with
|
||||
weaker consistency models can be considerably more complicated.
|
||||
In general, if the algorithm you are writing includes both writes
|
||||
and reads on the same side, it is generally simpler to use sequentially
|
||||
consistent primitives.
|
||||
|
||||
When using this model, variables are accessed with:
|
||||
|
||||
- ``atomic_read()`` and ``atomic_set()``; these prevent the compiler from
|
||||
optimizing accesses out of existence and creating unsolicited
|
||||
accesses, but do not otherwise impose any ordering on loads and
|
||||
stores: both the compiler and the processor are free to reorder
|
||||
them.
|
||||
|
||||
- ``atomic_load_acquire()``, which guarantees the LOAD to appear to
|
||||
happen, with respect to the other components of the system,
|
||||
before all the LOAD or STORE operations specified afterwards.
|
||||
Operations coming before ``atomic_load_acquire()`` can still be
|
||||
reordered after it.
|
||||
|
||||
- ``atomic_store_release()``, which guarantees the STORE to appear to
|
||||
happen, with respect to the other components of the system,
|
||||
after all the LOAD or STORE operations specified afterwards.
|
||||
Operations coming after ``atomic_store_release()`` can still be
|
||||
reordered after it.
|
||||
|
||||
Restrictions to the ordering of accesses can also be specified
|
||||
using the memory barrier macros: ``smp_rmb()``, ``smp_wmb()``, ``smp_mb()``,
|
||||
``smp_mb_acquire()``, ``smp_mb_release()``, ``smp_read_barrier_depends()``.
|
||||
|
||||
Memory barriers control the order of references to shared memory.
|
||||
They come in six kinds:
|
||||
|
||||
- ``smp_rmb()`` guarantees that all the LOAD operations specified before
|
||||
the barrier will appear to happen before all the LOAD operations
|
||||
specified after the barrier with respect to the other components of
|
||||
the system.
|
||||
|
||||
In other words, ``smp_rmb()`` puts a partial ordering on loads, but is not
|
||||
required to have any effect on stores.
|
||||
|
||||
- ``smp_wmb()`` guarantees that all the STORE operations specified before
|
||||
the barrier will appear to happen before all the STORE operations
|
||||
specified after the barrier with respect to the other components of
|
||||
the system.
|
||||
|
||||
In other words, ``smp_wmb()`` puts a partial ordering on stores, but is not
|
||||
required to have any effect on loads.
|
||||
|
||||
- ``smp_mb_acquire()`` guarantees that all the LOAD operations specified before
|
||||
the barrier will appear to happen before all the LOAD or STORE operations
|
||||
specified after the barrier with respect to the other components of
|
||||
the system.
|
||||
|
||||
- ``smp_mb_release()`` guarantees that all the STORE operations specified *after*
|
||||
the barrier will appear to happen after all the LOAD or STORE operations
|
||||
specified *before* the barrier with respect to the other components of
|
||||
the system.
|
||||
|
||||
- ``smp_mb()`` guarantees that all the LOAD and STORE operations specified
|
||||
before the barrier will appear to happen before all the LOAD and
|
||||
STORE operations specified after the barrier with respect to the other
|
||||
components of the system.
|
||||
|
||||
``smp_mb()`` puts a partial ordering on both loads and stores. It is
|
||||
stronger than both a read and a write memory barrier; it implies both
|
||||
``smp_mb_acquire()`` and ``smp_mb_release()``, but it also prevents STOREs
|
||||
coming before the barrier from overtaking LOADs coming after the
|
||||
barrier and vice versa.
|
||||
|
||||
- ``smp_read_barrier_depends()`` is a weaker kind of read barrier. On
|
||||
most processors, whenever two loads are performed such that the
|
||||
second depends on the result of the first (e.g., the first load
|
||||
retrieves the address to which the second load will be directed),
|
||||
the processor will guarantee that the first LOAD will appear to happen
|
||||
before the second with respect to the other components of the system.
|
||||
However, this is not always true---for example, it was not true on
|
||||
Alpha processors. Whenever this kind of access happens to shared
|
||||
memory (that is not protected by a lock), a read barrier is needed,
|
||||
and ``smp_read_barrier_depends()`` can be used instead of ``smp_rmb()``.
|
||||
|
||||
Note that the first load really has to have a _data_ dependency and not
|
||||
a control dependency. If the address for the second load is dependent
|
||||
on the first load, but the dependency is through a conditional rather
|
||||
than actually loading the address itself, then it's a _control_
|
||||
dependency and a full read barrier or better is required.
|
||||
|
||||
|
||||
This is the set of barriers that is required *between* two ``atomic_read()``
|
||||
and ``atomic_set()`` operations to achieve sequential consistency:
|
||||
|
||||
+----------------+-------------------------------------------------------+
|
||||
| | 2nd operation |
|
||||
| +------------------+-----------------+------------------+
|
||||
| 1st operation | (after last) | atomic_read | atomic_set |
|
||||
+----------------+------------------+-----------------+------------------+
|
||||
| (before first) | .. | none | smp_mb_release() |
|
||||
+----------------+------------------+-----------------+------------------+
|
||||
| atomic_read | smp_mb_acquire() | smp_rmb() [1]_ | [2]_ |
|
||||
+----------------+------------------+-----------------+------------------+
|
||||
| atomic_set | none | smp_mb() [3]_ | smp_wmb() |
|
||||
+----------------+------------------+-----------------+------------------+
|
||||
|
||||
.. [1] Or smp_read_barrier_depends().
|
||||
|
||||
.. [2] This requires a load-store barrier. This is achieved by
|
||||
either smp_mb_acquire() or smp_mb_release().
|
||||
|
||||
.. [3] This requires a store-load barrier. On most machines, the only
|
||||
way to achieve this is a full barrier.
|
||||
|
||||
|
||||
You can see that the two possible definitions of ``atomic_mb_read()``
|
||||
and ``atomic_mb_set()`` are the following:
|
||||
|
||||
1) | atomic_mb_read(p) = atomic_read(p); smp_mb_acquire()
|
||||
| atomic_mb_set(p, v) = smp_mb_release(); atomic_set(p, v); smp_mb()
|
||||
|
||||
2) | atomic_mb_read(p) = smp_mb() atomic_read(p); smp_mb_acquire()
|
||||
| atomic_mb_set(p, v) = smp_mb_release(); atomic_set(p, v);
|
||||
|
||||
Usually the former is used, because ``smp_mb()`` is expensive and a program
|
||||
normally has more reads than writes. Therefore it makes more sense to
|
||||
make ``atomic_mb_set()`` the more expensive operation.
|
||||
|
||||
There are two common cases in which atomic_mb_read and atomic_mb_set
|
||||
generate too many memory barriers, and thus it can be useful to manually
|
||||
place barriers, or use atomic_load_acquire/atomic_store_release instead:
|
||||
|
||||
- when a data structure has one thread that is always a writer
|
||||
and one thread that is always a reader, manual placement of
|
||||
memory barriers makes the write side faster. Furthermore,
|
||||
correctness is easy to check for in this case using the "pairing"
|
||||
trick that is explained below:
|
||||
|
||||
+----------------------------------------------------------------------+
|
||||
| thread 1 |
|
||||
+-----------------------------------+----------------------------------+
|
||||
| before | after |
|
||||
+===================================+==================================+
|
||||
| :: | :: |
|
||||
| | |
|
||||
| (other writes) | |
|
||||
| atomic_mb_set(&a, x) | atomic_store_release(&a, x) |
|
||||
| atomic_mb_set(&b, y) | atomic_store_release(&b, y) |
|
||||
+-----------------------------------+----------------------------------+
|
||||
|
||||
+----------------------------------------------------------------------+
|
||||
| thread 2 |
|
||||
+-----------------------------------+----------------------------------+
|
||||
| before | after |
|
||||
+===================================+==================================+
|
||||
| :: | :: |
|
||||
| | |
|
||||
| y = atomic_mb_read(&b) | y = atomic_load_acquire(&b) |
|
||||
| x = atomic_mb_read(&a) | x = atomic_load_acquire(&a) |
|
||||
| (other reads) | |
|
||||
+-----------------------------------+----------------------------------+
|
||||
|
||||
Note that the barrier between the stores in thread 1, and between
|
||||
the loads in thread 2, has been optimized here to a write or a
|
||||
read memory barrier respectively. On some architectures, notably
|
||||
ARMv7, smp_mb_acquire and smp_mb_release are just as expensive as
|
||||
smp_mb, but smp_rmb and/or smp_wmb are more efficient.
|
||||
|
||||
- sometimes, a thread is accessing many variables that are otherwise
|
||||
unrelated to each other (for example because, apart from the current
|
||||
thread, exactly one other thread will read or write each of these
|
||||
variables). In this case, it is possible to "hoist" the implicit
|
||||
barriers provided by ``atomic_mb_read()`` and ``atomic_mb_set()`` outside
|
||||
a loop. For example, the above definition ``atomic_mb_read()`` gives
|
||||
the following transformation:
|
||||
|
||||
+-----------------------------------+----------------------------------+
|
||||
| before | after |
|
||||
+===================================+==================================+
|
||||
| :: | :: |
|
||||
| | |
|
||||
| n = 0; | n = 0; |
|
||||
| for (i = 0; i < 10; i++) | for (i = 0; i < 10; i++) |
|
||||
| n += atomic_mb_read(&a[i]); | n += atomic_read(&a[i]); |
|
||||
| | smp_mb_acquire(); |
|
||||
+-----------------------------------+----------------------------------+
|
||||
|
||||
Similarly, atomic_mb_set() can be transformed as follows:
|
||||
|
||||
+-----------------------------------+----------------------------------+
|
||||
| before | after |
|
||||
+===================================+==================================+
|
||||
| :: | :: |
|
||||
| | |
|
||||
| | smp_mb_release(); |
|
||||
| for (i = 0; i < 10; i++) | for (i = 0; i < 10; i++) |
|
||||
| atomic_mb_set(&a[i], false); | atomic_set(&a[i], false); |
|
||||
| | smp_mb(); |
|
||||
+-----------------------------------+----------------------------------+
|
||||
|
||||
|
||||
The other thread can still use ``atomic_mb_read()``/``atomic_mb_set()``.
|
||||
|
||||
The two tricks can be combined. In this case, splitting a loop in
|
||||
two lets you hoist the barriers out of the loops _and_ eliminate the
|
||||
expensive ``smp_mb()``:
|
||||
|
||||
+-----------------------------------+----------------------------------+
|
||||
| before | after |
|
||||
+===================================+==================================+
|
||||
| :: | :: |
|
||||
| | |
|
||||
| | smp_mb_release(); |
|
||||
| for (i = 0; i < 10; i++) { | for (i = 0; i < 10; i++) |
|
||||
| atomic_mb_set(&a[i], false); | atomic_set(&a[i], false); |
|
||||
| atomic_mb_set(&b[i], false); | smb_wmb(); |
|
||||
| } | for (i = 0; i < 10; i++) |
|
||||
| | atomic_set(&a[i], false); |
|
||||
| | smp_mb(); |
|
||||
+-----------------------------------+----------------------------------+
|
||||
|
||||
|
||||
Memory barrier pairing
|
||||
----------------------
|
||||
|
||||
A useful rule of thumb is that memory barriers should always, or almost
|
||||
always, be paired with another barrier. In the case of QEMU, however,
|
||||
note that the other barrier may actually be in a driver that runs in
|
||||
the guest!
|
||||
|
||||
For the purposes of pairing, ``smp_read_barrier_depends()`` and ``smp_rmb()``
|
||||
both count as read barriers. A read barrier shall pair with a write
|
||||
barrier or a full barrier; a write barrier shall pair with a read
|
||||
barrier or a full barrier. A full barrier can pair with anything.
|
||||
For example:
|
||||
|
||||
+--------------------+------------------------------+
|
||||
| thread 1 | thread 2 |
|
||||
+====================+==============================+
|
||||
| :: | :: |
|
||||
| | |
|
||||
| a = 1; | |
|
||||
| smp_wmb(); | |
|
||||
| b = 2; | x = b; |
|
||||
| | smp_rmb(); |
|
||||
| | y = a; |
|
||||
+--------------------+------------------------------+
|
||||
|
||||
Note that the "writing" thread is accessing the variables in the
|
||||
opposite order as the "reading" thread. This is expected: stores
|
||||
before the write barrier will normally match the loads after the
|
||||
read barrier, and vice versa. The same is true for more than 2
|
||||
access and for data dependency barriers:
|
||||
|
||||
+----------------------+------------------------------+
|
||||
| thread 1 | thread 2 |
|
||||
+======================+==============================+
|
||||
| :: | :: |
|
||||
| | |
|
||||
| b[2] = 1; | |
|
||||
| smp_wmb(); | |
|
||||
| x->i = 2; | |
|
||||
| smp_wmb(); | |
|
||||
| a = x; | x = a; |
|
||||
| | smp_read_barrier_depends(); |
|
||||
| | y = x->i; |
|
||||
| | smp_read_barrier_depends(); |
|
||||
| | z = b[y]; |
|
||||
+----------------------+------------------------------+
|
||||
|
||||
``smp_wmb()`` also pairs with ``atomic_mb_read()`` and ``smp_mb_acquire()``.
|
||||
and ``smp_rmb()`` also pairs with ``atomic_mb_set()`` and ``smp_mb_release()``.
|
||||
|
||||
|
||||
Comparison with Linux kernel memory barriers
|
||||
============================================
|
||||
|
||||
Here is a list of differences between Linux kernel atomic operations
|
||||
and memory barriers, and the equivalents in QEMU:
|
||||
|
||||
- atomic operations in Linux are always on a 32-bit int type and
|
||||
use a boxed ``atomic_t`` type; atomic operations in QEMU are polymorphic
|
||||
and use normal C types.
|
||||
|
||||
- Originally, ``atomic_read`` and ``atomic_set`` in Linux gave no guarantee
|
||||
at all. Linux 4.1 updated them to implement volatile
|
||||
semantics via ``ACCESS_ONCE`` (or the more recent ``READ``/``WRITE_ONCE``).
|
||||
|
||||
QEMU's ``atomic_read`` and ``atomic_set`` implement C11 atomic relaxed
|
||||
semantics if the compiler supports it, and volatile semantics otherwise.
|
||||
Both semantics prevent the compiler from doing certain transformations;
|
||||
the difference is that atomic accesses are guaranteed to be atomic,
|
||||
while volatile accesses aren't. Thus, in the volatile case we just cross
|
||||
our fingers hoping that the compiler will generate atomic accesses,
|
||||
since we assume the variables passed are machine-word sized and
|
||||
properly aligned.
|
||||
|
||||
No barriers are implied by ``atomic_read`` and ``atomic_set`` in either Linux
|
||||
or QEMU.
|
||||
|
||||
- atomic read-modify-write operations in Linux are of three kinds:
|
||||
|
||||
===================== =========================================
|
||||
``atomic_OP`` returns void
|
||||
``atomic_OP_return`` returns new value of the variable
|
||||
``atomic_fetch_OP`` returns the old value of the variable
|
||||
``atomic_cmpxchg`` returns the old value of the variable
|
||||
===================== =========================================
|
||||
|
||||
In QEMU, the second kind does not exist. Currently Linux has
|
||||
atomic_fetch_or only. QEMU provides and, or, inc, dec, add, sub.
|
||||
|
||||
- different atomic read-modify-write operations in Linux imply
|
||||
a different set of memory barriers; in QEMU, all of them enforce
|
||||
sequential consistency, which means they imply full memory barriers
|
||||
before and after the operation.
|
||||
|
||||
- Linux does not have an equivalent of ``atomic_mb_set()``. In particular,
|
||||
note that ``smp_store_mb()`` is a little weaker than ``atomic_mb_set()``.
|
||||
``atomic_mb_read()`` compiles to the same instructions as Linux's
|
||||
``smp_load_acquire()``, but this should be treated as an implementation
|
||||
detail.
|
||||
|
||||
Sources
|
||||
=======
|
||||
|
||||
- ``Documentation/memory-barriers.txt`` from the Linux kernel
|
@ -1,403 +0,0 @@
|
||||
CPUs perform independent memory operations effectively in random order.
|
||||
but this can be a problem for CPU-CPU interaction (including interactions
|
||||
between QEMU and the guest). Multi-threaded programs use various tools
|
||||
to instruct the compiler and the CPU to restrict the order to something
|
||||
that is consistent with the expectations of the programmer.
|
||||
|
||||
The most basic tool is locking. Mutexes, condition variables and
|
||||
semaphores are used in QEMU, and should be the default approach to
|
||||
synchronization. Anything else is considerably harder, but it's
|
||||
also justified more often than one would like. The two tools that
|
||||
are provided by qemu/atomic.h are memory barriers and atomic operations.
|
||||
|
||||
Macros defined by qemu/atomic.h fall in three camps:
|
||||
|
||||
- compiler barriers: barrier();
|
||||
|
||||
- weak atomic access and manual memory barriers: atomic_read(),
|
||||
atomic_set(), smp_rmb(), smp_wmb(), smp_mb(), smp_mb_acquire(),
|
||||
smp_mb_release(), smp_read_barrier_depends();
|
||||
|
||||
- sequentially consistent atomic access: everything else.
|
||||
|
||||
|
||||
COMPILER MEMORY BARRIER
|
||||
=======================
|
||||
|
||||
barrier() prevents the compiler from moving the memory accesses either
|
||||
side of it to the other side. The compiler barrier has no direct effect
|
||||
on the CPU, which may then reorder things however it wishes.
|
||||
|
||||
barrier() is mostly used within qemu/atomic.h itself. On some
|
||||
architectures, CPU guarantees are strong enough that blocking compiler
|
||||
optimizations already ensures the correct order of execution. In this
|
||||
case, qemu/atomic.h will reduce stronger memory barriers to simple
|
||||
compiler barriers.
|
||||
|
||||
Still, barrier() can be useful when writing code that can be interrupted
|
||||
by signal handlers.
|
||||
|
||||
|
||||
SEQUENTIALLY CONSISTENT ATOMIC ACCESS
|
||||
=====================================
|
||||
|
||||
Most of the operations in the qemu/atomic.h header ensure *sequential
|
||||
consistency*, where "the result of any execution is the same as if the
|
||||
operations of all the processors were executed in some sequential order,
|
||||
and the operations of each individual processor appear in this sequence
|
||||
in the order specified by its program".
|
||||
|
||||
qemu/atomic.h provides the following set of atomic read-modify-write
|
||||
operations:
|
||||
|
||||
void atomic_inc(ptr)
|
||||
void atomic_dec(ptr)
|
||||
void atomic_add(ptr, val)
|
||||
void atomic_sub(ptr, val)
|
||||
void atomic_and(ptr, val)
|
||||
void atomic_or(ptr, val)
|
||||
|
||||
typeof(*ptr) atomic_fetch_inc(ptr)
|
||||
typeof(*ptr) atomic_fetch_dec(ptr)
|
||||
typeof(*ptr) atomic_fetch_add(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_sub(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_and(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_or(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_xor(ptr, val)
|
||||
typeof(*ptr) atomic_fetch_inc_nonzero(ptr)
|
||||
typeof(*ptr) atomic_xchg(ptr, val)
|
||||
typeof(*ptr) atomic_cmpxchg(ptr, old, new)
|
||||
|
||||
all of which return the old value of *ptr. These operations are
|
||||
polymorphic; they operate on any type that is as wide as a pointer.
|
||||
|
||||
Similar operations return the new value of *ptr:
|
||||
|
||||
typeof(*ptr) atomic_inc_fetch(ptr)
|
||||
typeof(*ptr) atomic_dec_fetch(ptr)
|
||||
typeof(*ptr) atomic_add_fetch(ptr, val)
|
||||
typeof(*ptr) atomic_sub_fetch(ptr, val)
|
||||
typeof(*ptr) atomic_and_fetch(ptr, val)
|
||||
typeof(*ptr) atomic_or_fetch(ptr, val)
|
||||
typeof(*ptr) atomic_xor_fetch(ptr, val)
|
||||
|
||||
Sequentially consistent loads and stores can be done using:
|
||||
|
||||
atomic_fetch_add(ptr, 0) for loads
|
||||
atomic_xchg(ptr, val) for stores
|
||||
|
||||
However, they are quite expensive on some platforms, notably POWER and
|
||||
Arm. Therefore, qemu/atomic.h provides two primitives with slightly
|
||||
weaker constraints:
|
||||
|
||||
typeof(*ptr) atomic_mb_read(ptr)
|
||||
void atomic_mb_set(ptr, val)
|
||||
|
||||
The semantics of these primitives map to Java volatile variables,
|
||||
and are strongly related to memory barriers as used in the Linux
|
||||
kernel (see below).
|
||||
|
||||
As long as you use atomic_mb_read and atomic_mb_set, accesses cannot
|
||||
be reordered with each other, and it is also not possible to reorder
|
||||
"normal" accesses around them.
|
||||
|
||||
However, and this is the important difference between
|
||||
atomic_mb_read/atomic_mb_set and sequential consistency, it is important
|
||||
for both threads to access the same volatile variable. It is not the
|
||||
case that everything visible to thread A when it writes volatile field f
|
||||
becomes visible to thread B after it reads volatile field g. The store
|
||||
and load have to "match" (i.e., be performed on the same volatile
|
||||
field) to achieve the right semantics.
|
||||
|
||||
|
||||
These operations operate on any type that is as wide as an int or smaller.
|
||||
|
||||
|
||||
WEAK ATOMIC ACCESS AND MANUAL MEMORY BARRIERS
|
||||
=============================================
|
||||
|
||||
Compared to sequentially consistent atomic access, programming with
|
||||
weaker consistency models can be considerably more complicated.
|
||||
In general, if the algorithm you are writing includes both writes
|
||||
and reads on the same side, it is generally simpler to use sequentially
|
||||
consistent primitives.
|
||||
|
||||
When using this model, variables are accessed with:
|
||||
|
||||
- atomic_read() and atomic_set(); these prevent the compiler from
|
||||
optimizing accesses out of existence and creating unsolicited
|
||||
accesses, but do not otherwise impose any ordering on loads and
|
||||
stores: both the compiler and the processor are free to reorder
|
||||
them.
|
||||
|
||||
- atomic_load_acquire(), which guarantees the LOAD to appear to
|
||||
happen, with respect to the other components of the system,
|
||||
before all the LOAD or STORE operations specified afterwards.
|
||||
Operations coming before atomic_load_acquire() can still be
|
||||
reordered after it.
|
||||
|
||||
- atomic_store_release(), which guarantees the STORE to appear to
|
||||
happen, with respect to the other components of the system,
|
||||
after all the LOAD or STORE operations specified afterwards.
|
||||
Operations coming after atomic_store_release() can still be
|
||||
reordered after it.
|
||||
|
||||
Restrictions to the ordering of accesses can also be specified
|
||||
using the memory barrier macros: smp_rmb(), smp_wmb(), smp_mb(),
|
||||
smp_mb_acquire(), smp_mb_release(), smp_read_barrier_depends().
|
||||
|
||||
Memory barriers control the order of references to shared memory.
|
||||
They come in six kinds:
|
||||
|
||||
- smp_rmb() guarantees that all the LOAD operations specified before
|
||||
the barrier will appear to happen before all the LOAD operations
|
||||
specified after the barrier with respect to the other components of
|
||||
the system.
|
||||
|
||||
In other words, smp_rmb() puts a partial ordering on loads, but is not
|
||||
required to have any effect on stores.
|
||||
|
||||
- smp_wmb() guarantees that all the STORE operations specified before
|
||||
the barrier will appear to happen before all the STORE operations
|
||||
specified after the barrier with respect to the other components of
|
||||
the system.
|
||||
|
||||
In other words, smp_wmb() puts a partial ordering on stores, but is not
|
||||
required to have any effect on loads.
|
||||
|
||||
- smp_mb_acquire() guarantees that all the LOAD operations specified before
|
||||
the barrier will appear to happen before all the LOAD or STORE operations
|
||||
specified after the barrier with respect to the other components of
|
||||
the system.
|
||||
|
||||
- smp_mb_release() guarantees that all the STORE operations specified *after*
|
||||
the barrier will appear to happen after all the LOAD or STORE operations
|
||||
specified *before* the barrier with respect to the other components of
|
||||
the system.
|
||||
|
||||
- smp_mb() guarantees that all the LOAD and STORE operations specified
|
||||
before the barrier will appear to happen before all the LOAD and
|
||||
STORE operations specified after the barrier with respect to the other
|
||||
components of the system.
|
||||
|
||||
smp_mb() puts a partial ordering on both loads and stores. It is
|
||||
stronger than both a read and a write memory barrier; it implies both
|
||||
smp_mb_acquire() and smp_mb_release(), but it also prevents STOREs
|
||||
coming before the barrier from overtaking LOADs coming after the
|
||||
barrier and vice versa.
|
||||
|
||||
- smp_read_barrier_depends() is a weaker kind of read barrier. On
|
||||
most processors, whenever two loads are performed such that the
|
||||
second depends on the result of the first (e.g., the first load
|
||||
retrieves the address to which the second load will be directed),
|
||||
the processor will guarantee that the first LOAD will appear to happen
|
||||
before the second with respect to the other components of the system.
|
||||
However, this is not always true---for example, it was not true on
|
||||
Alpha processors. Whenever this kind of access happens to shared
|
||||
memory (that is not protected by a lock), a read barrier is needed,
|
||||
and smp_read_barrier_depends() can be used instead of smp_rmb().
|
||||
|
||||
Note that the first load really has to have a _data_ dependency and not
|
||||
a control dependency. If the address for the second load is dependent
|
||||
on the first load, but the dependency is through a conditional rather
|
||||
than actually loading the address itself, then it's a _control_
|
||||
dependency and a full read barrier or better is required.
|
||||
|
||||
|
||||
This is the set of barriers that is required *between* two atomic_read()
|
||||
and atomic_set() operations to achieve sequential consistency:
|
||||
|
||||
| 2nd operation |
|
||||
|-----------------------------------------------|
|
||||
1st operation | (after last) | atomic_read | atomic_set |
|
||||
---------------+----------------+-------------+----------------|
|
||||
(before first) | | none | smp_mb_release |
|
||||
---------------+----------------+-------------+----------------|
|
||||
atomic_read | smp_mb_acquire | smp_rmb | ** |
|
||||
---------------+----------------+-------------+----------------|
|
||||
atomic_set | none | smp_mb()*** | smp_wmb() |
|
||||
---------------+----------------+-------------+----------------|
|
||||
|
||||
* Or smp_read_barrier_depends().
|
||||
|
||||
** This requires a load-store barrier. This is achieved by
|
||||
either smp_mb_acquire() or smp_mb_release().
|
||||
|
||||
*** This requires a store-load barrier. On most machines, the only
|
||||
way to achieve this is a full barrier.
|
||||
|
||||
|
||||
You can see that the two possible definitions of atomic_mb_read()
|
||||
and atomic_mb_set() are the following:
|
||||
|
||||
1) atomic_mb_read(p) = atomic_read(p); smp_mb_acquire()
|
||||
atomic_mb_set(p, v) = smp_mb_release(); atomic_set(p, v); smp_mb()
|
||||
|
||||
2) atomic_mb_read(p) = smp_mb() atomic_read(p); smp_mb_acquire()
|
||||
atomic_mb_set(p, v) = smp_mb_release(); atomic_set(p, v);
|
||||
|
||||
Usually the former is used, because smp_mb() is expensive and a program
|
||||
normally has more reads than writes. Therefore it makes more sense to
|
||||
make atomic_mb_set() the more expensive operation.
|
||||
|
||||
There are two common cases in which atomic_mb_read and atomic_mb_set
|
||||
generate too many memory barriers, and thus it can be useful to manually
|
||||
place barriers, or use atomic_load_acquire/atomic_store_release instead:
|
||||
|
||||
- when a data structure has one thread that is always a writer
|
||||
and one thread that is always a reader, manual placement of
|
||||
memory barriers makes the write side faster. Furthermore,
|
||||
correctness is easy to check for in this case using the "pairing"
|
||||
trick that is explained below:
|
||||
|
||||
thread 1 thread 1
|
||||
------------------------- ------------------------
|
||||
(other writes)
|
||||
atomic_mb_set(&a, x) atomic_store_release(&a, x)
|
||||
atomic_mb_set(&b, y) atomic_store_release(&b, y)
|
||||
|
||||
=>
|
||||
thread 2 thread 2
|
||||
------------------------- ------------------------
|
||||
y = atomic_mb_read(&b) y = atomic_load_acquire(&b)
|
||||
x = atomic_mb_read(&a) x = atomic_load_acquire(&a)
|
||||
(other reads)
|
||||
|
||||
Note that the barrier between the stores in thread 1, and between
|
||||
the loads in thread 2, has been optimized here to a write or a
|
||||
read memory barrier respectively. On some architectures, notably
|
||||
ARMv7, smp_mb_acquire and smp_mb_release are just as expensive as
|
||||
smp_mb, but smp_rmb and/or smp_wmb are more efficient.
|
||||
|
||||
- sometimes, a thread is accessing many variables that are otherwise
|
||||
unrelated to each other (for example because, apart from the current
|
||||
thread, exactly one other thread will read or write each of these
|
||||
variables). In this case, it is possible to "hoist" the implicit
|
||||
barriers provided by atomic_mb_read() and atomic_mb_set() outside
|
||||
a loop. For example, the above definition atomic_mb_read() gives
|
||||
the following transformation:
|
||||
|
||||
n = 0; n = 0;
|
||||
for (i = 0; i < 10; i++) => for (i = 0; i < 10; i++)
|
||||
n += atomic_mb_read(&a[i]); n += atomic_read(&a[i]);
|
||||
smp_mb_acquire();
|
||||
|
||||
Similarly, atomic_mb_set() can be transformed as follows:
|
||||
|
||||
smp_mb_release();
|
||||
for (i = 0; i < 10; i++) => for (i = 0; i < 10; i++)
|
||||
atomic_mb_set(&a[i], false); atomic_set(&a[i], false);
|
||||
smp_mb();
|
||||
|
||||
|
||||
The other thread can still use atomic_mb_read()/atomic_mb_set().
|
||||
|
||||
The two tricks can be combined. In this case, splitting a loop in
|
||||
two lets you hoist the barriers out of the loops _and_ eliminate the
|
||||
expensive smp_mb():
|
||||
|
||||
smp_mb_release();
|
||||
for (i = 0; i < 10; i++) { => for (i = 0; i < 10; i++)
|
||||
atomic_mb_set(&a[i], false); atomic_set(&a[i], false);
|
||||
atomic_mb_set(&b[i], false); smb_wmb();
|
||||
} for (i = 0; i < 10; i++)
|
||||
atomic_set(&a[i], false);
|
||||
smp_mb();
|
||||
|
||||
|
||||
Memory barrier pairing
|
||||
----------------------
|
||||
|
||||
A useful rule of thumb is that memory barriers should always, or almost
|
||||
always, be paired with another barrier. In the case of QEMU, however,
|
||||
note that the other barrier may actually be in a driver that runs in
|
||||
the guest!
|
||||
|
||||
For the purposes of pairing, smp_read_barrier_depends() and smp_rmb()
|
||||
both count as read barriers. A read barrier shall pair with a write
|
||||
barrier or a full barrier; a write barrier shall pair with a read
|
||||
barrier or a full barrier. A full barrier can pair with anything.
|
||||
For example:
|
||||
|
||||
thread 1 thread 2
|
||||
=============== ===============
|
||||
a = 1;
|
||||
smp_wmb();
|
||||
b = 2; x = b;
|
||||
smp_rmb();
|
||||
y = a;
|
||||
|
||||
Note that the "writing" thread is accessing the variables in the
|
||||
opposite order as the "reading" thread. This is expected: stores
|
||||
before the write barrier will normally match the loads after the
|
||||
read barrier, and vice versa. The same is true for more than 2
|
||||
access and for data dependency barriers:
|
||||
|
||||
thread 1 thread 2
|
||||
=============== ===============
|
||||
b[2] = 1;
|
||||
smp_wmb();
|
||||
x->i = 2;
|
||||
smp_wmb();
|
||||
a = x; x = a;
|
||||
smp_read_barrier_depends();
|
||||
y = x->i;
|
||||
smp_read_barrier_depends();
|
||||
z = b[y];
|
||||
|
||||
smp_wmb() also pairs with atomic_mb_read() and smp_mb_acquire().
|
||||
and smp_rmb() also pairs with atomic_mb_set() and smp_mb_release().
|
||||
|
||||
|
||||
COMPARISON WITH LINUX KERNEL MEMORY BARRIERS
|
||||
============================================
|
||||
|
||||
Here is a list of differences between Linux kernel atomic operations
|
||||
and memory barriers, and the equivalents in QEMU:
|
||||
|
||||
- atomic operations in Linux are always on a 32-bit int type and
|
||||
use a boxed atomic_t type; atomic operations in QEMU are polymorphic
|
||||
and use normal C types.
|
||||
|
||||
- Originally, atomic_read and atomic_set in Linux gave no guarantee
|
||||
at all. Linux 4.1 updated them to implement volatile
|
||||
semantics via ACCESS_ONCE (or the more recent READ/WRITE_ONCE).
|
||||
|
||||
QEMU's atomic_read/set implement, if the compiler supports it, C11
|
||||
atomic relaxed semantics, and volatile semantics otherwise.
|
||||
Both semantics prevent the compiler from doing certain transformations;
|
||||
the difference is that atomic accesses are guaranteed to be atomic,
|
||||
while volatile accesses aren't. Thus, in the volatile case we just cross
|
||||
our fingers hoping that the compiler will generate atomic accesses,
|
||||
since we assume the variables passed are machine-word sized and
|
||||
properly aligned.
|
||||
No barriers are implied by atomic_read/set in either Linux or QEMU.
|
||||
|
||||
- atomic read-modify-write operations in Linux are of three kinds:
|
||||
|
||||
atomic_OP returns void
|
||||
atomic_OP_return returns new value of the variable
|
||||
atomic_fetch_OP returns the old value of the variable
|
||||
atomic_cmpxchg returns the old value of the variable
|
||||
|
||||
In QEMU, the second kind does not exist. Currently Linux has
|
||||
atomic_fetch_or only. QEMU provides and, or, inc, dec, add, sub.
|
||||
|
||||
- different atomic read-modify-write operations in Linux imply
|
||||
a different set of memory barriers; in QEMU, all of them enforce
|
||||
sequential consistency, which means they imply full memory barriers
|
||||
before and after the operation.
|
||||
|
||||
- Linux does not have an equivalent of atomic_mb_set(). In particular,
|
||||
note that smp_store_mb() is a little weaker than atomic_mb_set().
|
||||
atomic_mb_read() compiles to the same instructions as Linux's
|
||||
smp_load_acquire(), but this should be treated as an implementation
|
||||
detail.
|
||||
|
||||
SOURCES
|
||||
=======
|
||||
|
||||
* Documentation/memory-barriers.txt from the Linux kernel
|
||||
|
||||
* "The JSR-133 Cookbook for Compiler Writers", available at
|
||||
http://g.oswego.edu/dl/jmm/cookbook.html
|
@ -17,6 +17,7 @@ Contents:
|
||||
loads-stores
|
||||
memory
|
||||
migration
|
||||
atomics
|
||||
stable-process
|
||||
testing
|
||||
decodetree
|
||||
|
Loading…
Reference in New Issue
Block a user