mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 20:19:44 +00:00
target/arm/kvm64: Add kvm_arch_get/put_sve
These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the swabbing is different than it is for fpsmid because the vector format is a little-endian stream of words. Signed-off-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Message-id: 20191031142734.8590-6-drjones@redhat.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
0df9142d27
commit
40b3fd21fb
@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs)
|
||||
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
|
||||
{
|
||||
/* Return true if the regidx is a register we should synchronize
|
||||
* via the cpreg_tuples array (ie is not a core reg we sync by
|
||||
* hand in kvm_arch_get/put_registers())
|
||||
* via the cpreg_tuples array (ie is not a core or sve reg that
|
||||
* we sync by hand in kvm_arch_get/put_registers())
|
||||
*/
|
||||
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
|
||||
case KVM_REG_ARM_CORE:
|
||||
case KVM_REG_ARM64_SVE:
|
||||
return false;
|
||||
default:
|
||||
return true;
|
||||
@ -721,10 +722,8 @@ int kvm_arm_cpreg_level(uint64_t regidx)
|
||||
|
||||
static int kvm_arch_put_fpsimd(CPUState *cs)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
CPUARMState *env = &cpu->env;
|
||||
CPUARMState *env = &ARM_CPU(cs)->env;
|
||||
struct kvm_one_reg reg;
|
||||
uint32_t fpr;
|
||||
int i, ret;
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
@ -742,17 +741,73 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
|
||||
}
|
||||
}
|
||||
|
||||
reg.addr = (uintptr_t)(&fpr);
|
||||
fpr = vfp_get_fpsr(env);
|
||||
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* SVE registers are encoded in KVM's memory in an endianness-invariant format.
|
||||
* The byte at offset i from the start of the in-memory representation contains
|
||||
* the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
|
||||
* lowest offsets are stored in the lowest memory addresses, then that nearly
|
||||
* matches QEMU's representation, which is to use an array of host-endian
|
||||
* uint64_t's, where the lower offsets are at the lower indices. To complete
|
||||
* the translation we just need to byte swap the uint64_t's on big-endian hosts.
|
||||
*/
|
||||
static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
|
||||
{
|
||||
#ifdef HOST_WORDS_BIGENDIAN
|
||||
int i;
|
||||
|
||||
for (i = 0; i < nr; ++i) {
|
||||
dst[i] = bswap64(src[i]);
|
||||
}
|
||||
|
||||
reg.addr = (uintptr_t)(&fpr);
|
||||
fpr = vfp_get_fpcr(env);
|
||||
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
|
||||
return dst;
|
||||
#else
|
||||
return src;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
|
||||
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
|
||||
* code the slice index to zero for now as it's unlikely we'll need more than
|
||||
* one slice for quite some time.
|
||||
*/
|
||||
static int kvm_arch_put_sve(CPUState *cs)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
CPUARMState *env = &cpu->env;
|
||||
uint64_t tmp[ARM_MAX_VQ * 2];
|
||||
uint64_t *r;
|
||||
struct kvm_one_reg reg;
|
||||
int n, ret;
|
||||
|
||||
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
|
||||
r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
|
||||
reg.addr = (uintptr_t)r;
|
||||
reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
|
||||
r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
|
||||
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
||||
reg.addr = (uintptr_t)r;
|
||||
reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
|
||||
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
||||
reg.addr = (uintptr_t)r;
|
||||
reg.id = KVM_REG_ARM64_SVE_FFR(0);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
@ -765,6 +820,7 @@ int kvm_arch_put_registers(CPUState *cs, int level)
|
||||
{
|
||||
struct kvm_one_reg reg;
|
||||
uint64_t val;
|
||||
uint32_t fpr;
|
||||
int i, ret;
|
||||
unsigned int el;
|
||||
|
||||
@ -855,7 +911,27 @@ int kvm_arch_put_registers(CPUState *cs, int level)
|
||||
}
|
||||
}
|
||||
|
||||
ret = kvm_arch_put_fpsimd(cs);
|
||||
if (cpu_isar_feature(aa64_sve, cpu)) {
|
||||
ret = kvm_arch_put_sve(cs);
|
||||
} else {
|
||||
ret = kvm_arch_put_fpsimd(cs);
|
||||
}
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
reg.addr = (uintptr_t)(&fpr);
|
||||
fpr = vfp_get_fpsr(env);
|
||||
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
reg.addr = (uintptr_t)(&fpr);
|
||||
fpr = vfp_get_fpcr(env);
|
||||
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
@ -878,10 +954,8 @@ int kvm_arch_put_registers(CPUState *cs, int level)
|
||||
|
||||
static int kvm_arch_get_fpsimd(CPUState *cs)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
CPUARMState *env = &cpu->env;
|
||||
CPUARMState *env = &ARM_CPU(cs)->env;
|
||||
struct kvm_one_reg reg;
|
||||
uint32_t fpr;
|
||||
int i, ret;
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
@ -899,21 +973,53 @@ static int kvm_arch_get_fpsimd(CPUState *cs)
|
||||
}
|
||||
}
|
||||
|
||||
reg.addr = (uintptr_t)(&fpr);
|
||||
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
vfp_set_fpsr(env, fpr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
reg.addr = (uintptr_t)(&fpr);
|
||||
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
|
||||
/*
|
||||
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
|
||||
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
|
||||
* code the slice index to zero for now as it's unlikely we'll need more than
|
||||
* one slice for quite some time.
|
||||
*/
|
||||
static int kvm_arch_get_sve(CPUState *cs)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
CPUARMState *env = &cpu->env;
|
||||
struct kvm_one_reg reg;
|
||||
uint64_t *r;
|
||||
int n, ret;
|
||||
|
||||
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
|
||||
r = &env->vfp.zregs[n].d[0];
|
||||
reg.addr = (uintptr_t)r;
|
||||
reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
sve_bswap64(r, r, cpu->sve_max_vq * 2);
|
||||
}
|
||||
|
||||
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
|
||||
r = &env->vfp.pregs[n].p[0];
|
||||
reg.addr = (uintptr_t)r;
|
||||
reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
||||
}
|
||||
|
||||
r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
|
||||
reg.addr = (uintptr_t)r;
|
||||
reg.id = KVM_REG_ARM64_SVE_FFR(0);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
vfp_set_fpcr(env, fpr);
|
||||
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -923,6 +1029,7 @@ int kvm_arch_get_registers(CPUState *cs)
|
||||
struct kvm_one_reg reg;
|
||||
uint64_t val;
|
||||
unsigned int el;
|
||||
uint32_t fpr;
|
||||
int i, ret;
|
||||
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
@ -1012,11 +1119,31 @@ int kvm_arch_get_registers(CPUState *cs)
|
||||
env->spsr = env->banked_spsr[i];
|
||||
}
|
||||
|
||||
ret = kvm_arch_get_fpsimd(cs);
|
||||
if (cpu_isar_feature(aa64_sve, cpu)) {
|
||||
ret = kvm_arch_get_sve(cs);
|
||||
} else {
|
||||
ret = kvm_arch_get_fpsimd(cs);
|
||||
}
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
reg.addr = (uintptr_t)(&fpr);
|
||||
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
vfp_set_fpsr(env, fpr);
|
||||
|
||||
reg.addr = (uintptr_t)(&fpr);
|
||||
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
|
||||
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
vfp_set_fpcr(env, fpr);
|
||||
|
||||
ret = kvm_get_vcpu_events(cpu);
|
||||
if (ret) {
|
||||
return ret;
|
||||
|
Loading…
Reference in New Issue
Block a user