Fix NaN handling for MIPS and HPPA.

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3655 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
ths 2007-11-16 14:57:36 +00:00
parent 7863667f35
commit 5a6932d51d

View File

@ -30,6 +30,12 @@ these four paragraphs for those parts of this code that are retained.
=============================================================================*/
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#define SNAN_BIT_IS_ONE 1
#else
#define SNAN_BIT_IS_ONE 0
#endif
/*----------------------------------------------------------------------------
| Underflow tininess-detection mode, statically initialized to default value.
| (The declaration in `softfloat.h' must match the `int8' type here.)
@ -45,9 +51,7 @@ int8 float_detect_tininess = float_tininess_after_rounding;
void float_raise( int8 flags STATUS_PARAM )
{
STATUS(float_exception_flags) |= flags;
}
/*----------------------------------------------------------------------------
@ -61,20 +65,20 @@ typedef struct {
/*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#define float32_default_nan 0xFF800000
#if SNAN_BIT_IS_ONE
#define float32_default_nan 0x7FBFFFFF
#else
#define float32_default_nan 0xFFC00000
#endif
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a NaN;
| otherwise returns 0.
| Returns 1 if the single-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
int float32_is_nan( float32 a )
{
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#if SNAN_BIT_IS_ONE
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
#else
return ( 0xFF800000 <= (bits32) ( a<<1 ) );
@ -88,7 +92,7 @@ int float32_is_nan( float32 a )
int float32_is_signaling_nan( float32 a )
{
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#if SNAN_BIT_IS_ONE
return ( 0xFF800000 <= (bits32) ( a<<1 ) );
#else
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
@ -110,7 +114,6 @@ static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
z.low = 0;
z.high = ( (bits64) a )<<41;
return z;
}
/*----------------------------------------------------------------------------
@ -120,9 +123,7 @@ static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
static float32 commonNaNToFloat32( commonNaNT a )
{
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
}
/*----------------------------------------------------------------------------
@ -139,7 +140,7 @@ static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
aIsSignalingNaN = float32_is_signaling_nan( a );
bIsNaN = float32_is_nan( b );
bIsSignalingNaN = float32_is_signaling_nan( b );
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#if SNAN_BIT_IS_ONE
a &= ~0x00400000;
b &= ~0x00400000;
#else
@ -161,26 +162,25 @@ static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
else {
return b;
}
}
/*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#define float64_default_nan LIT64( 0xFFF0000000000000 )
#if SNAN_BIT_IS_ONE
#define float64_default_nan LIT64( 0x7FF7FFFFFFFFFFFF )
#else
#define float64_default_nan LIT64( 0xFFF8000000000000 )
#endif
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a NaN;
| otherwise returns 0.
| Returns 1 if the double-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
int float64_is_nan( float64 a )
{
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#if SNAN_BIT_IS_ONE
return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
@ -196,7 +196,7 @@ int float64_is_nan( float64 a )
int float64_is_signaling_nan( float64 a )
{
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#if SNAN_BIT_IS_ONE
return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
#else
return
@ -220,7 +220,6 @@ static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
z.low = 0;
z.high = a<<12;
return z;
}
/*----------------------------------------------------------------------------
@ -230,12 +229,10 @@ static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
static float64 commonNaNToFloat64( commonNaNT a )
{
return
( ( (bits64) a.sign )<<63 )
| LIT64( 0x7FF8000000000000 )
| ( a.high>>12 );
}
/*----------------------------------------------------------------------------
@ -252,7 +249,7 @@ static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
aIsSignalingNaN = float64_is_signaling_nan( a );
bIsNaN = float64_is_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b );
#if defined(TARGET_MIPS) || defined(TARGET_HPPA)
#if SNAN_BIT_IS_ONE
a &= ~LIT64( 0x0008000000000000 );
b &= ~LIT64( 0x0008000000000000 );
#else
@ -274,7 +271,6 @@ static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
else {
return b;
}
}
#ifdef FLOATX80
@ -284,19 +280,32 @@ static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
| `high' and `low' values hold the most- and least-significant bits,
| respectively.
*----------------------------------------------------------------------------*/
#if SNAN_BIT_IS_ONE
#define floatx80_default_nan_high 0x7FFF
#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
#else
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
#endif
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| NaN; otherwise returns 0.
| quiet NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
int floatx80_is_nan( floatx80 a )
{
#if SNAN_BIT_IS_ONE
bits64 aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
return
( ( a.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 )
&& ( a.low == aLow );
#else
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
#endif
}
/*----------------------------------------------------------------------------
@ -306,6 +315,9 @@ int floatx80_is_nan( floatx80 a )
int floatx80_is_signaling_nan( floatx80 a )
{
#if SNAN_BIT_IS_ONE
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
#else
bits64 aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
@ -313,7 +325,7 @@ int floatx80_is_signaling_nan( floatx80 a )
( ( a.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 )
&& ( a.low == aLow );
#endif
}
/*----------------------------------------------------------------------------
@ -331,7 +343,6 @@ static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
z.low = 0;
z.high = a.low<<1;
return z;
}
/*----------------------------------------------------------------------------
@ -346,7 +357,6 @@ static floatx80 commonNaNToFloatx80( commonNaNT a )
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
return z;
}
/*----------------------------------------------------------------------------
@ -363,8 +373,13 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b );
#if SNAN_BIT_IS_ONE
a.low &= ~LIT64( 0xC000000000000000 );
b.low &= ~LIT64( 0xC000000000000000 );
#else
a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 );
#endif
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
if ( aIsSignalingNaN ) {
if ( bIsSignalingNaN ) goto returnLargerSignificand;
@ -380,7 +395,6 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
else {
return b;
}
}
#endif
@ -391,21 +405,30 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
| The pattern for a default generated quadruple-precision NaN. The `high' and
| `low' values hold the most- and least-significant bits, respectively.
*----------------------------------------------------------------------------*/
#if SNAN_BIT_IS_ONE
#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
#else
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
#define float128_default_nan_low LIT64( 0x0000000000000000 )
#endif
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
| otherwise returns 0.
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
int float128_is_nan( float128 a )
{
#if SNAN_BIT_IS_ONE
return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
#else
return
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
#endif
}
/*----------------------------------------------------------------------------
@ -415,11 +438,15 @@ int float128_is_nan( float128 a )
int float128_is_signaling_nan( float128 a )
{
#if SNAN_BIT_IS_ONE
return
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
#else
return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
#endif
}
/*----------------------------------------------------------------------------
@ -436,7 +463,6 @@ static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
z.sign = a.high>>63;
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
return z;
}
/*----------------------------------------------------------------------------
@ -451,7 +477,6 @@ static float128 commonNaNToFloat128( commonNaNT a )
shift128Right( a.high, a.low, 16, &z.high, &z.low );
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
return z;
}
/*----------------------------------------------------------------------------
@ -468,8 +493,13 @@ static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
aIsSignalingNaN = float128_is_signaling_nan( a );
bIsNaN = float128_is_nan( b );
bIsSignalingNaN = float128_is_signaling_nan( b );
#if SNAN_BIT_IS_ONE
a.high &= ~LIT64( 0x0000800000000000 );
b.high &= ~LIT64( 0x0000800000000000 );
#else
a.high |= LIT64( 0x0000800000000000 );
b.high |= LIT64( 0x0000800000000000 );
#endif
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
if ( aIsSignalingNaN ) {
if ( bIsSignalingNaN ) goto returnLargerSignificand;
@ -485,8 +515,6 @@ static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
else {
return b;
}
}
#endif