i.MX6UL: Add i.MX6UL specific CCM device

Signed-off-by: Jean-Christophe Dubois <jcd@tribudubois.net>
Message-id: 34b6704ceb81b49e35ce1ad162bf758e5141ff87.1532984236.git.jcd@tribudubois.net
[PMM: fixed some comment typos etc]
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Jean-Christophe Dubois 2018-08-16 14:05:28 +01:00 committed by Peter Maydell
parent adf92eab90
commit 781182e10f
4 changed files with 1120 additions and 0 deletions

View File

@ -36,6 +36,7 @@ obj-$(CONFIG_IMX) += imx_ccm.o
obj-$(CONFIG_IMX) += imx31_ccm.o
obj-$(CONFIG_IMX) += imx25_ccm.o
obj-$(CONFIG_IMX) += imx6_ccm.o
obj-$(CONFIG_IMX) += imx6ul_ccm.o
obj-$(CONFIG_IMX) += imx6_src.o
obj-$(CONFIG_IMX) += imx7_ccm.o
obj-$(CONFIG_IMX) += imx2_wdt.o

886
hw/misc/imx6ul_ccm.c Normal file
View File

@ -0,0 +1,886 @@
/*
* IMX6UL Clock Control Module
*
* Copyright (c) 2018 Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* To get the timer frequencies right, we need to emulate at least part of
* the CCM.
*/
#include "qemu/osdep.h"
#include "hw/registerfields.h"
#include "hw/misc/imx6ul_ccm.h"
#include "qemu/log.h"
#include "trace.h"
static const char *imx6ul_ccm_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case CCM_CCR:
return "CCR";
case CCM_CCDR:
return "CCDR";
case CCM_CSR:
return "CSR";
case CCM_CCSR:
return "CCSR";
case CCM_CACRR:
return "CACRR";
case CCM_CBCDR:
return "CBCDR";
case CCM_CBCMR:
return "CBCMR";
case CCM_CSCMR1:
return "CSCMR1";
case CCM_CSCMR2:
return "CSCMR2";
case CCM_CSCDR1:
return "CSCDR1";
case CCM_CS1CDR:
return "CS1CDR";
case CCM_CS2CDR:
return "CS2CDR";
case CCM_CDCDR:
return "CDCDR";
case CCM_CHSCCDR:
return "CHSCCDR";
case CCM_CSCDR2:
return "CSCDR2";
case CCM_CSCDR3:
return "CSCDR3";
case CCM_CDHIPR:
return "CDHIPR";
case CCM_CTOR:
return "CTOR";
case CCM_CLPCR:
return "CLPCR";
case CCM_CISR:
return "CISR";
case CCM_CIMR:
return "CIMR";
case CCM_CCOSR:
return "CCOSR";
case CCM_CGPR:
return "CGPR";
case CCM_CCGR0:
return "CCGR0";
case CCM_CCGR1:
return "CCGR1";
case CCM_CCGR2:
return "CCGR2";
case CCM_CCGR3:
return "CCGR3";
case CCM_CCGR4:
return "CCGR4";
case CCM_CCGR5:
return "CCGR5";
case CCM_CCGR6:
return "CCGR6";
case CCM_CMEOR:
return "CMEOR";
default:
sprintf(unknown, "%d ?", reg);
return unknown;
}
}
static const char *imx6ul_analog_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case CCM_ANALOG_PLL_ARM:
return "PLL_ARM";
case CCM_ANALOG_PLL_ARM_SET:
return "PLL_ARM_SET";
case CCM_ANALOG_PLL_ARM_CLR:
return "PLL_ARM_CLR";
case CCM_ANALOG_PLL_ARM_TOG:
return "PLL_ARM_TOG";
case CCM_ANALOG_PLL_USB1:
return "PLL_USB1";
case CCM_ANALOG_PLL_USB1_SET:
return "PLL_USB1_SET";
case CCM_ANALOG_PLL_USB1_CLR:
return "PLL_USB1_CLR";
case CCM_ANALOG_PLL_USB1_TOG:
return "PLL_USB1_TOG";
case CCM_ANALOG_PLL_USB2:
return "PLL_USB2";
case CCM_ANALOG_PLL_USB2_SET:
return "PLL_USB2_SET";
case CCM_ANALOG_PLL_USB2_CLR:
return "PLL_USB2_CLR";
case CCM_ANALOG_PLL_USB2_TOG:
return "PLL_USB2_TOG";
case CCM_ANALOG_PLL_SYS:
return "PLL_SYS";
case CCM_ANALOG_PLL_SYS_SET:
return "PLL_SYS_SET";
case CCM_ANALOG_PLL_SYS_CLR:
return "PLL_SYS_CLR";
case CCM_ANALOG_PLL_SYS_TOG:
return "PLL_SYS_TOG";
case CCM_ANALOG_PLL_SYS_SS:
return "PLL_SYS_SS";
case CCM_ANALOG_PLL_SYS_NUM:
return "PLL_SYS_NUM";
case CCM_ANALOG_PLL_SYS_DENOM:
return "PLL_SYS_DENOM";
case CCM_ANALOG_PLL_AUDIO:
return "PLL_AUDIO";
case CCM_ANALOG_PLL_AUDIO_SET:
return "PLL_AUDIO_SET";
case CCM_ANALOG_PLL_AUDIO_CLR:
return "PLL_AUDIO_CLR";
case CCM_ANALOG_PLL_AUDIO_TOG:
return "PLL_AUDIO_TOG";
case CCM_ANALOG_PLL_AUDIO_NUM:
return "PLL_AUDIO_NUM";
case CCM_ANALOG_PLL_AUDIO_DENOM:
return "PLL_AUDIO_DENOM";
case CCM_ANALOG_PLL_VIDEO:
return "PLL_VIDEO";
case CCM_ANALOG_PLL_VIDEO_SET:
return "PLL_VIDEO_SET";
case CCM_ANALOG_PLL_VIDEO_CLR:
return "PLL_VIDEO_CLR";
case CCM_ANALOG_PLL_VIDEO_TOG:
return "PLL_VIDEO_TOG";
case CCM_ANALOG_PLL_VIDEO_NUM:
return "PLL_VIDEO_NUM";
case CCM_ANALOG_PLL_VIDEO_DENOM:
return "PLL_VIDEO_DENOM";
case CCM_ANALOG_PLL_ENET:
return "PLL_ENET";
case CCM_ANALOG_PLL_ENET_SET:
return "PLL_ENET_SET";
case CCM_ANALOG_PLL_ENET_CLR:
return "PLL_ENET_CLR";
case CCM_ANALOG_PLL_ENET_TOG:
return "PLL_ENET_TOG";
case CCM_ANALOG_PFD_480:
return "PFD_480";
case CCM_ANALOG_PFD_480_SET:
return "PFD_480_SET";
case CCM_ANALOG_PFD_480_CLR:
return "PFD_480_CLR";
case CCM_ANALOG_PFD_480_TOG:
return "PFD_480_TOG";
case CCM_ANALOG_PFD_528:
return "PFD_528";
case CCM_ANALOG_PFD_528_SET:
return "PFD_528_SET";
case CCM_ANALOG_PFD_528_CLR:
return "PFD_528_CLR";
case CCM_ANALOG_PFD_528_TOG:
return "PFD_528_TOG";
case CCM_ANALOG_MISC0:
return "MISC0";
case CCM_ANALOG_MISC0_SET:
return "MISC0_SET";
case CCM_ANALOG_MISC0_CLR:
return "MISC0_CLR";
case CCM_ANALOG_MISC0_TOG:
return "MISC0_TOG";
case CCM_ANALOG_MISC2:
return "MISC2";
case CCM_ANALOG_MISC2_SET:
return "MISC2_SET";
case CCM_ANALOG_MISC2_CLR:
return "MISC2_CLR";
case CCM_ANALOG_MISC2_TOG:
return "MISC2_TOG";
case PMU_REG_1P1:
return "PMU_REG_1P1";
case PMU_REG_3P0:
return "PMU_REG_3P0";
case PMU_REG_2P5:
return "PMU_REG_2P5";
case PMU_REG_CORE:
return "PMU_REG_CORE";
case PMU_MISC1:
return "PMU_MISC1";
case PMU_MISC1_SET:
return "PMU_MISC1_SET";
case PMU_MISC1_CLR:
return "PMU_MISC1_CLR";
case PMU_MISC1_TOG:
return "PMU_MISC1_TOG";
case USB_ANALOG_DIGPROG:
return "USB_ANALOG_DIGPROG";
default:
sprintf(unknown, "%d ?", reg);
return unknown;
}
}
#define CKIH_FREQ 24000000 /* 24MHz crystal input */
static const VMStateDescription vmstate_imx6ul_ccm = {
.name = TYPE_IMX6UL_CCM,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(ccm, IMX6ULCCMState, CCM_MAX),
VMSTATE_UINT32_ARRAY(analog, IMX6ULCCMState, CCM_ANALOG_MAX),
VMSTATE_END_OF_LIST()
},
};
static uint64_t imx6ul_analog_get_osc_clk(IMX6ULCCMState *dev)
{
uint64_t freq = CKIH_FREQ;
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_get_pll2_clk(IMX6ULCCMState *dev)
{
uint64_t freq = imx6ul_analog_get_osc_clk(dev);
if (FIELD_EX32(dev->analog[CCM_ANALOG_PLL_SYS],
ANALOG_PLL_SYS, DIV_SELECT)) {
freq *= 22;
} else {
freq *= 20;
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_get_pll3_clk(IMX6ULCCMState *dev)
{
uint64_t freq = imx6ul_analog_get_osc_clk(dev) * 20;
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_get_pll2_pfd0_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_analog_get_pll2_clk(dev) * 18
/ FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
ANALOG_PFD_528, PFD0_FRAC);
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_get_pll2_pfd2_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_analog_get_pll2_clk(dev) * 18
/ FIELD_EX32(dev->analog[CCM_ANALOG_PFD_528],
ANALOG_PFD_528, PFD2_FRAC);
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_analog_pll2_bypass_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_periph_clk2_sel_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PERIPH_CLK2_SEL)) {
case 0:
freq = imx6ul_analog_get_pll3_clk(dev);
break;
case 1:
freq = imx6ul_analog_get_osc_clk(dev);
break;
case 2:
freq = imx6ul_analog_pll2_bypass_clk(dev);
break;
case 3:
/* We should never get there as 3 is a reserved value */
qemu_log_mask(LOG_GUEST_ERROR,
"[%s]%s: unsupported PERIPH_CLK2_SEL value 3\n",
TYPE_IMX6UL_CCM, __func__);
/* freq is set to 0 as we don't know what it should be */
break;
default:
g_assert_not_reached();
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_periph_clk_sel_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
switch (FIELD_EX32(dev->ccm[CCM_CBCMR], CBCMR, PRE_PERIPH_CLK_SEL)) {
case 0:
freq = imx6ul_analog_get_pll2_clk(dev);
break;
case 1:
freq = imx6ul_analog_get_pll2_pfd2_clk(dev);
break;
case 2:
freq = imx6ul_analog_get_pll2_pfd0_clk(dev);
break;
case 3:
freq = imx6ul_analog_get_pll2_pfd2_clk(dev) / 2;
break;
default:
g_assert_not_reached();
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_periph_clk2_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_ccm_get_periph_clk2_sel_clk(dev)
/ (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK2_PODF));
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_periph_sel_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
switch (FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, PERIPH_CLK_SEL)) {
case 0:
freq = imx6ul_ccm_get_periph_clk_sel_clk(dev);
break;
case 1:
freq = imx6ul_ccm_get_periph_clk2_clk(dev);
break;
default:
g_assert_not_reached();
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_ahb_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_ccm_get_periph_sel_clk(dev)
/ (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, AHB_PODF));
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_ipg_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_ccm_get_ahb_clk(dev)
/ (1 + FIELD_EX32(dev->ccm[CCM_CBCDR], CBCDR, IPG_PODF));
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_per_sel_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
switch (FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_CLK_SEL)) {
case 0:
freq = imx6ul_ccm_get_ipg_clk(dev);
break;
case 1:
freq = imx6ul_analog_get_osc_clk(dev);
break;
default:
g_assert_not_reached();
}
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint64_t imx6ul_ccm_get_per_clk(IMX6ULCCMState *dev)
{
uint64_t freq = 0;
freq = imx6ul_ccm_get_per_sel_clk(dev)
/ (1 + FIELD_EX32(dev->ccm[CCM_CSCMR1], CSCMR1, PERCLK_PODF));
trace_ccm_freq((uint32_t)freq);
return freq;
}
static uint32_t imx6ul_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
{
uint32_t freq = 0;
IMX6ULCCMState *s = IMX6UL_CCM(dev);
switch (clock) {
case CLK_NONE:
break;
case CLK_IPG:
freq = imx6ul_ccm_get_ipg_clk(s);
break;
case CLK_IPG_HIGH:
freq = imx6ul_ccm_get_per_clk(s);
break;
case CLK_32k:
freq = CKIL_FREQ;
break;
case CLK_HIGH:
freq = CKIH_FREQ;
break;
case CLK_HIGH_DIV:
freq = CKIH_FREQ / 8;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
TYPE_IMX6UL_CCM, __func__, clock);
break;
}
trace_ccm_clock_freq(clock, freq);
return freq;
}
static void imx6ul_ccm_reset(DeviceState *dev)
{
IMX6ULCCMState *s = IMX6UL_CCM(dev);
trace_ccm_entry();
s->ccm[CCM_CCR] = 0x0401167F;
s->ccm[CCM_CCDR] = 0x00000000;
s->ccm[CCM_CSR] = 0x00000010;
s->ccm[CCM_CCSR] = 0x00000100;
s->ccm[CCM_CACRR] = 0x00000000;
s->ccm[CCM_CBCDR] = 0x00018D00;
s->ccm[CCM_CBCMR] = 0x24860324;
s->ccm[CCM_CSCMR1] = 0x04900080;
s->ccm[CCM_CSCMR2] = 0x03192F06;
s->ccm[CCM_CSCDR1] = 0x00490B00;
s->ccm[CCM_CS1CDR] = 0x0EC102C1;
s->ccm[CCM_CS2CDR] = 0x000336C1;
s->ccm[CCM_CDCDR] = 0x33F71F92;
s->ccm[CCM_CHSCCDR] = 0x000248A4;
s->ccm[CCM_CSCDR2] = 0x00029B48;
s->ccm[CCM_CSCDR3] = 0x00014841;
s->ccm[CCM_CDHIPR] = 0x00000000;
s->ccm[CCM_CTOR] = 0x00000000;
s->ccm[CCM_CLPCR] = 0x00000079;
s->ccm[CCM_CISR] = 0x00000000;
s->ccm[CCM_CIMR] = 0xFFFFFFFF;
s->ccm[CCM_CCOSR] = 0x000A0001;
s->ccm[CCM_CGPR] = 0x0000FE62;
s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
s->analog[CCM_ANALOG_PLL_ARM] = 0x00013063;
s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
s->analog[PMU_REG_1P1] = 0x00001073;
s->analog[PMU_REG_3P0] = 0x00000F74;
s->analog[PMU_REG_2P5] = 0x00001073;
s->analog[PMU_REG_CORE] = 0x00482012;
s->analog[PMU_MISC0] = 0x04000000;
s->analog[PMU_MISC1] = 0x00000000;
s->analog[PMU_MISC2] = 0x00272727;
s->analog[PMU_LOWPWR_CTRL] = 0x00004009;
s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x01000004;
s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x01000004;
s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
s->analog[USB_ANALOG_DIGPROG] = 0x00640000;
/* all PLLs need to be locked */
s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
s->analog[TEMPMON_TEMPSENSE0] = 0x00000001;
s->analog[TEMPMON_TEMPSENSE1] = 0x00000001;
s->analog[TEMPMON_TEMPSENSE2] = 0x00000000;
}
static uint64_t imx6ul_ccm_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value = 0;
uint32_t index = offset >> 2;
IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
assert(index < CCM_MAX);
value = s->ccm[index];
trace_ccm_read_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
return (uint64_t)value;
}
static void imx6ul_ccm_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
uint32_t index = offset >> 2;
IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
assert(index < CCM_MAX);
trace_ccm_write_reg(imx6ul_ccm_reg_name(index), (uint32_t)value);
/*
* We will do a better implementation later. In particular some bits
* cannot be written to.
*/
s->ccm[index] = (uint32_t)value;
}
static uint64_t imx6ul_analog_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value;
uint32_t index = offset >> 2;
IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
assert(index < CCM_ANALOG_MAX);
switch (index) {
case CCM_ANALOG_PLL_ARM_SET:
case CCM_ANALOG_PLL_USB1_SET:
case CCM_ANALOG_PLL_USB2_SET:
case CCM_ANALOG_PLL_SYS_SET:
case CCM_ANALOG_PLL_AUDIO_SET:
case CCM_ANALOG_PLL_VIDEO_SET:
case CCM_ANALOG_PLL_ENET_SET:
case CCM_ANALOG_PFD_480_SET:
case CCM_ANALOG_PFD_528_SET:
case CCM_ANALOG_MISC0_SET:
case PMU_MISC1_SET:
case CCM_ANALOG_MISC2_SET:
case USB_ANALOG_USB1_VBUS_DETECT_SET:
case USB_ANALOG_USB1_CHRG_DETECT_SET:
case USB_ANALOG_USB1_MISC_SET:
case USB_ANALOG_USB2_VBUS_DETECT_SET:
case USB_ANALOG_USB2_CHRG_DETECT_SET:
case USB_ANALOG_USB2_MISC_SET:
case TEMPMON_TEMPSENSE0_SET:
case TEMPMON_TEMPSENSE1_SET:
case TEMPMON_TEMPSENSE2_SET:
/*
* All REG_NAME_SET register access are in fact targeting
* the REG_NAME register.
*/
value = s->analog[index - 1];
break;
case CCM_ANALOG_PLL_ARM_CLR:
case CCM_ANALOG_PLL_USB1_CLR:
case CCM_ANALOG_PLL_USB2_CLR:
case CCM_ANALOG_PLL_SYS_CLR:
case CCM_ANALOG_PLL_AUDIO_CLR:
case CCM_ANALOG_PLL_VIDEO_CLR:
case CCM_ANALOG_PLL_ENET_CLR:
case CCM_ANALOG_PFD_480_CLR:
case CCM_ANALOG_PFD_528_CLR:
case CCM_ANALOG_MISC0_CLR:
case PMU_MISC1_CLR:
case CCM_ANALOG_MISC2_CLR:
case USB_ANALOG_USB1_VBUS_DETECT_CLR:
case USB_ANALOG_USB1_CHRG_DETECT_CLR:
case USB_ANALOG_USB1_MISC_CLR:
case USB_ANALOG_USB2_VBUS_DETECT_CLR:
case USB_ANALOG_USB2_CHRG_DETECT_CLR:
case USB_ANALOG_USB2_MISC_CLR:
case TEMPMON_TEMPSENSE0_CLR:
case TEMPMON_TEMPSENSE1_CLR:
case TEMPMON_TEMPSENSE2_CLR:
/*
* All REG_NAME_CLR register access are in fact targeting
* the REG_NAME register.
*/
value = s->analog[index - 2];
break;
case CCM_ANALOG_PLL_ARM_TOG:
case CCM_ANALOG_PLL_USB1_TOG:
case CCM_ANALOG_PLL_USB2_TOG:
case CCM_ANALOG_PLL_SYS_TOG:
case CCM_ANALOG_PLL_AUDIO_TOG:
case CCM_ANALOG_PLL_VIDEO_TOG:
case CCM_ANALOG_PLL_ENET_TOG:
case CCM_ANALOG_PFD_480_TOG:
case CCM_ANALOG_PFD_528_TOG:
case CCM_ANALOG_MISC0_TOG:
case PMU_MISC1_TOG:
case CCM_ANALOG_MISC2_TOG:
case USB_ANALOG_USB1_VBUS_DETECT_TOG:
case USB_ANALOG_USB1_CHRG_DETECT_TOG:
case USB_ANALOG_USB1_MISC_TOG:
case USB_ANALOG_USB2_VBUS_DETECT_TOG:
case USB_ANALOG_USB2_CHRG_DETECT_TOG:
case USB_ANALOG_USB2_MISC_TOG:
case TEMPMON_TEMPSENSE0_TOG:
case TEMPMON_TEMPSENSE1_TOG:
case TEMPMON_TEMPSENSE2_TOG:
/*
* All REG_NAME_TOG register access are in fact targeting
* the REG_NAME register.
*/
value = s->analog[index - 3];
break;
default:
value = s->analog[index];
break;
}
trace_ccm_read_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
return (uint64_t)value;
}
static void imx6ul_analog_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
uint32_t index = offset >> 2;
IMX6ULCCMState *s = (IMX6ULCCMState *)opaque;
assert(index < CCM_ANALOG_MAX);
trace_ccm_write_reg(imx6ul_analog_reg_name(index), (uint32_t)value);
switch (index) {
case CCM_ANALOG_PLL_ARM_SET:
case CCM_ANALOG_PLL_USB1_SET:
case CCM_ANALOG_PLL_USB2_SET:
case CCM_ANALOG_PLL_SYS_SET:
case CCM_ANALOG_PLL_AUDIO_SET:
case CCM_ANALOG_PLL_VIDEO_SET:
case CCM_ANALOG_PLL_ENET_SET:
case CCM_ANALOG_PFD_480_SET:
case CCM_ANALOG_PFD_528_SET:
case CCM_ANALOG_MISC0_SET:
case PMU_MISC1_SET:
case CCM_ANALOG_MISC2_SET:
case USB_ANALOG_USB1_VBUS_DETECT_SET:
case USB_ANALOG_USB1_CHRG_DETECT_SET:
case USB_ANALOG_USB1_MISC_SET:
case USB_ANALOG_USB2_VBUS_DETECT_SET:
case USB_ANALOG_USB2_CHRG_DETECT_SET:
case USB_ANALOG_USB2_MISC_SET:
/*
* All REG_NAME_SET register access are in fact targeting
* the REG_NAME register. So we change the value of the
* REG_NAME register, setting bits passed in the value.
*/
s->analog[index - 1] |= value;
break;
case CCM_ANALOG_PLL_ARM_CLR:
case CCM_ANALOG_PLL_USB1_CLR:
case CCM_ANALOG_PLL_USB2_CLR:
case CCM_ANALOG_PLL_SYS_CLR:
case CCM_ANALOG_PLL_AUDIO_CLR:
case CCM_ANALOG_PLL_VIDEO_CLR:
case CCM_ANALOG_PLL_ENET_CLR:
case CCM_ANALOG_PFD_480_CLR:
case CCM_ANALOG_PFD_528_CLR:
case CCM_ANALOG_MISC0_CLR:
case PMU_MISC1_CLR:
case CCM_ANALOG_MISC2_CLR:
case USB_ANALOG_USB1_VBUS_DETECT_CLR:
case USB_ANALOG_USB1_CHRG_DETECT_CLR:
case USB_ANALOG_USB1_MISC_CLR:
case USB_ANALOG_USB2_VBUS_DETECT_CLR:
case USB_ANALOG_USB2_CHRG_DETECT_CLR:
case USB_ANALOG_USB2_MISC_CLR:
/*
* All REG_NAME_CLR register access are in fact targeting
* the REG_NAME register. So we change the value of the
* REG_NAME register, unsetting bits passed in the value.
*/
s->analog[index - 2] &= ~value;
break;
case CCM_ANALOG_PLL_ARM_TOG:
case CCM_ANALOG_PLL_USB1_TOG:
case CCM_ANALOG_PLL_USB2_TOG:
case CCM_ANALOG_PLL_SYS_TOG:
case CCM_ANALOG_PLL_AUDIO_TOG:
case CCM_ANALOG_PLL_VIDEO_TOG:
case CCM_ANALOG_PLL_ENET_TOG:
case CCM_ANALOG_PFD_480_TOG:
case CCM_ANALOG_PFD_528_TOG:
case CCM_ANALOG_MISC0_TOG:
case PMU_MISC1_TOG:
case CCM_ANALOG_MISC2_TOG:
case USB_ANALOG_USB1_VBUS_DETECT_TOG:
case USB_ANALOG_USB1_CHRG_DETECT_TOG:
case USB_ANALOG_USB1_MISC_TOG:
case USB_ANALOG_USB2_VBUS_DETECT_TOG:
case USB_ANALOG_USB2_CHRG_DETECT_TOG:
case USB_ANALOG_USB2_MISC_TOG:
/*
* All REG_NAME_TOG register access are in fact targeting
* the REG_NAME register. So we change the value of the
* REG_NAME register, toggling bits passed in the value.
*/
s->analog[index - 3] ^= value;
break;
default:
/*
* We will do a better implementation later. In particular some bits
* cannot be written to.
*/
s->analog[index] = value;
break;
}
}
static const struct MemoryRegionOps imx6ul_ccm_ops = {
.read = imx6ul_ccm_read,
.write = imx6ul_ccm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static const struct MemoryRegionOps imx6ul_analog_ops = {
.read = imx6ul_analog_read,
.write = imx6ul_analog_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void imx6ul_ccm_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
SysBusDevice *sd = SYS_BUS_DEVICE(obj);
IMX6ULCCMState *s = IMX6UL_CCM(obj);
/* initialize a container for the all memory range */
memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6UL_CCM, 0x8000);
/* We initialize an IO memory region for the CCM part */
memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6ul_ccm_ops, s,
TYPE_IMX6UL_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
/* Add the CCM as a subregion at offset 0 */
memory_region_add_subregion(&s->container, 0, &s->ioccm);
/* We initialize an IO memory region for the ANALOG part */
memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6ul_analog_ops, s,
TYPE_IMX6UL_CCM ".analog",
CCM_ANALOG_MAX * sizeof(uint32_t));
/* Add the ANALOG as a subregion at offset 0x4000 */
memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
sysbus_init_mmio(sd, &s->container);
}
static void imx6ul_ccm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
dc->reset = imx6ul_ccm_reset;
dc->vmsd = &vmstate_imx6ul_ccm;
dc->desc = "i.MX6UL Clock Control Module";
ccm->get_clock_frequency = imx6ul_ccm_get_clock_frequency;
}
static const TypeInfo imx6ul_ccm_info = {
.name = TYPE_IMX6UL_CCM,
.parent = TYPE_IMX_CCM,
.instance_size = sizeof(IMX6ULCCMState),
.instance_init = imx6ul_ccm_init,
.class_init = imx6ul_ccm_class_init,
};
static void imx6ul_ccm_register_types(void)
{
type_register_static(&imx6ul_ccm_info);
}
type_init(imx6ul_ccm_register_types)

View File

@ -109,3 +109,10 @@ iotkit_secctl_s_write(uint32_t offset, uint64_t data, unsigned size) "IoTKit Sec
iotkit_secctl_ns_read(uint32_t offset, uint64_t data, unsigned size) "IoTKit SecCtl NS regs read: offset 0x%x data 0x%" PRIx64 " size %u"
iotkit_secctl_ns_write(uint32_t offset, uint64_t data, unsigned size) "IoTKit SecCtl NS regs write: offset 0x%x data 0x%" PRIx64 " size %u"
iotkit_secctl_reset(void) "IoTKit SecCtl: reset"
# hw/misc/imx6ul_ccm.c
ccm_entry(void) "\n"
ccm_freq(uint32_t freq) "freq = %d\n"
ccm_clock_freq(uint32_t clock, uint32_t freq) "(Clock = %d) = %d\n"
ccm_read_reg(const char *reg_name, uint32_t value) "reg[%s] <= 0x%" PRIx32 "\n"
ccm_write_reg(const char *reg_name, uint32_t value) "reg[%s] => 0x%" PRIx32 "\n"

View File

@ -0,0 +1,226 @@
/*
* IMX6UL Clock Control Module
*
* Copyright (C) 2018 by Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef IMX6UL_CCM_H
#define IMX6UL_CCM_H
#include "hw/misc/imx_ccm.h"
#include "qemu/bitops.h"
#define CCM_CCR 0
#define CCM_CCDR 1
#define CCM_CSR 2
#define CCM_CCSR 3
#define CCM_CACRR 4
#define CCM_CBCDR 5
#define CCM_CBCMR 6
#define CCM_CSCMR1 7
#define CCM_CSCMR2 8
#define CCM_CSCDR1 9
#define CCM_CS1CDR 10
#define CCM_CS2CDR 11
#define CCM_CDCDR 12
#define CCM_CHSCCDR 13
#define CCM_CSCDR2 14
#define CCM_CSCDR3 15
#define CCM_CDHIPR 18
#define CCM_CTOR 20
#define CCM_CLPCR 21
#define CCM_CISR 22
#define CCM_CIMR 23
#define CCM_CCOSR 24
#define CCM_CGPR 25
#define CCM_CCGR0 26
#define CCM_CCGR1 27
#define CCM_CCGR2 28
#define CCM_CCGR3 29
#define CCM_CCGR4 30
#define CCM_CCGR5 31
#define CCM_CCGR6 32
#define CCM_CMEOR 34
#define CCM_MAX 35
#define CCM_ANALOG_PLL_ARM 0
#define CCM_ANALOG_PLL_ARM_SET 1
#define CCM_ANALOG_PLL_ARM_CLR 2
#define CCM_ANALOG_PLL_ARM_TOG 3
#define CCM_ANALOG_PLL_USB1 4
#define CCM_ANALOG_PLL_USB1_SET 5
#define CCM_ANALOG_PLL_USB1_CLR 6
#define CCM_ANALOG_PLL_USB1_TOG 7
#define CCM_ANALOG_PLL_USB2 8
#define CCM_ANALOG_PLL_USB2_SET 9
#define CCM_ANALOG_PLL_USB2_CLR 10
#define CCM_ANALOG_PLL_USB2_TOG 11
#define CCM_ANALOG_PLL_SYS 12
#define CCM_ANALOG_PLL_SYS_SET 13
#define CCM_ANALOG_PLL_SYS_CLR 14
#define CCM_ANALOG_PLL_SYS_TOG 15
#define CCM_ANALOG_PLL_SYS_SS 16
#define CCM_ANALOG_PLL_SYS_NUM 20
#define CCM_ANALOG_PLL_SYS_DENOM 24
#define CCM_ANALOG_PLL_AUDIO 28
#define CCM_ANALOG_PLL_AUDIO_SET 29
#define CCM_ANALOG_PLL_AUDIO_CLR 30
#define CCM_ANALOG_PLL_AUDIO_TOG 31
#define CCM_ANALOG_PLL_AUDIO_NUM 32
#define CCM_ANALOG_PLL_AUDIO_DENOM 36
#define CCM_ANALOG_PLL_VIDEO 40
#define CCM_ANALOG_PLL_VIDEO_SET 41
#define CCM_ANALOG_PLL_VIDEO_CLR 42
#define CCM_ANALOG_PLL_VIDEO_TOG 44
#define CCM_ANALOG_PLL_VIDEO_NUM 46
#define CCM_ANALOG_PLL_VIDEO_DENOM 48
#define CCM_ANALOG_PLL_ENET 56
#define CCM_ANALOG_PLL_ENET_SET 57
#define CCM_ANALOG_PLL_ENET_CLR 58
#define CCM_ANALOG_PLL_ENET_TOG 59
#define CCM_ANALOG_PFD_480 60
#define CCM_ANALOG_PFD_480_SET 61
#define CCM_ANALOG_PFD_480_CLR 62
#define CCM_ANALOG_PFD_480_TOG 63
#define CCM_ANALOG_PFD_528 64
#define CCM_ANALOG_PFD_528_SET 65
#define CCM_ANALOG_PFD_528_CLR 66
#define CCM_ANALOG_PFD_528_TOG 67
/* PMU registers */
#define PMU_REG_1P1 68
#define PMU_REG_3P0 72
#define PMU_REG_2P5 76
#define PMU_REG_CORE 80
#define CCM_ANALOG_MISC0 84
#define PMU_MISC0 CCM_ANALOG_MISC0
#define CCM_ANALOG_MISC0_SET 85
#define PMU_MISC0_SET CCM_ANALOG_MISC0_SET
#define CCM_ANALOG_MISC0_CLR 86
#define PMU_MISC0_CLR CCM_ANALOG_MISC0_CLR
#define CCM_ANALOG_MISC0_TOG 87
#define PMU_MISC0_TOG CCM_ANALOG_MISC0_TOG
#define CCM_ANALOG_MISC1 88
#define PMU_MISC1 CCM_ANALOG_MISC1
#define CCM_ANALOG_MISC1_SET 89
#define PMU_MISC1_SET CCM_ANALOG_MISC1_SET
#define CCM_ANALOG_MISC1_CLR 90
#define PMU_MISC1_CLR CCM_ANALOG_MISC1_CLR
#define CCM_ANALOG_MISC1_TOG 91
#define PMU_MISC1_TOG CCM_ANALOG_MISC1_TOG
#define CCM_ANALOG_MISC2 92
#define PMU_MISC2 CCM_ANALOG_MISC2
#define CCM_ANALOG_MISC2_SET 93
#define PMU_MISC2_SET CCM_ANALOG_MISC2_SET
#define CCM_ANALOG_MISC2_CLR 94
#define PMU_MISC2_CLR CCM_ANALOG_MISC2_CLR
#define CCM_ANALOG_MISC2_TOG 95
#define PMU_MISC2_TOG CCM_ANALOG_MISC2_TOG
#define TEMPMON_TEMPSENSE0 96
#define TEMPMON_TEMPSENSE0_SET 97
#define TEMPMON_TEMPSENSE0_CLR 98
#define TEMPMON_TEMPSENSE0_TOG 99
#define TEMPMON_TEMPSENSE1 100
#define TEMPMON_TEMPSENSE1_SET 101
#define TEMPMON_TEMPSENSE1_CLR 102
#define TEMPMON_TEMPSENSE1_TOG 103
#define TEMPMON_TEMPSENSE2 164
#define TEMPMON_TEMPSENSE2_SET 165
#define TEMPMON_TEMPSENSE2_CLR 166
#define TEMPMON_TEMPSENSE2_TOG 167
#define PMU_LOWPWR_CTRL 155
#define PMU_LOWPWR_CTRL_SET 156
#define PMU_LOWPWR_CTRL_CLR 157
#define PMU_LOWPWR_CTRL_TOG 158
#define USB_ANALOG_USB1_VBUS_DETECT 104
#define USB_ANALOG_USB1_VBUS_DETECT_SET 105
#define USB_ANALOG_USB1_VBUS_DETECT_CLR 106
#define USB_ANALOG_USB1_VBUS_DETECT_TOG 107
#define USB_ANALOG_USB1_CHRG_DETECT 108
#define USB_ANALOG_USB1_CHRG_DETECT_SET 109
#define USB_ANALOG_USB1_CHRG_DETECT_CLR 110
#define USB_ANALOG_USB1_CHRG_DETECT_TOG 111
#define USB_ANALOG_USB1_VBUS_DETECT_STAT 112
#define USB_ANALOG_USB1_CHRG_DETECT_STAT 116
#define USB_ANALOG_USB1_MISC 124
#define USB_ANALOG_USB1_MISC_SET 125
#define USB_ANALOG_USB1_MISC_CLR 126
#define USB_ANALOG_USB1_MISC_TOG 127
#define USB_ANALOG_USB2_VBUS_DETECT 128
#define USB_ANALOG_USB2_VBUS_DETECT_SET 129
#define USB_ANALOG_USB2_VBUS_DETECT_CLR 130
#define USB_ANALOG_USB2_VBUS_DETECT_TOG 131
#define USB_ANALOG_USB2_CHRG_DETECT 132
#define USB_ANALOG_USB2_CHRG_DETECT_SET 133
#define USB_ANALOG_USB2_CHRG_DETECT_CLR 134
#define USB_ANALOG_USB2_CHRG_DETECT_TOG 135
#define USB_ANALOG_USB2_VBUS_DETECT_STAT 136
#define USB_ANALOG_USB2_CHRG_DETECT_STAT 140
#define USB_ANALOG_USB2_MISC 148
#define USB_ANALOG_USB2_MISC_SET 149
#define USB_ANALOG_USB2_MISC_CLR 150
#define USB_ANALOG_USB2_MISC_TOG 151
#define USB_ANALOG_DIGPROG 152
#define CCM_ANALOG_MAX 4096
/* CCM_CBCMR */
#define R_CBCMR_PRE_PERIPH_CLK_SEL_SHIFT (18)
#define R_CBCMR_PRE_PERIPH_CLK_SEL_LENGTH (2)
#define R_CBCMR_PERIPH_CLK2_SEL_SHIFT (12)
#define R_CBCMR_PERIPH_CLK2_SEL_LENGTH (2)
/* CCM_CBCDR */
#define R_CBCDR_AHB_PODF_SHIFT (10)
#define R_CBCDR_AHB_PODF_LENGTH (3)
#define R_CBCDR_IPG_PODF_SHIFT (8)
#define R_CBCDR_IPG_PODF_LENGTH (2)
#define R_CBCDR_PERIPH_CLK_SEL_SHIFT (25)
#define R_CBCDR_PERIPH_CLK_SEL_LENGTH (1)
#define R_CBCDR_PERIPH_CLK2_PODF_SHIFT (27)
#define R_CBCDR_PERIPH_CLK2_PODF_LENGTH (3)
/* CCM_CSCMR1 */
#define R_CSCMR1_PERCLK_PODF_SHIFT (0)
#define R_CSCMR1_PERCLK_PODF_LENGTH (6)
#define R_CSCMR1_PERCLK_CLK_SEL_SHIFT (6)
#define R_CSCMR1_PERCLK_CLK_SEL_LENGTH (1)
/* CCM_ANALOG_PFD_528 */
#define R_ANALOG_PFD_528_PFD0_FRAC_SHIFT (0)
#define R_ANALOG_PFD_528_PFD0_FRAC_LENGTH (6)
#define R_ANALOG_PFD_528_PFD2_FRAC_SHIFT (16)
#define R_ANALOG_PFD_528_PFD2_FRAC_LENGTH (6)
/* CCM_ANALOG_PLL_SYS */
#define R_ANALOG_PLL_SYS_DIV_SELECT_SHIFT (0)
#define R_ANALOG_PLL_SYS_DIV_SELECT_LENGTH (1)
#define CCM_ANALOG_PLL_LOCK (1 << 31);
#define TYPE_IMX6UL_CCM "imx6ul.ccm"
#define IMX6UL_CCM(obj) OBJECT_CHECK(IMX6ULCCMState, (obj), TYPE_IMX6UL_CCM)
typedef struct IMX6ULCCMState {
/* <private> */
IMXCCMState parent_obj;
/* <public> */
MemoryRegion container;
MemoryRegion ioccm;
MemoryRegion ioanalog;
uint32_t ccm[CCM_MAX];
uint32_t analog[CCM_ANALOG_MAX];
} IMX6ULCCMState;
#endif /* IMX6UL_CCM_H */