hw/m68k/next-cube: Avoid static RTC variables and introduce control register

Coverity currently complains that the "if (0x00 & (0x80 >> (phase - 8))"
in next-cube.c can never be true. Right it is. The "0x00" is meant as value
of the control register of the RTC, which is currently not implemented yet.
Thus, let's add a register variable for this now. However, the RTC
registers are currently defined as static variables in nextscr2_write(),
which is quite ugly. Thus let's also move the RTC variables to the main
machine state instead. In the long run, we should likely even refactor
the whole RTC code into a separate device in a separate file, but that's
something for calm winter nights later... as a first step, cleaning up
the static variables and shutting up the warning from Coverity should
be sufficient.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190921091738.26953-1-huth@tuxfamily.org>
Signed-off-by: Thomas Huth <huth@tuxfamily.org>
This commit is contained in:
Thomas Huth 2019-09-21 11:17:38 +02:00 committed by Thomas Huth
parent 343143a665
commit cd4fc14207

View File

@ -60,6 +60,15 @@ typedef struct next_dma {
uint32_t size;
} next_dma;
typedef struct NextRtc {
uint8_t ram[32];
uint8_t command;
uint8_t value;
uint8_t status;
uint8_t control;
uint8_t retval;
} NextRtc;
typedef struct {
MachineState parent;
@ -77,7 +86,7 @@ typedef struct {
uint32_t scr1;
uint32_t scr2;
uint8_t rtc_ram[32];
NextRtc rtc;
} NeXTState;
/* Thanks to NeXT forums for this */
@ -105,11 +114,8 @@ static void nextscr2_write(NeXTState *s, uint32_t val, int size)
static int led;
static int phase;
static uint8_t old_scr2;
static uint8_t rtc_command;
static uint8_t rtc_value;
static uint8_t rtc_status = 0x90;
static uint8_t rtc_return;
uint8_t scr2_2;
NextRtc *rtc = &s->rtc;
if (size == 4) {
scr2_2 = (val >> 8) & 0xFF;
@ -135,52 +141,52 @@ static void nextscr2_write(NeXTState *s, uint32_t val, int size)
if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
((scr2_2 & SCR2_RTCLK) == 0)) {
if (phase < 8) {
rtc_command = (rtc_command << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
rtc->command = (rtc->command << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
if (phase >= 8 && phase < 16) {
rtc_value = (rtc_value << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
rtc->value = (rtc->value << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
/* if we read RAM register, output RT_DATA bit */
if (rtc_command <= 0x1F) {
if (rtc->command <= 0x1F) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
if (s->rtc_ram[rtc_command] & (0x80 >> (phase - 8))) {
if (rtc->ram[rtc->command] & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc_return = (rtc_return << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
/* read the status 0x30 */
if (rtc_command == 0x30) {
if (rtc->command == 0x30) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
/* for now status = 0x98 (new rtc + FTU) */
if (rtc_status & (0x80 >> (phase - 8))) {
if (rtc->status & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc_return = (rtc_return << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
/* read the status 0x31 */
if (rtc_command == 0x31) {
if (rtc->command == 0x31) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
/* for now 0x00 */
if (0x00 & (0x80 >> (phase - 8))) {
if (rtc->control & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc_return = (rtc_return << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
if ((rtc_command >= 0x20) && (rtc_command <= 0x2F)) {
if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
/* for now 0x00 */
time_t time_h = time(NULL);
struct tm *info = localtime(&time_h);
int ret = 0;
switch (rtc_command) {
switch (rtc->command) {
case 0x20:
ret = SCR2_TOBCD(info->tm_sec);
break;
@ -205,22 +211,22 @@ static void nextscr2_write(NeXTState *s, uint32_t val, int size)
if (ret & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc_return = (rtc_return << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
}
phase++;
if (phase == 16) {
if (rtc_command >= 0x80 && rtc_command <= 0x9F) {
s->rtc_ram[rtc_command - 0x80] = rtc_value;
if (rtc->command >= 0x80 && rtc->command <= 0x9F) {
rtc->ram[rtc->command - 0x80] = rtc->value;
}
/* write to x30 register */
if (rtc_command == 0xB1) {
if (rtc->command == 0xB1) {
/* clear FTU */
if (rtc_value & 0x04) {
rtc_status = rtc_status & (~0x18);
if (rtc->value & 0x04) {
rtc->status = rtc->status & (~0x18);
s->int_status = s->int_status & (~0x04);
}
}
@ -229,8 +235,8 @@ static void nextscr2_write(NeXTState *s, uint32_t val, int size)
} else {
/* else end or abort */
phase = -1;
rtc_command = 0;
rtc_value = 0;
rtc->command = 0;
rtc->value = 0;
}
s->scr2 = val & 0xFFFF00FF;
s->scr2 |= scr2_2 << 8;
@ -881,9 +887,10 @@ static void next_cube_init(MachineState *machine)
/* 0x0000XX00 << vital bits */
ns->scr1 = 0x00011102;
ns->scr2 = 0x00ff0c80;
ns->rtc.status = 0x90;
/* Load RTC RAM - TODO: provide possibility to load contents from file */
memcpy(ns->rtc_ram, rtc_ram2, 32);
memcpy(ns->rtc.ram, rtc_ram2, 32);
/* 64MB RAM starting at 0x04000000 */
memory_region_allocate_system_memory(ram, NULL, "next.ram", ram_size);