For GICv4, interrupt table entries read by process_its_cmd() may
indicate virtual LPIs which are to be directly injected into a VM.
Implement the ITS side of the code for handling this. This is
similar to the existing handling of physical LPIs, but instead of
looking up a collection ID in a collection table, we look up a vPEID
in a vPE table. As with the physical LPIs, we leave the rest of the
work to code in the redistributor device.
The redistributor half will be implemented in a later commit;
for now we just provide a stub function which does nothing.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-15-peter.maydell@linaro.org
Split the part of process_its_cmd() which is specific to physical
interrupts into its own function. This is the part which starts by
taking the ICID and looking it up in the collection table. The
handling of virtual interrupts is significantly different (involving
a lookup in the vPE table) so structuring the code with one
sub-function for the physical interrupt case and one for the virtual
interrupt case will be clearer than putting both cases in one large
function.
The code for handling the "remove mapping from ITE" for the DISCARD
command remains in process_its_cmd() because it is common to both
virtual and physical interrupts.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-14-peter.maydell@linaro.org
Factor out the sequence of looking up a CTE from an ICID including
the validity and error checks.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-13-peter.maydell@linaro.org
The operation of finding an interrupt table entry given a (DeviceID,
EventID) pair is necessary in multiple different ITS commands. The
process requires first using the DeviceID as an index into the device
table to find the DTE, and then useng the EventID as an index into
the interrupt table specified by that DTE to find the ITE. We also
need to handle all the possible error cases: indexes out of range,
table memory not readable, table entries not valid.
Factor this out into a separate lookup_ite() function which we
can then call from the places where we were previously open-coding
this sequence. We'll also need this for some of the new GICv4.0
commands.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-12-peter.maydell@linaro.org
In the ItsCmdResult enum, we currently distinguish only CMD_STALL
(failure, stall processing of the command queue) and CMD_CONTINUE
(keep processing the queue), and we use the latter both for "there
was a parameter error, go on to the next command" and "the command
succeeded, go on to the next command". Sometimes we would like to
distinguish those two cases, so add CMD_CONTINUE_OK to the enum to
represent the success situation, and use it in the relevant places.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-11-peter.maydell@linaro.org
Implement the GICv4 VMAPP command, which writes an entry to the vPE
table.
For GICv4.1 this command has extra fields in the command packet
and additional behaviour. We define the 4.1-only fields with the
FIELD macro, but only implement the GICv4.0 version of the command.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-10-peter.maydell@linaro.org
Implement the GICv4 VMAPI and VMAPTI commands. These write
an interrupt translation table entry that maps (DeviceID,EventID)
to (vPEID,vINTID,doorbell). The only difference between VMAPI
and VMAPTI is that VMAPI assumes vINTID == EventID rather than
both being specified in the command packet.
(This code won't be reachable until we allow the GIC version to be
set to 4. Support for reading this new virtual-interrupt DTE and
handling it correctly will be implemented in a later commit.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-9-peter.maydell@linaro.org
The GICv4 defines a new in-guest-memory table for the ITS: this is
the vPE table. Implement the new GITS_BASER2 register which the
guest uses to tell the ITS where the vPE table is located, including
the decode of the register fields into the TableDesc structure which
we do for the GITS_BASER<n> when the guest enables the ITS.
We guard provision of the new register with the its_feature_virtual()
function, which does a check of the GITS_TYPER.Virtual bit which
indicates presence of ITS support for virtual LPIs. Since this bit
is currently always zero, GICv4-specific features will not be
accessible to the guest yet.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-8-peter.maydell@linaro.org
In process_mapti() we check interrupt IDs to see whether they are
in the valid LPI range. Factor this out into its own utility
function, as we're going to want it elsewhere too for GICv4.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-7-peter.maydell@linaro.org
We use the common function gicv3_idreg() to supply the CoreSight ID
register values for the GICv3 for the copies of these ID registers in
the distributor, redistributor and ITS register frames. This isn't
quite correct, because while most of the register values are the
same, the PIDR0 value should vary to indicate which of these three
frames it is. (You can see this and also the correct values of these
PIDR0 registers by looking at the GIC-600 or GIC-700 TRMs, for
example.)
Make gicv3_idreg() take an extra argument for the PIDR0 value.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-5-peter.maydell@linaro.org
Boards using the GICv3 need to configure it with both the total
number of CPUs and also the sizes of all the memory regions which
contain redistributors (one redistributor per CPU). At the moment
the GICv3 checks that the number of CPUs specified is not too many to
fit in the defined redistributor regions, but in fact the code
assumes that the two match exactly. For instance when we set the
GICR_TYPER.Last bit on the final redistributor in each region, we
assume that we don't need to consider the possibility of a region
being only half full of redistributors or even completely empty. We
also assume in gicv3_redist_read() and gicv3_redist_write() that we
can calculate the CPU index from the offset within the MemoryRegion
and that this will always be in range.
Fortunately all the board code sets the redistributor region sizes to
exactly match the CPU count, so this isn't a visible bug. We could
in theory make the GIC code handle non-full redistributor regions, or
have it automatically reduce the provided region sizes to match the
CPU count, but the simplest thing is just to strengthen the error
check and insist that the CPU count and redistributor region size
settings match exactly, since all the board code does that anyway.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-4-peter.maydell@linaro.org
In the GICv3 code we implicitly rely on there being at least one CPU
and thus at least one redistributor and CPU interface. Sanity-check
that the property the board code sets is not zero.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-3-peter.maydell@linaro.org
In commit b6f96009ac we split do_process_its_cmd() from
process_its_cmd(), but forgot the usual blank line between function
definitions. Add it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220408141550.1271295-2-peter.maydell@linaro.org
While at it, replace '%x' with '%u' as suggested by Philippe Mathieu-Daudé.
Also fixes a GCC 12.0.1 -Wformat-overflow false-positive.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Message-Id: <20220420132624.2439741-16-marcandre.lureau@redhat.com>
Switch the creation of the combiner devices to the new-style
"embedded in state struct" approach, so we can easily refer
to the object elsewhere during realize.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220404154658.565020-18-peter.maydell@linaro.org
The function exynos4210_combiner_get_gpioin() currently lives in
exynos4210_combiner.c, but it isn't really part of the combiner
device itself -- it is a function that implements the wiring up of
some interrupt sources to multiple combiner inputs. Move it to live
with the other SoC-level code in exynos4210.c, along with a few
macros previously defined in exynos4210.h which are now used only
in exynos4210.c.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220404154658.565020-11-peter.maydell@linaro.org
Switch the creation of the external GIC to the new-style "embedded in
state struct" approach, so we can easily refer to the object
elsewhere during realize.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220404154658.565020-9-peter.maydell@linaro.org
The function exynos4210_init_board_irqs() currently lives in
exynos4210_gic.c, but it isn't really part of the exynos4210.gic
device -- it is a function that implements (some of) the wiring up of
interrupts between the SoC's GIC and combiner components. This means
it fits better in exynos4210.c, which is the SoC-level code. Move it
there. Similarly, exynos4210_git_irq() is used almost only in the
SoC-level code, so move it too.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220404154658.565020-8-peter.maydell@linaro.org
Fix a missing set of spaces around '-' in the definition of
combiner_grp_to_gic_id[]. We're about to move this code, so
fix the style issue first to keep checkpatch happy with the
code-motion patch.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220404154658.565020-7-peter.maydell@linaro.org
The exynos4210 code currently has two very similar arrays of IRQs:
* board_irqs is a field of the Exynos4210Irq struct which is filled
in by exynos4210_init_board_irqs() with the appropriate qemu_irqs
for each IRQ the board/SoC can assert
* irq_table is a set of qemu_irqs pointed to from the
Exynos4210State struct. It's allocated in exynos4210_init_irq,
and the only behaviour these irqs have is that they pass on the
level to the equivalent board_irqs[] irq
The extra indirection through irq_table is unnecessary, so coalesce
these into a single irq_table[] array as a direct field in
Exynos4210State which exynos4210_init_board_irqs() fills in.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220404154658.565020-6-peter.maydell@linaro.org
Now we have removed the only use of TYPE_EXYNOS4210_IRQ_GATE we can
delete the device entirely.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Francisco Iglesias <frasse.iglesias@gmail.com>
Message-id: 20220404154658.565020-3-peter.maydell@linaro.org
Replace the global variables with inlined helper functions. getpagesize() is very
likely annotated with a "const" function attribute (at least with glibc), and thus
optimization should apply even better.
This avoids the need for a constructor initialization too.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20220323155743.1585078-12-marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit 84d43d2e82 we rearranged the logging of errors in
process_mapc(), and inadvertently dropped the trailing newlines
from the log messages. Restore them. The same commit also
attempted to switch the ICID printing to hex (which is how we
print ICIDs elsewhere) but only did half the job, adding the
0x prefix but leaving the format string at %d; correct to %x.
Fixes: 84d43d2e82 ("hw/intc/arm_gicv3_its: In MAPC with V=0, don't check rdbase field")
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
g_new(T, n) is neater than g_malloc(sizeof(T) * n). It's also safer,
for two reasons. One, it catches multiplication overflowing size_t.
Two, it returns T * rather than void *, which lets the compiler catch
more type errors.
This commit only touches allocations with size arguments of the form
sizeof(T).
Patch created mechanically with:
$ spatch --in-place --sp-file scripts/coccinelle/use-g_new-etc.cocci \
--macro-file scripts/cocci-macro-file.h FILES...
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Message-Id: <20220315144156.1595462-4-armbru@redhat.com>
Reviewed-by: Pavel Dovgalyuk <Pavel.Dovgalyuk@ispras.ru>
CONFIG_ARM_GIC_TCG actually guards the compilation of TCG GICv3
specific files. So let's rename it into CONFIG_ARM_GICV3_TCG
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-id: 20220308182452.223473-2-eric.auger@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Xive2EndSource objects can only be instantiated through a Xive2Router
(PnvXive2).
Reported-by: Thomas Huth <thuth@redhat.com>
Fixes: f8a233dedf ("ppc/xive2: Introduce a XIVE2 core framework")
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The trace_gicv3_icv_hppir_read trace event takes an integer value
which it uses to form the register name, which should be either
ICV_HPPIR0 or ICV_HPPIR1. We were passing in the 'grp' variable for
this, but that is either GICV3_G0 or GICV3_G1NS, which happen to be 0
and 2, which meant that tracing for the ICV_HPPIR1 register was
incorrectly printed as ICV_HPPIR2.
Use the same approach we do for all the other similar trace events,
and pass in 'ri->crm == 8 ? 0 : 1', deriving the index value
directly from the ARMCPRegInfo struct.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220303202341.2232284-6-peter.maydell@linaro.org
We forgot a space in some log messages, so the output ended
up looking like
gicv3_dist_write: invalid guest write at offset 0000000000008000size 8
with a missing space before "size". Add the missing spaces.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220303202341.2232284-5-peter.maydell@linaro.org
The GICv3 has some registers that support byte accesses, and some
that support 8-byte accesses. Our TCG implementation implements all
of this, switching on the 'size' argument and handling the registers
that must support reads of that size while logging an error for
attempted accesses to registers that do not support that size access.
However we forgot to tell the core memory subsystem about this by
specifying the .impl and .valid fields in the MemoryRegionOps struct,
so the core was happily simulating 8 byte accesses by combining two 4
byte accesses. This doesn't have much guest-visible effect, since
there aren't many 8 byte registers and they all support being written
in two 4 byte parts.
Set the .impl and .valid fields to say that all sizes from 1 to 8
bytes are both valid and implemented by the device.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220303202341.2232284-4-peter.maydell@linaro.org
For debugging guest use of the ITS, it can be helpful to trace
when the ITS reads and writes the in-memory tables.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220303202341.2232284-3-peter.maydell@linaro.org
When debugging code that's using the ITS, it's helpful to
see tracing of the ITS commands that the guest executes. Add
suitable trace events.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220303202341.2232284-2-peter.maydell@linaro.org
The RISC-V AIA (Advanced Interrupt Architecture) defines a new
interrupt controller for MSIs (message signal interrupts) called
IMSIC (Incoming Message Signal Interrupt Controller). The IMSIC
is per-HART device and also suppport virtualizaiton of MSIs using
dedicated VS-level guest interrupt files.
This patch adds device emulation for RISC-V AIA IMSIC which
supports M-level, S-level, and VS-level MSIs.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Frank Chang <frank.chang@sifive.com>
Message-Id: <20220220085526.808674-3-anup@brainfault.org>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
The XIVE interrupt controller on P10 can automatically save and
restore the state of the interrupt registers under the internal NVP
structure representing the VCPU. This saves a costly store/load in
guest entries and exits.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Add GEN1 config even if we don't use it yet in the core framework.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The thread interrupt management area (TIMA) is a set of pages mapped
in the Hypervisor and in the guest OS address space giving access to
the interrupt thread context registers for interrupt management, ACK,
EOI, CPPR, etc.
XIVE2 changes slightly the TIMA layout with extra bits for the new
features, larger CAM lines and the controller provides configuration
switches for backward compatibility. This is called the XIVE2
P9-compat mode, of Gen1 TIMA. It impacts the layout of the TIMA and
the availability of the internal features associated with it,
Automatic Save & Restore for instance. Using a P9 layout also means
setting the controller in such a mode at init time.
As the OPAL driver initializes the XIVE2 controller with a XIVE2/P10
TIMA directly, the XIVE2 model only has a simple support for the
compat mode in the OS TIMA.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Only the CAM line updates done by the hypervisor are specific to
POWER10. Instead of duplicating the TM ops table, we handle these
commands locally under the PowerNV XIVE2 model.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
These bits control the availability of interrupt features : StoreEOI,
PHB PQ_disable, PHB Address-Based Trigger and the overall XIVE
exploitation mode. These bits can be set at early boot time of the
system to activate/deactivate a feature for testing purposes. The
default value should be '1'.
The 'XIVE exploitation mode' bit is a software bit that skiboot could
use to disable the XIVE OS interface and propose a P8 style XICS
interface instead. There are no plans for that for the moment.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The PQ_disable configuration bit disables the check done on the PQ
state bits when processing new MSI interrupts. When bit 9 is enabled,
the PHB forwards any MSI trigger to the XIVE interrupt controller
without checking the PQ state bits. The XIVE IC knows from the trigger
message that the PQ bits have not been checked and performs the check
locally.
This configuration bit only applies to MSIs and LSIs are still checked
on the PHB to handle the assertion level.
PQ_disable enablement is a requirement for StoreEOI.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The trigger message coming from a HW source contains a special bit
informing the XIVE interrupt controller that the PQ bits have been
checked at the source or not. Depending on the value, the IC can
perform the check and the state transition locally using its own PQ
state bits.
The following changes add new accessors to the XiveRouter required to
query and update the PQ state bits. This only applies to the PowerNV
machine. sPAPR accessors are provided but the pSeries machine should
not be concerned by such complex configuration for the moment.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This is an internal offset used to inject triggers when the PQ state
bits are not controlled locally. Such as for LSIs when the PHB5 are
using the Address-Based Interrupt Trigger mode and on the END.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The XIVE2 interrupt controller of the POWER10 processor follows the
same logic than on POWER9 but the HW interface has been largely
reviewed. It has a new register interface, different BARs, extra
VSDs, new layout for the XIVE2 structures, and a set of new features
which are described below.
This is a model of the POWER10 XIVE2 interrupt controller for the
PowerNV machine. It focuses primarily on the needs of the skiboot
firmware but some initial hypervisor support is implemented for KVM
use (escalation).
Support for new features will be implemented in time and will require
new support from the OS.
* XIVE2 BARS
The interrupt controller BARs have a different layout outlined below.
Each sub-engine has now own its range and the indirect TIMA access was
replaced with a set of pages, one per CPU, under the IC BAR:
- IC BAR (Interrupt Controller)
. 4 pages, one per sub-engine
. 128 indirect TIMA pages
- TM BAR (Thread Interrupt Management Area)
. 4 pages
- ESB BAR (ESB pages for IPIs)
. up to 1TB
- END BAR (ESB pages for ENDs)
. up to 2TB
- NVC BAR (Notification Virtual Crowd)
. up to 128
- NVPG BAR (Notification Virtual Process and Group)
. up to 1TB
- Direct mapped Thread Context Area (reads & writes)
OPAL does not use the grouping and crowd capability.
* Virtual Structure Tables
XIVE2 adds new tables types and also changes the field layout of the END
and NVP Virtualization Structure Descriptors.
- EAS
- END new layout
- NVT was splitted in :
. NVP (Processor), 32B
. NVG (Group), 32B
. NVC (Crowd == P9 block group) 32B
- IC for remote configuration
- SYNC for cache injection
- ERQ for event input queue
The setup is slighly different on XIVE2 because the indexing has changed
for some of the tables, block ID or the chip topology ID can be used.
* XIVE2 features
SCOM and MMIO registers have a new layout and XIVE2 adds a new global
capability and configuration registers.
The lowlevel hardware offers a set of new features among which :
- a configurable number of priorities : 1 - 8
- StoreEOI with load-after-store ordering is activated by default
- Gen2 TIMA layout
- A P9-compat mode, or Gen1, TIMA toggle bit for SW compatibility
- increase to 24bit for VP number
Other features will have some impact on the Hypervisor and guest OS
when activated, but this is not required for initial support of the
controller.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The VP space is larger in XIVE2 (P10), 24 bits instead of 19bits on
XIVE (P9), and the CAM line can use a 7bits or 8bits thread id.
For now, we only use 7bits thread ids, same as P9, but because of the
change of the size of the VP space, the CAM matching routine is
different between P9 and P10. It is easier to duplicate the whole
routine than to add extra handlers in xive_presenter_tctx_match() used
for P9.
We might come with a better solution later on, after we have added
some more support for the XIVE2 controller.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The XIVE2 interrupt controller of the POWER10 processor as the same
logic as on POWER9 but its SW interface has been largely reworked. The
interrupt controller has a new register interface, different BARs,
extra VSDs. These will be described when we add the device model for
the baremetal machine.
The XIVE internal structures for the EAS, END, NVT have different
layouts which is a problem for the current core XIVE framework. To
avoid adding too much complexity in the XIVE models, a new XIVE2 core
framework is introduced. It duplicates the models which are closely
linked to the XIVE internal structures : Xive2Router and
Xive2ENDSource and reuses the XiveSource, XivePresenter, XiveTCTX
models, as they are more generic.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
More than 1k of TypeInfo instances are already marked as const. Mark the
remaining ones, too.
This commit was created with:
git grep -z -l 'static TypeInfo' -- '*.c' | \
xargs -0 sed -i 's/static TypeInfo/static const TypeInfo/'
Signed-off-by: Bernhard Beschow <shentey@gmail.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: Corey Minyard <cminyard@mvista.com>
Message-id: 20220117145805.173070-2-shentey@gmail.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The RISC-V AIA (Advanced Interrupt Architecture) defines a new
interrupt controller for wired interrupts called APLIC (Advanced
Platform Level Interrupt Controller). The APLIC is capabable of
forwarding wired interupts to RISC-V HARTs directly or as MSIs
(Message Signaled Interupts).
This patch adds device emulation for RISC-V AIA APLIC.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Frank Chang <frank.chang@sifive.com>
Message-id: 20220204174700.534953-19-anup@brainfault.org
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
In most of the ITS command processing, we check different error
possibilities one at a time and log them appropriately. In
process_mapti() and process_mapd() we have code which checks
multiple error cases at once, which means the logging is less
specific than it could be. Split those cases up.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220201193207.2771604-14-peter.maydell@linaro.org
When handling MAPI/MAPTI, we allow the supplied interrupt ID to be
either 1023 or something in the valid LPI range. This is a mistake:
only a real valid LPI is allowed. (The general behaviour of the ITS
is that most interrupt ID fields require a value in the LPI range;
the exception is that fields specifying a doorbell value, which are
all in GICv4 commands, allow also 1023 to mean "no doorbell".)
Remove the condition that incorrectly allows 1023 here.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220201193207.2771604-13-peter.maydell@linaro.org