This patch provides a simple FRU support for the BMC simulator. FRUs
are loaded from a file which name is specified in the object
properties, each entry having a fixed size, also specified in the
properties. If the file is unknown or not accessible for some reason,
a unique entry of 1024 bytes is created as a default. Just enough to
start some simulation.
These commands complies with the IPMI spec : "34. FRU Inventory Device
Commands".
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
[dwg: Folded in subsequent fix to handle NULL filename]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The IPMI BMC simulator populates the sdr/sensor tables with a minimal
set of entries (Watchdog). But some qemu platforms might want to use
extra entries for their custom needs.
This patch modifies slighty the initializing routine to take into
account a larger set read from a file. The name of the file to use is
defined through a new 'sdr' property of the simulator device.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
OpenPOWER systems use a BT device to communicate with the BMC.
Provide support for it.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The OCC is an on-chip microcontroller based on a ppc405 core used
for various power management tasks. It comes with a pile of additional
hardware sitting on the PIB (aka XSCOM bus). At this point we don't
emulate it (nor plan to do so). However there is one facility which
is provided by the surrounding hardware that we do need, which is the
interrupt generation facility. OPAL uses it to send itself interrupts
under some circumstances and there are other uses around the corner.
So this implement just enough to support this.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[clg: - updated for qemu-2.9
- changed the XSCOM interface to fit new model
- QOMified the model ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The Processor Service Interface (PSI) Controller is one of the engines
of the "Bridge" unit which connects the different interfaces to the
Power Processor.
This adds just enough of the PSI bridge to handle various on-chip and
the one external interrupt. The rest of PSI has to do with the link to
the IBM FSP service processor which we don't plan to emulate (not used
on OpenPower machines).
The ics_get() and ics_resend() handlers of the XICSFabric interface of
the PowerNV machine are now defined to handle the Interrupt Control
Source of PSI. The InterruptStatsProvider interface is also modified
to dump the new ICS.
Originally from Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This provides to a PowerNV chip (POWER8) access to the Interrupt
Management area, which contains the registers of the Interrupt Control
Presenters of each thread. These are used to accept, return, forward
interrupts in the system.
This area is modeled with a per-chip container memory region holding
all the ICP registers. Each thread of a chip is then associated with
its ICP registers using a memory subregion indexed by its PIR number
in the overall region.
The device tree is populated accordingly.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Some controllers (ICP, PSI) have a base register address which is
calculated using the chip id.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Each thread of a core is linked to an ICP. This allocates a PnvICPState
object before the PowerPCCPU object is realized and lets the XICSFabric
do the store under the 'intc' backlink when xics_cpu_setup() is
called.
This modeling removes the need of maintaining an array of ICP objects
under the PowerNV machine and also simplifies the XICSFabric icp_get()
handler.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A XICSFabric QOM interface is used by the XICS layer to manipulate the
ICP and ICS objects. Let's define the associated handlers for the
PowerNV machine. All handlers should be defined even if there is no
ICS under the PowerNV machine yet.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This provides a new ICPState object for the PowerNV machine (POWER8).
Access to the Interrupt Management area is done though a memory
region. It contains the registers of the Interrupt Control Presenters
of each thread which are used to accept, return, forward interrupts in
the system.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It will be used by derived classes in PowerNV for customization.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, all the ICPs are created before the CPUs, stored in an array
under the sPAPR machine and linked to the CPU when the core threads
are realized. This modeling brings some complexity when a lookup in
the array is required and it can be simplified by allocating the ICPs
when the CPUs are.
This is the purpose of this proposal which introduces a new 'icp_type'
field under the machine and creates the ICP objects of the right type
(KVM or not) before the PowerPCCPU object are.
This change allows more cleanups : the removal of the icps array under
the sPAPR machine and the removal of the xics_get_cpu_index_by_dt_id()
helper.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is the second step to abstract the IRQ 'server' number of the
XICS layer. Now that the prereq cleanups have been done in the
previous patch, we can move down the 'cpu_dt_id' to 'cpu_index'
mapping in the sPAPR machine handler.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, the ICPState array of the sPAPR machine is indexed with
'cpu_index' of the CPUState. This numbering of CPUs is internal to
QEMU and the guest only knows about what is exposed in the device
tree, that is the 'cpu_dt_id'. This is why sPAPR uses the helper
xics_get_cpu_index_by_dt_id() to do the mapping in a couple of places.
To provide a more generic XICS layer, we need to abstract the IRQ
'server' number and remove any assumption made on its nature. It
should not be used as a 'cpu_index' for lookups like xics_cpu_setup()
and xics_cpu_destroy() do.
To reach that goal, we choose to introduce a generic 'intc' backlink
under PowerPCCPU, and let the machine core init routine do the
ICPState lookup. The resulting object is passed on to xics_cpu_setup()
which does the store under PowerPCCPU. The IRQ 'server' number in XICS
is now generic. sPAPR uses 'cpu_dt_id' and PowerNV will use 'PIR'
number.
This also has the benefit of simplifying the sPAPR hcall routines
which do not need to do any ICPState lookups anymore.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The ibm,processor-radix-AP-encodings device tree property of the cpu node
is used to specify the radix mode supported page sizes of the processor
to the guest os. Contained in the top 3 bits of the msb is the actual
page size (AP) encoding associated with the corresponding radix mode
supported page size. Add this property for a TCG guest, note the TCG code
is capable of translating any format so just add the 4 default page sizes.
The ibm,processor-radix-AP-encodings device tree property is defined as:
One to n cells in ascending order of radix mode supported page sizes
encoded as BE ints (32bit on ppc) in the form:
0bxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
- 0bxxx -> AP encoding
- 0byyyyyyyyyyyyyyyyyyyyyyyyyyyyy -> supported page size encoded as a shift
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
If a page size used by QEMU is not enabled in the PHB IOMMU page mask,
in-kernel acceleration of TCE handling won't be enabled and performance
might be slower than expected.
This prints a warning if system page size is not enabled. This should
print a warning if huge pages are enabled but sphb.pgsz still uses
the default value of 4K|64K.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This enables in-kernel handling of H_PUT_TCE_INDIRECT and
H_STUFF_TCE hypercalls. The host kernel support is there since v4.6,
in particular d3695aa4f452
("KVM: PPC: Add support for multiple-TCE hcalls").
H_PUT_TCE is already accelerated and does not need any special enablement.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
For a little while around 4.9, Linux kernels that saw the radix bit in
ibm,pa-features would attempt to set up the MMU as if they were a
hypervisor, even if they were a guest, which would cause them to
crash.
Work around this by detecting pre-ISA 3.0 guests by their lack of that
bit in option vector 1, and then removing the radix bit from
ibm,pa-features. Note: This now requires regeneration of that node
after CAS negotiation.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add the new node, /chosen/ibm,arch-vec-5-platform-support to the
device tree. This allows the guest to determine which modes are
supported by the hypervisor.
Update the option vector processing in h_client_architecture_support()
to handle the new MMU bits. This allows guests to request hash or
radix mode and QEMU to create the guest's HPT at this time if it is
necessary but hasn't yet been done. QEMU will terminate the guest if
it requests an unavailable mode, as required by the architecture.
Extend the ibm,pa-features node with the new ISA 3.0 values
and set the radix bit if KVM supports radix mode. This probably won't
be used directly by guests to determine the availability of radix mode
(that is indicated by the new node added above) but the architecture
requires that it be set when the hardware supports it.
If QEMU is using KVM, and KVM is capable of running in radix mode,
guests can be run in real-mode without allocating a HPT (because KVM
will use a minimal RPT). So in this case, we avoid creating the HPT
at reset time and later (during CAS) create it if it is necessary.
ISA 3.0 guests will now begin to call h_register_process_table(),
which has been added previously.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[dwg: Strip some unneeded prefix from error messages]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In the next patch, spapr_fixup_cpu_dt() will need to call
spapr_populate_pa_features() so move it's definition up without making
any other changes.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The H_REGISTER_PROCESS_TABLE H_CALL is used by a guest to indicate to the
hypervisor where in memory its process table is and how translation should
be performed using this process table.
Provide the implementation of this H_CALL for a guest.
We first check for invalid flags, then parse the flags to determine the
operation, and then check the other parameters for valid values based on
the operation (register new table/deregister table/maintain registration).
The process table is then stored in the appropriate location and registered
with the hypervisor (if running under KVM), and the LPCR_[UPRT/GTSE] bits
are updated as required.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[dwg: Correct missing prototype and uninitialized variable]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The use of the new in memory tables introduced in ISAv3.00 for translation,
also referred to as process tables, requires the introduction of 3 new
H-CALLs; H_REGISTER_PROCESS_TABLE, H_CLEAN_SLB, and H_INVALIDATE_PID.
Add shells for each of these and register them as the hypercall handlers.
Currently they all log an unimplemented hypercall and return H_FUNCTION.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Query and cache the value of two new KVM capabilities that indicate
KVM's support for new radix and hash modes of the MMU.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Use the new ioctl, KVM_PPC_GET_RMMU_INFO, to fetch radix MMU
information from KVM and present the page encodings in the device tree
under ibm,processor-radix-AP-encodings. This provides page size
information to the guest which is necessary for it to use radix mode.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[dwg: Compile fix for 32-bit targets, style nit fix]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
KVM_CAP_SPAPR_TCE capability allows creating TCE tables in KVM which
allows having in-kernel acceleration for H_PUT_TCE_xxx hypercalls.
However it only supports 32bit DMA windows at zero bus offset.
There is a new KVM_CAP_SPAPR_TCE_64 capability which supports 64bit
window size, variable page size and bus offset.
This makes use of the new capability. The kernel headers are already
updated as the kernel support went in to v4.6.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The devices that are derived from TYPE_PNV_CHIP currently show up
as "uncategorized" devices in the help text of "-device ?". Since
they obviously are related to the CPU, let's put them into the
CPU category instead.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also use an 'sPAPRRTCState' attribute under the sPAPR machine to hold
the RTC object. Overall, these changes remove an unnecessary and
implicit dependency on SysBus.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
On Power8 hosts it is currently theoretically possible for QEMU/KVM-HV guests
to receive a ibm,pa-features property indicating that HTM support is available
when it is not. The situation would occur if the platform firmware of
a Power8 host cleared the HTM bit of the ibm,pa-features property.
QEMU would query KVM for the availability of HTM, which will return no
support, but workaround code in kvm_arch_init_vcpu() would then
re-enable it because KVM_HV is in use and the processor is P8.
This patch adjusts the workaround in kvm_arch_init_vcpu() so that it does not
enable HTM (in the above case) unless the host kernel indicates to the QEMU
process, via the auxiliary vector, that userspace can use HTM (via the HWCAP2
bit KVM_FEATURE2_HTM).
The reason to use the value from the auxiliary vector is that it is
set based only on what the host kernel found in the ibm,pa-features
HTM bit at boot time.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Once a request is completed, xen_9pfs_push_and_notify gets called. In
xen_9pfs_push_and_notify, update the indexes (data has already been
copied to the sg by the common code) and send a notification to the
frontend.
Schedule the bottom-half to check if we already have any other requests
pending.
Signed-off-by: Stefano Stabellini <stefano@aporeto.com>
CC: anthony.perard@citrix.com
CC: jgross@suse.com
CC: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
CC: Greg Kurz <groug@kaod.org>
Implement xen_9pfs_init_in/out_iov_from_pdu and
xen_9pfs_pdu_vmarshal/vunmarshall by creating new sg pointing to the
data on the ring.
This is safe as we only handle one request per ring at any given time.
Signed-off-by: Stefano Stabellini <stefano@aporeto.com>
CC: anthony.perard@citrix.com
CC: jgross@suse.com
CC: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
CC: Greg Kurz <groug@kaod.org>
Upon receiving an event channel notification from the frontend, schedule
the bottom half. From the bottom half, read one request from the ring,
create a pdu and call pdu_submit to handle it.
For now, only handle one request per ring at a time.
Signed-off-by: Stefano Stabellini <stefano@aporeto.com>
CC: anthony.perard@citrix.com
CC: jgross@suse.com
CC: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
CC: Greg Kurz <groug@kaod.org>
Write the limits of the backend to xenstore. Connect to the frontend.
Upon connection, allocate the rings according to the protocol
specification.
Initialize a QEMUBH to schedule work upon receiving an event channel
notification from the frontend.
Signed-off-by: Stefano Stabellini <stefano@aporeto.com>
CC: anthony.perard@citrix.com
CC: jgross@suse.com
CC: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
CC: Greg Kurz <groug@kaod.org>
Introduce the Xen 9pfs backend: add struct XenDevOps to register as a
Xen backend and add struct V9fsTransport to register as v9fs transport.
All functions are empty stubs for now.
Signed-off-by: Stefano Stabellini <stefano@aporeto.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
CC: anthony.perard@citrix.com
CC: jgross@suse.com
CC: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
CC: Greg Kurz <groug@kaod.org>
Version: GnuPG v1
iQEcBAABAgAGBQJY/zFbAAoJEO8Ells5jWIR7LgH/A6lWkODVSKihnibRH82J9oe
rTsDdLgAGAMAur++tmNorPadZyMe/2+Cu0VsiIv591ldILruN6+jJydBzFtWFYE5
JQKa2VSTDu6bHPhr/UpRnWLhGzaJogklJR6YLkonDJznb1UnnTwEZ8c8+XD4gWLo
byo/dYF1yMnpVxSak/FkmCmwxc2K7s7P+r4FWO2CgAgY28F+/qERWJMbl1iUevQP
E1PC/XXEvhMdxi+6oYmWACdbW9/KwC5KKVELsQWYU1DcpQ7rWXCtA/mtKxvX+ePw
7CUK9ldeFXHE8uWVDnh3cWUL65Q8OtZarjMbrnN7xzcQDhMysStvVNS4QckN6/I=
=PEvc
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
# gpg: Signature made Tue 25 Apr 2017 12:22:03 BST
# gpg: using RSA key 0xEF04965B398D6211
# gpg: Good signature from "Jason Wang (Jason Wang on RedHat) <jasowang@redhat.com>"
# gpg: WARNING: This key is not certified with sufficiently trusted signatures!
# gpg: It is not certain that the signature belongs to the owner.
# Primary key fingerprint: 215D 46F4 8246 689E C77F 3562 EF04 965B 398D 6211
* remotes/jasowang/tags/net-pull-request:
COLO-compare: Optimize tcp compare trace event
COLO-compare: Optimize tcp compare for option field
slirp: add a fake NC-SI backend
aspeed: add a FTGMAC100 nic
net/ftgmac100: add a 'aspeed' property
net: add FTGMAC100 support
hw/net: add MII definitions
colo-compare: Fix old packet check bug.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
s390_virtio_hypercall can trigger IO events and interrupts, most notably
when using virtio-ccw devices.
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Fixes: 278f5e98c6 ("s390x/misc_helper.c: wrap IO instructions in BQL")
Signed-off-by: Alexander Graf <agraf@suse.de>
According to "CPU Signaling and Response", "Signal-Processor Orders",
the order field is bit position 56-63. Without this, the Linux
guest kernel is sometimes unable to stop emulation and enters
an infinite loop of "XXX unknown sigp: 0xffffffff00000005".
Signed-off-by: Philipp Kern <phil@philkern.de>
Reviewed-by: Thomas Huth <thuth@tuxfamily.org>
[agraf: add comment according to email]
Signed-off-by: Alexander Graf <agraf@suse.de>
macOS 10.12 deprecated/replaced many AppKit constants to make naming
more consistent. Use the new constants, and #define them to the
old constants when compiling against a pre-10.12 SDK.
Signed-off-by: Brendan Shanks <brendan@bslabs.net>
Message-id: 20170425062952.99149-1-brendan@bslabs.net
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Optimize two trace events as one, adjust print format make
it easy to read. rename trace_colo_compare_pkt_info_src/dst
to trace_colo_compare_tcp_info.
Signed-off-by: Zhang Chen <zhangchen.fnst@cn.fujitsu.com>
Signed-off-by: Jason Wang <jasowang@redhat.com>
In this patch we support packet that have tcp options field.
Add tcp options field check, If the packet have options
field we just skip it and compare tcp payload,
Avoid unnecessary checkpoint, optimize performance.
Signed-off-by: Zhang Chen <zhangchen.fnst@cn.fujitsu.com>
Signed-off-by: Jason Wang <jasowang@redhat.com>
NC-SI (Network Controller Sideband Interface) enables a BMC to manage
a set of NICs on a system. This model takes the simplest approach and
reverses the NC-SI packets to pretend a NIC is present and exercise
the Linux driver.
The NCSI header file <ncsi-pkt.h> comes from mainline Linux and was
untabified.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Acked-by: Samuel Thibault <samuel.thibault@ens-lyon.org>
Signed-off-by: Jason Wang <jasowang@redhat.com>
There is a second NIC but we do not use it for the moment. We use the
'aspeed' property to tune the definition of the end of ring buffer bit
for the Aspeed SoCs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Jason Wang <jasowang@redhat.com>