Introduce an AspeedI2CBus SysBusDevice model and attach the associated
memory region and IRQ to the newly instantiated objects.
Before this change, the I2C bus IRQs were all attached to the
SysBusDevice model of the I2C controller. Adapt the AST2600 SoC
realize routine to take into account this change.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The RAM memory region is now used for DMAs accesses instead of the
memory address space region. Mask off the top bits of the DMA address
to reflect this change.
Cc: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210407171637.777743-4-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
All the callers of aspeed_i2c_get_bus() have a AspeedI2CState and
cast it to a DeviceState with DEVICE(), then aspeed_i2c_get_bus()
cast the DeviceState to an AspeedI2CState with ASPEED_I2C()...
Simplify aspeed_i2c_get_bus() callers by using AspeedI2CState
argument.
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Andrew Jeffery <andrew@aj.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20200705224154.16917-2-f4bug@amsat.org>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Tested-by: Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20191119141211.25716-6-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The I2C controller of the Aspeed AST2500 and AST2600 SoCs supports DMA
transfers to and from DRAM.
A pair of registers defines the buffer address and the length of the
DMA transfer. The address should be aligned on 4 bytes and the maximum
length should not exceed 4K. The receive or transmit DMA transfer can
then be initiated with specific bits in the Command/Status register of
the controller.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Tested-by: Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20191119141211.25716-5-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The SRAM must be enabled before using the Buffer Pool mode or the DMA
mode. This is not required on other SoCs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Tested-by: Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20191119141211.25716-3-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The Aspeed I2C controller can operate in different transfer modes :
- Byte Buffer mode, using a dedicated register to transfer a
byte. This is what the model supports today.
- Pool Buffer mode, using an internal SRAM to transfer multiple
bytes in the same command sequence.
Each SoC has different SRAM characteristics. On the AST2400, 2048
bytes of SRAM are available at offset 0x800 of the controller AHB
window. The pool buffer can be configured from 1 to 256 bytes per bus.
On the AST2500, the SRAM is at offset 0x200 and the pool buffer is of
16 bytes per bus.
On the AST2600, the SRAM is at offset 0xC00 and the pool buffer is of
32 bytes per bus. It can be splitted in two for TX and RX but the
current model does not add support for it as it it unused by known
drivers.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Tested-by: Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20191119141211.25716-2-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The I2C controller of the AST2400 and AST2500 SoCs have one IRQ shared
by all I2C busses. The AST2600 SoC I2C controller has one IRQ per bus
and 16 busses.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Message-id: 20190925143248.10000-17-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
It prepares ground for register differences between SoCs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Message-id: 20190925143248.10000-16-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
In my "build everything" tree, changing migration/vmstate.h triggers a
recompile of some 2700 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).
hw/hw.h supposedly includes it for convenience. Several other headers
include it just to get VMStateDescription. The previous commit made
that unnecessary.
Include migration/vmstate.h only where it's still needed. Touching it
now recompiles only some 1600 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-16-armbru@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
In my "build everything" tree, changing hw/irq.h triggers a recompile
of some 5400 out of 6600 objects (not counting tests and objects that
don't depend on qemu/osdep.h).
hw/hw.h supposedly includes it for convenience. Several other headers
include it just to get qemu_irq and.or qemu_irq_handler.
Move the qemu_irq and qemu_irq_handler typedefs from hw/irq.h to
qemu/typedefs.h, and then include hw/irq.h only where it's still
needed. Touching it now recompiles only some 500 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190812052359.30071-13-armbru@redhat.com>
i2c_recv() cannot fail, so there is no need to check the return
value. It also returns unt8_t, so comparing with < 0 is not
meaningful.
Fix up various I2C controllers to remove the unneeded code.
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Suggested-by: Peter Maydell <peter.maydell@linaro.org>
The AST2500 datasheet says:
I2CD10 Interrupt Status Register
bit 2 Receive Done Interrupt status
S/W needs to clear this status bit to allow next data receiving
The Rx interrupt done interrupt status bit needs to be cleared
explicitly before the next byte can be received, and must therefore
not be auto-cleared. Also, receiving the next byte must be delayed
until the bit has been cleared.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20180914063506.20815-4-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Receive command handling may have to be deferred if a previous receive
done interrupt was not yet acknowledged. Move receive command handling
into a separate function to prepare for the necessary changes.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20180914063506.20815-3-clg@kaod.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
aspeed i2c interrupts should be cleared by software only, and the bus
interrupt should be lowered when all interrupts have been cleared.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20180914063506.20815-2-clg@kaod.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
[PMM: drop TODO comment describing an issue which is
fixed later in the patch series, and clean up commit message]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The Aspeed I2C controller maintains a state machine in the command
register, which is mostly used for debug.
Let's start adding a few states to handle abnormal STOP
commands. Today, the model uses the busy status of the bus as a
condition to do so but it is not precise enough.
Also remove the ABNORMAL bit for failing TX commands. This is
incorrect with respect to the specs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 1494827476-1487-4-git-send-email-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Today, the LAST command is handled with the STOP command but this is
incorrect. Also nack the I2C bus when a LAST is issued.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 1494827476-1487-3-git-send-email-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Multiple I2C commands can be fired simultaneously and the controller
execute the commands following these priorities:
(1) Master Start Command
(2) Master Transmit Command
(3) Slave Transmit Command or Master Receive Command
(4) Master Stop Command
The current code is incorrect with respect to the above sequence and
needs to be reworked to handle each individual command.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 1494827476-1487-2-git-send-email-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The Aspeed AST2400 integrates a set of 14 I2C/SMBus bus controllers
directly connected to the APB bus. They can be programmed as master or
slave but the propopsed model only supports the master mode.
On the TODO list, we also have :
- improve and harden the state machine.
- bus recovery support (used by the Linux driver).
- transfer mode state machine bits. this is not strictly necessary as
it is mostly used for debug. The bus busy bit is deducted from the
I2C core engine of qemu.
- support of the pool buffer: 2048 bytes of internal SRAM (not used
by the Linux driver).
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Andrew Jeffery <andrew@aj.id.au>
Message-id: 1464704307-25178-1-git-send-email-clg@kaod.org
[PMM: removed unused functions aspeed_i2c_bus_get_state() and
aspeed_i2c_bus_set_state()]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>