/* * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command * set. Known devices table current as of Jun/2012 and taken from linux. * See drivers/mtd/devices/m25p80.c. * * Copyright (C) 2011 Edgar E. Iglesias * Copyright (C) 2012 Peter A. G. Crosthwaite * Copyright (C) 2012 PetaLogix * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) a later version of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "sysemu/block-backend.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "hw/ssi/ssi.h" #include "migration/vmstate.h" #include "qemu/bitops.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "trace.h" #include "qom/object.h" /* Fields for FlashPartInfo->flags */ /* erase capabilities */ #define ER_4K 1 #define ER_32K 2 /* set to allow the page program command to write 0s back to 1. Useful for * modelling EEPROM with SPI flash command set */ #define EEPROM 0x100 /* 16 MiB max in 3 byte address mode */ #define MAX_3BYTES_SIZE 0x1000000 #define SPI_NOR_MAX_ID_LEN 6 typedef struct FlashPartInfo { const char *part_name; /* * This array stores the ID bytes. * The first three bytes are the JEDIC ID. * JEDEC ID zero means "no ID" (mostly older chips). */ uint8_t id[SPI_NOR_MAX_ID_LEN]; uint8_t id_len; /* there is confusion between manufacturers as to what a sector is. In this * device model, a "sector" is the size that is erased by the ERASE_SECTOR * command (opcode 0xd8). */ uint32_t sector_size; uint32_t n_sectors; uint32_t page_size; uint16_t flags; /* * Big sized spi nor are often stacked devices, thus sometime * replace chip erase with die erase. * This field inform how many die is in the chip. */ uint8_t die_cnt; } FlashPartInfo; /* adapted from linux */ /* Used when the "_ext_id" is two bytes at most */ #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ .part_name = _part_name,\ .id = {\ ((_jedec_id) >> 16) & 0xff,\ ((_jedec_id) >> 8) & 0xff,\ (_jedec_id) & 0xff,\ ((_ext_id) >> 8) & 0xff,\ (_ext_id) & 0xff,\ },\ .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ .sector_size = (_sector_size),\ .n_sectors = (_n_sectors),\ .page_size = 256,\ .flags = (_flags),\ .die_cnt = 0 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ .part_name = _part_name,\ .id = {\ ((_jedec_id) >> 16) & 0xff,\ ((_jedec_id) >> 8) & 0xff,\ (_jedec_id) & 0xff,\ ((_ext_id) >> 16) & 0xff,\ ((_ext_id) >> 8) & 0xff,\ (_ext_id) & 0xff,\ },\ .id_len = 6,\ .sector_size = (_sector_size),\ .n_sectors = (_n_sectors),\ .page_size = 256,\ .flags = (_flags),\ .die_cnt = 0 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\ _flags, _die_cnt)\ .part_name = _part_name,\ .id = {\ ((_jedec_id) >> 16) & 0xff,\ ((_jedec_id) >> 8) & 0xff,\ (_jedec_id) & 0xff,\ ((_ext_id) >> 8) & 0xff,\ (_ext_id) & 0xff,\ },\ .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ .sector_size = (_sector_size),\ .n_sectors = (_n_sectors),\ .page_size = 256,\ .flags = (_flags),\ .die_cnt = _die_cnt #define JEDEC_NUMONYX 0x20 #define JEDEC_WINBOND 0xEF #define JEDEC_SPANSION 0x01 /* Numonyx (Micron) Configuration register macros */ #define VCFG_DUMMY 0x1 #define VCFG_WRAP_SEQUENTIAL 0x2 #define NVCFG_XIP_MODE_DISABLED (7 << 9) #define NVCFG_XIP_MODE_MASK (7 << 9) #define VCFG_XIP_MODE_DISABLED (1 << 3) #define CFG_DUMMY_CLK_LEN 4 #define NVCFG_DUMMY_CLK_POS 12 #define VCFG_DUMMY_CLK_POS 4 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7 #define EVCFG_VPP_ACCELERATOR (1 << 3) #define EVCFG_RESET_HOLD_ENABLED (1 << 4) #define NVCFG_DUAL_IO_MASK (1 << 2) #define EVCFG_DUAL_IO_DISABLED (1 << 6) #define NVCFG_QUAD_IO_MASK (1 << 3) #define EVCFG_QUAD_IO_DISABLED (1 << 7) #define NVCFG_4BYTE_ADDR_MASK (1 << 0) #define NVCFG_LOWER_SEGMENT_MASK (1 << 1) /* Numonyx (Micron) Flag Status Register macros */ #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1 #define FSR_FLASH_READY (1 << 7) /* Spansion configuration registers macros. */ #define SPANSION_QUAD_CFG_POS 0 #define SPANSION_QUAD_CFG_LEN 1 #define SPANSION_DUMMY_CLK_POS 0 #define SPANSION_DUMMY_CLK_LEN 4 #define SPANSION_ADDR_LEN_POS 7 #define SPANSION_ADDR_LEN_LEN 1 /* * Spansion read mode command length in bytes, * the mode is currently not supported. */ #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1 static const FlashPartInfo known_devices[] = { /* Atmel -- some are (confusingly) marketed as "DataFlash" */ { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) }, { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) }, { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) }, { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) }, { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) }, { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) }, { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) }, { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) }, { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) }, { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) }, /* Atmel EEPROMS - it is assumed, that don't care bit in command * is set to 0. Block protection is not supported. */ { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) }, { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) }, /* EON -- en25xxx */ { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) }, { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) }, { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) }, { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) }, { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) }, /* GigaDevice */ { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) }, { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) }, /* Intel/Numonyx -- xxxs33b */ { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) }, { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) }, { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) }, { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) }, /* Macronix */ { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) }, { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) }, { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) }, { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) }, { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) }, { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) }, { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) }, { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) }, { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 0) }, { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) }, { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) }, { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) }, { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) }, { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) }, /* Micron */ { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) }, { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) }, { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) }, { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) }, { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) }, { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) }, { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) }, { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) }, { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) }, { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) }, { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) }, { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) }, { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) }, { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, /* Spansion -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) }, { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) }, { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) }, { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) }, { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) }, { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) }, { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) }, { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) }, { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) }, { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) }, { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) }, { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) }, { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) }, { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) }, { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) }, { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) }, { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) }, /* Spansion -- boot sectors support */ { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) }, { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) }, /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */ { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) }, { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) }, { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) }, { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) }, { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) }, { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) }, { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) }, { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) }, { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) }, /* ST Microelectronics -- newer production may have feature updates */ { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) }, { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) }, { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) }, { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) }, { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) }, { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) }, { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) }, { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) }, { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) }, { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) }, { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) }, { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) }, { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) }, { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) }, { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) }, { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) }, { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) }, { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) }, { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) }, { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) }, /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */ { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) }, { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) }, { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) }, { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) }, { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) }, { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) }, { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) }, { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) }, { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) }, { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) }, { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) }, { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) }, { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) }, { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K) }, }; typedef enum { NOP = 0, WRSR = 0x1, WRDI = 0x4, RDSR = 0x5, WREN = 0x6, BRRD = 0x16, BRWR = 0x17, JEDEC_READ = 0x9f, BULK_ERASE_60 = 0x60, BULK_ERASE = 0xc7, READ_FSR = 0x70, RDCR = 0x15, READ = 0x03, READ4 = 0x13, FAST_READ = 0x0b, FAST_READ4 = 0x0c, DOR = 0x3b, DOR4 = 0x3c, QOR = 0x6b, QOR4 = 0x6c, DIOR = 0xbb, DIOR4 = 0xbc, QIOR = 0xeb, QIOR4 = 0xec, PP = 0x02, PP4 = 0x12, PP4_4 = 0x3e, DPP = 0xa2, QPP = 0x32, QPP_4 = 0x34, RDID_90 = 0x90, RDID_AB = 0xab, AAI_WP = 0xad, ERASE_4K = 0x20, ERASE4_4K = 0x21, ERASE_32K = 0x52, ERASE4_32K = 0x5c, ERASE_SECTOR = 0xd8, ERASE4_SECTOR = 0xdc, EN_4BYTE_ADDR = 0xB7, EX_4BYTE_ADDR = 0xE9, EXTEND_ADDR_READ = 0xC8, EXTEND_ADDR_WRITE = 0xC5, RESET_ENABLE = 0x66, RESET_MEMORY = 0x99, /* * Micron: 0x35 - enable QPI * Spansion: 0x35 - read control register */ RDCR_EQIO = 0x35, RSTQIO = 0xf5, RNVCR = 0xB5, WNVCR = 0xB1, RVCR = 0x85, WVCR = 0x81, REVCR = 0x65, WEVCR = 0x61, DIE_ERASE = 0xC4, } FlashCMD; typedef enum { STATE_IDLE, STATE_PAGE_PROGRAM, STATE_READ, STATE_COLLECTING_DATA, STATE_COLLECTING_VAR_LEN_DATA, STATE_READING_DATA, } CMDState; typedef enum { MAN_SPANSION, MAN_MACRONIX, MAN_NUMONYX, MAN_WINBOND, MAN_SST, MAN_ISSI, MAN_GENERIC, } Manufacturer; typedef enum { MODE_STD = 0, MODE_DIO = 1, MODE_QIO = 2 } SPIMode; #define M25P80_INTERNAL_DATA_BUFFER_SZ 16 struct Flash { SSIPeripheral parent_obj; BlockBackend *blk; uint8_t *storage; uint32_t size; int page_size; uint8_t state; uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ]; uint32_t len; uint32_t pos; bool data_read_loop; uint8_t needed_bytes; uint8_t cmd_in_progress; uint32_t cur_addr; uint32_t nonvolatile_cfg; /* Configuration register for Macronix */ uint32_t volatile_cfg; uint32_t enh_volatile_cfg; /* Spansion cfg registers. */ uint8_t spansion_cr1nv; uint8_t spansion_cr2nv; uint8_t spansion_cr3nv; uint8_t spansion_cr4nv; uint8_t spansion_cr1v; uint8_t spansion_cr2v; uint8_t spansion_cr3v; uint8_t spansion_cr4v; bool write_enable; bool four_bytes_address_mode; bool reset_enable; bool quad_enable; bool aai_enable; uint8_t ear; int64_t dirty_page; const FlashPartInfo *pi; }; struct M25P80Class { SSIPeripheralClass parent_class; FlashPartInfo *pi; }; #define TYPE_M25P80 "m25p80-generic" OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80) static inline Manufacturer get_man(Flash *s) { switch (s->pi->id[0]) { case 0x20: return MAN_NUMONYX; case 0xEF: return MAN_WINBOND; case 0x01: return MAN_SPANSION; case 0xC2: return MAN_MACRONIX; case 0xBF: return MAN_SST; case 0x9D: return MAN_ISSI; default: return MAN_GENERIC; } } static void blk_sync_complete(void *opaque, int ret) { QEMUIOVector *iov = opaque; qemu_iovec_destroy(iov); g_free(iov); /* do nothing. Masters do not directly interact with the backing store, * only the working copy so no mutexing required. */ } static void flash_sync_page(Flash *s, int page) { QEMUIOVector *iov; if (!s->blk || !blk_is_writable(s->blk)) { return; } iov = g_new(QEMUIOVector, 1); qemu_iovec_init(iov, 1); qemu_iovec_add(iov, s->storage + page * s->pi->page_size, s->pi->page_size); blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0, blk_sync_complete, iov); } static inline void flash_sync_area(Flash *s, int64_t off, int64_t len) { QEMUIOVector *iov; if (!s->blk || !blk_is_writable(s->blk)) { return; } assert(!(len % BDRV_SECTOR_SIZE)); iov = g_new(QEMUIOVector, 1); qemu_iovec_init(iov, 1); qemu_iovec_add(iov, s->storage + off, len); blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov); } static void flash_erase(Flash *s, int offset, FlashCMD cmd) { uint32_t len; uint8_t capa_to_assert = 0; switch (cmd) { case ERASE_4K: case ERASE4_4K: len = 4 * KiB; capa_to_assert = ER_4K; break; case ERASE_32K: case ERASE4_32K: len = 32 * KiB; capa_to_assert = ER_32K; break; case ERASE_SECTOR: case ERASE4_SECTOR: len = s->pi->sector_size; break; case BULK_ERASE: len = s->size; break; case DIE_ERASE: if (s->pi->die_cnt) { len = s->size / s->pi->die_cnt; offset = offset & (~(len - 1)); } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported" " by device\n"); return; } break; default: abort(); } trace_m25p80_flash_erase(s, offset, len); if ((s->pi->flags & capa_to_assert) != capa_to_assert) { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by" " device\n", len); } if (!s->write_enable) { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n"); return; } memset(s->storage + offset, 0xff, len); flash_sync_area(s, offset, len); } static inline void flash_sync_dirty(Flash *s, int64_t newpage) { if (s->dirty_page >= 0 && s->dirty_page != newpage) { flash_sync_page(s, s->dirty_page); s->dirty_page = newpage; } } static inline void flash_write8(Flash *s, uint32_t addr, uint8_t data) { uint32_t page = addr / s->pi->page_size; uint8_t prev = s->storage[s->cur_addr]; if (!s->write_enable) { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n"); return; } if ((prev ^ data) & data) { trace_m25p80_programming_zero_to_one(s, addr, prev, data); } if (s->pi->flags & EEPROM) { s->storage[s->cur_addr] = data; } else { s->storage[s->cur_addr] &= data; } flash_sync_dirty(s, page); s->dirty_page = page; } static inline int get_addr_length(Flash *s) { /* check if eeprom is in use */ if (s->pi->flags == EEPROM) { return 2; } switch (s->cmd_in_progress) { case PP4: case PP4_4: case QPP_4: case READ4: case QIOR4: case ERASE4_4K: case ERASE4_32K: case ERASE4_SECTOR: case FAST_READ4: case DOR4: case QOR4: case DIOR4: return 4; default: return s->four_bytes_address_mode ? 4 : 3; } } static void complete_collecting_data(Flash *s) { int i, n; n = get_addr_length(s); s->cur_addr = (n == 3 ? s->ear : 0); for (i = 0; i < n; ++i) { s->cur_addr <<= 8; s->cur_addr |= s->data[i]; } s->cur_addr &= s->size - 1; s->state = STATE_IDLE; trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear, s->cur_addr); switch (s->cmd_in_progress) { case DPP: case QPP: case QPP_4: case PP: case PP4: case PP4_4: s->state = STATE_PAGE_PROGRAM; break; case AAI_WP: /* AAI programming starts from the even address */ s->cur_addr &= ~BIT(0); s->state = STATE_PAGE_PROGRAM; break; case READ: case READ4: case FAST_READ: case FAST_READ4: case DOR: case DOR4: case QOR: case QOR4: case DIOR: case DIOR4: case QIOR: case QIOR4: s->state = STATE_READ; break; case ERASE_4K: case ERASE4_4K: case ERASE_32K: case ERASE4_32K: case ERASE_SECTOR: case ERASE4_SECTOR: case DIE_ERASE: flash_erase(s, s->cur_addr, s->cmd_in_progress); break; case WRSR: switch (get_man(s)) { case MAN_SPANSION: s->quad_enable = !!(s->data[1] & 0x02); break; case MAN_ISSI: s->quad_enable = extract32(s->data[0], 6, 1); break; case MAN_MACRONIX: s->quad_enable = extract32(s->data[0], 6, 1); if (s->len > 1) { s->volatile_cfg = s->data[1]; s->four_bytes_address_mode = extract32(s->data[1], 5, 1); } break; default: break; } if (s->write_enable) { s->write_enable = false; } break; case BRWR: case EXTEND_ADDR_WRITE: s->ear = s->data[0]; break; case WNVCR: s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8); break; case WVCR: s->volatile_cfg = s->data[0]; break; case WEVCR: s->enh_volatile_cfg = s->data[0]; break; case RDID_90: case RDID_AB: if (get_man(s) == MAN_SST) { if (s->cur_addr <= 1) { if (s->cur_addr) { s->data[0] = s->pi->id[2]; s->data[1] = s->pi->id[0]; } else { s->data[0] = s->pi->id[0]; s->data[1] = s->pi->id[2]; } s->pos = 0; s->len = 2; s->data_read_loop = true; s->state = STATE_READING_DATA; } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Invalid read id address\n"); } } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Read id (command 0x90/0xAB) is not supported" " by device\n"); } break; default: break; } } static void reset_memory(Flash *s) { s->cmd_in_progress = NOP; s->cur_addr = 0; s->ear = 0; s->four_bytes_address_mode = false; s->len = 0; s->needed_bytes = 0; s->pos = 0; s->state = STATE_IDLE; s->write_enable = false; s->reset_enable = false; s->quad_enable = false; s->aai_enable = false; switch (get_man(s)) { case MAN_NUMONYX: s->volatile_cfg = 0; s->volatile_cfg |= VCFG_DUMMY; s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL; if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK) == NVCFG_XIP_MODE_DISABLED) { s->volatile_cfg |= VCFG_XIP_MODE_DISABLED; } s->volatile_cfg |= deposit32(s->volatile_cfg, VCFG_DUMMY_CLK_POS, CFG_DUMMY_CLK_LEN, extract32(s->nonvolatile_cfg, NVCFG_DUMMY_CLK_POS, CFG_DUMMY_CLK_LEN) ); s->enh_volatile_cfg = 0; s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF; s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR; s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED; if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) { s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED; } if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) { s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED; } if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) { s->four_bytes_address_mode = true; } if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) { s->ear = s->size / MAX_3BYTES_SIZE - 1; } break; case MAN_MACRONIX: s->volatile_cfg = 0x7; break; case MAN_SPANSION: s->spansion_cr1v = s->spansion_cr1nv; s->spansion_cr2v = s->spansion_cr2nv; s->spansion_cr3v = s->spansion_cr3nv; s->spansion_cr4v = s->spansion_cr4nv; s->quad_enable = extract32(s->spansion_cr1v, SPANSION_QUAD_CFG_POS, SPANSION_QUAD_CFG_LEN ); s->four_bytes_address_mode = extract32(s->spansion_cr2v, SPANSION_ADDR_LEN_POS, SPANSION_ADDR_LEN_LEN ); break; default: break; } trace_m25p80_reset_done(s); } static uint8_t numonyx_mode(Flash *s) { if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) { return MODE_QIO; } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) { return MODE_DIO; } else { return MODE_STD; } } static uint8_t numonyx_extract_cfg_num_dummies(Flash *s) { uint8_t num_dummies; uint8_t mode; assert(get_man(s) == MAN_NUMONYX); mode = numonyx_mode(s); num_dummies = extract32(s->volatile_cfg, 4, 4); if (num_dummies == 0x0 || num_dummies == 0xf) { switch (s->cmd_in_progress) { case QIOR: case QIOR4: num_dummies = 10; break; default: num_dummies = (mode == MODE_QIO) ? 10 : 8; break; } } return num_dummies; } static void decode_fast_read_cmd(Flash *s) { s->needed_bytes = get_addr_length(s); switch (get_man(s)) { /* Dummy cycles - modeled with bytes writes instead of bits */ case MAN_WINBOND: s->needed_bytes += 8; break; case MAN_NUMONYX: s->needed_bytes += numonyx_extract_cfg_num_dummies(s); break; case MAN_MACRONIX: if (extract32(s->volatile_cfg, 6, 2) == 1) { s->needed_bytes += 6; } else { s->needed_bytes += 8; } break; case MAN_SPANSION: s->needed_bytes += extract32(s->spansion_cr2v, SPANSION_DUMMY_CLK_POS, SPANSION_DUMMY_CLK_LEN ); break; case MAN_ISSI: /* * The Fast Read instruction code is followed by address bytes and * dummy cycles, transmitted via the SI line. * * The number of dummy cycles is configurable but this is currently * unmodeled, hence the default value 8 is used. * * QPI (Quad Peripheral Interface) mode has different default value * of dummy cycles, but this is unsupported at the time being. */ s->needed_bytes += 1; break; default: break; } s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } static void decode_dio_read_cmd(Flash *s) { s->needed_bytes = get_addr_length(s); /* Dummy cycles modeled with bytes writes instead of bits */ switch (get_man(s)) { case MAN_WINBOND: s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN; break; case MAN_SPANSION: s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN; s->needed_bytes += extract32(s->spansion_cr2v, SPANSION_DUMMY_CLK_POS, SPANSION_DUMMY_CLK_LEN ); break; case MAN_NUMONYX: s->needed_bytes += numonyx_extract_cfg_num_dummies(s); break; case MAN_MACRONIX: switch (extract32(s->volatile_cfg, 6, 2)) { case 1: s->needed_bytes += 6; break; case 2: s->needed_bytes += 8; break; default: s->needed_bytes += 4; break; } break; case MAN_ISSI: /* * The Fast Read Dual I/O instruction code is followed by address bytes * and dummy cycles, transmitted via the IO1 and IO0 line. * * The number of dummy cycles is configurable but this is currently * unmodeled, hence the default value 4 is used. */ s->needed_bytes += 1; break; default: break; } s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } static void decode_qio_read_cmd(Flash *s) { s->needed_bytes = get_addr_length(s); /* Dummy cycles modeled with bytes writes instead of bits */ switch (get_man(s)) { case MAN_WINBOND: s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN; s->needed_bytes += 4; break; case MAN_SPANSION: s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN; s->needed_bytes += extract32(s->spansion_cr2v, SPANSION_DUMMY_CLK_POS, SPANSION_DUMMY_CLK_LEN ); break; case MAN_NUMONYX: s->needed_bytes += numonyx_extract_cfg_num_dummies(s); break; case MAN_MACRONIX: switch (extract32(s->volatile_cfg, 6, 2)) { case 1: s->needed_bytes += 4; break; case 2: s->needed_bytes += 8; break; default: s->needed_bytes += 6; break; } break; case MAN_ISSI: /* * The Fast Read Quad I/O instruction code is followed by address bytes * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line. * * The number of dummy cycles is configurable but this is currently * unmodeled, hence the default value 6 is used. * * QPI (Quad Peripheral Interface) mode has different default value * of dummy cycles, but this is unsupported at the time being. */ s->needed_bytes += 3; break; default: break; } s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } static bool is_valid_aai_cmd(uint32_t cmd) { return cmd == AAI_WP || cmd == WRDI || cmd == RDSR; } static void decode_new_cmd(Flash *s, uint32_t value) { int i; s->cmd_in_progress = value; trace_m25p80_command_decoded(s, value); if (value != RESET_MEMORY) { s->reset_enable = false; } if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Invalid cmd within AAI programming sequence"); } switch (value) { case ERASE_4K: case ERASE4_4K: case ERASE_32K: case ERASE4_32K: case ERASE_SECTOR: case ERASE4_SECTOR: case PP: case PP4: case DIE_ERASE: case RDID_90: case RDID_AB: s->needed_bytes = get_addr_length(s); s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; break; case READ: case READ4: if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) { s->needed_bytes = get_addr_length(s); s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " "DIO or QIO mode\n", s->cmd_in_progress); } break; case DPP: if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { s->needed_bytes = get_addr_length(s); s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " "QIO mode\n", s->cmd_in_progress); } break; case QPP: case QPP_4: case PP4_4: if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { s->needed_bytes = get_addr_length(s); s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " "DIO mode\n", s->cmd_in_progress); } break; case FAST_READ: case FAST_READ4: decode_fast_read_cmd(s); break; case DOR: case DOR4: if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { decode_fast_read_cmd(s); } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " "QIO mode\n", s->cmd_in_progress); } break; case QOR: case QOR4: if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { decode_fast_read_cmd(s); } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " "DIO mode\n", s->cmd_in_progress); } break; case DIOR: case DIOR4: if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) { decode_dio_read_cmd(s); } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " "QIO mode\n", s->cmd_in_progress); } break; case QIOR: case QIOR4: if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) { decode_qio_read_cmd(s); } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in " "DIO mode\n", s->cmd_in_progress); } break; case WRSR: if (s->write_enable) { switch (get_man(s)) { case MAN_SPANSION: s->needed_bytes = 2; s->state = STATE_COLLECTING_DATA; break; case MAN_MACRONIX: s->needed_bytes = 2; s->state = STATE_COLLECTING_VAR_LEN_DATA; break; default: s->needed_bytes = 1; s->state = STATE_COLLECTING_DATA; } s->pos = 0; } break; case WRDI: s->write_enable = false; if (get_man(s) == MAN_SST) { s->aai_enable = false; } break; case WREN: s->write_enable = true; break; case RDSR: s->data[0] = (!!s->write_enable) << 1; if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) { s->data[0] |= (!!s->quad_enable) << 6; } if (get_man(s) == MAN_SST) { s->data[0] |= (!!s->aai_enable) << 6; } s->pos = 0; s->len = 1; s->data_read_loop = true; s->state = STATE_READING_DATA; break; case READ_FSR: s->data[0] = FSR_FLASH_READY; if (s->four_bytes_address_mode) { s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED; } s->pos = 0; s->len = 1; s->data_read_loop = true; s->state = STATE_READING_DATA; break; case JEDEC_READ: if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) { trace_m25p80_populated_jedec(s); for (i = 0; i < s->pi->id_len; i++) { s->data[i] = s->pi->id[i]; } for (; i < SPI_NOR_MAX_ID_LEN; i++) { s->data[i] = 0; } s->len = SPI_NOR_MAX_ID_LEN; s->pos = 0; s->state = STATE_READING_DATA; } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read " "in DIO or QIO mode\n"); } break; case RDCR: s->data[0] = s->volatile_cfg & 0xFF; s->data[0] |= (!!s->four_bytes_address_mode) << 5; s->pos = 0; s->len = 1; s->state = STATE_READING_DATA; break; case BULK_ERASE_60: case BULK_ERASE: if (s->write_enable) { trace_m25p80_chip_erase(s); flash_erase(s, 0, BULK_ERASE); } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write " "protect!\n"); } break; case NOP: break; case EN_4BYTE_ADDR: s->four_bytes_address_mode = true; break; case EX_4BYTE_ADDR: s->four_bytes_address_mode = false; break; case BRRD: case EXTEND_ADDR_READ: s->data[0] = s->ear; s->pos = 0; s->len = 1; s->state = STATE_READING_DATA; break; case BRWR: case EXTEND_ADDR_WRITE: if (s->write_enable) { s->needed_bytes = 1; s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } break; case RNVCR: s->data[0] = s->nonvolatile_cfg & 0xFF; s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF; s->pos = 0; s->len = 2; s->state = STATE_READING_DATA; break; case WNVCR: if (s->write_enable && get_man(s) == MAN_NUMONYX) { s->needed_bytes = 2; s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } break; case RVCR: s->data[0] = s->volatile_cfg & 0xFF; s->pos = 0; s->len = 1; s->state = STATE_READING_DATA; break; case WVCR: if (s->write_enable) { s->needed_bytes = 1; s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } break; case REVCR: s->data[0] = s->enh_volatile_cfg & 0xFF; s->pos = 0; s->len = 1; s->state = STATE_READING_DATA; break; case WEVCR: if (s->write_enable) { s->needed_bytes = 1; s->pos = 0; s->len = 0; s->state = STATE_COLLECTING_DATA; } break; case RESET_ENABLE: s->reset_enable = true; break; case RESET_MEMORY: if (s->reset_enable) { reset_memory(s); } break; case RDCR_EQIO: switch (get_man(s)) { case MAN_SPANSION: s->data[0] = (!!s->quad_enable) << 1; s->pos = 0; s->len = 1; s->state = STATE_READING_DATA; break; case MAN_MACRONIX: s->quad_enable = true; break; default: break; } break; case RSTQIO: s->quad_enable = false; break; case AAI_WP: if (get_man(s) == MAN_SST) { if (s->write_enable) { if (s->aai_enable) { s->state = STATE_PAGE_PROGRAM; } else { s->aai_enable = true; s->needed_bytes = get_addr_length(s); s->state = STATE_COLLECTING_DATA; } } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: AAI_WP with write protect\n"); } } else { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value); } break; default: s->pos = 0; s->len = 1; s->state = STATE_READING_DATA; s->data_read_loop = true; s->data[0] = 0; qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value); break; } } static int m25p80_cs(SSIPeripheral *ss, bool select) { Flash *s = M25P80(ss); if (select) { if (s->state == STATE_COLLECTING_VAR_LEN_DATA) { complete_collecting_data(s); } s->len = 0; s->pos = 0; s->state = STATE_IDLE; flash_sync_dirty(s, -1); s->data_read_loop = false; } trace_m25p80_select(s, select ? "de" : ""); return 0; } static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx) { Flash *s = M25P80(ss); uint32_t r = 0; trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos, s->cur_addr, (uint8_t)tx); switch (s->state) { case STATE_PAGE_PROGRAM: trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx); flash_write8(s, s->cur_addr, (uint8_t)tx); s->cur_addr = (s->cur_addr + 1) & (s->size - 1); if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) { /* * There is no wrap mode during AAI programming once the highest * unprotected memory address is reached. The Write-Enable-Latch * bit is automatically reset, and AAI programming mode aborts. */ s->write_enable = false; s->aai_enable = false; } break; case STATE_READ: r = s->storage[s->cur_addr]; trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r); s->cur_addr = (s->cur_addr + 1) & (s->size - 1); break; case STATE_COLLECTING_DATA: case STATE_COLLECTING_VAR_LEN_DATA: if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Write overrun internal data buffer. " "SPI controller (QEMU emulator or guest driver) " "is misbehaving\n"); s->len = s->pos = 0; s->state = STATE_IDLE; break; } s->data[s->len] = (uint8_t)tx; s->len++; if (s->len == s->needed_bytes) { complete_collecting_data(s); } break; case STATE_READING_DATA: if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) { qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Read overrun internal data buffer. " "SPI controller (QEMU emulator or guest driver) " "is misbehaving\n"); s->len = s->pos = 0; s->state = STATE_IDLE; break; } r = s->data[s->pos]; trace_m25p80_read_data(s, s->pos, (uint8_t)r); s->pos++; if (s->pos == s->len) { s->pos = 0; if (!s->data_read_loop) { s->state = STATE_IDLE; } } break; default: case STATE_IDLE: decode_new_cmd(s, (uint8_t)tx); break; } return r; } static void m25p80_realize(SSIPeripheral *ss, Error **errp) { Flash *s = M25P80(ss); M25P80Class *mc = M25P80_GET_CLASS(s); int ret; s->pi = mc->pi; s->size = s->pi->sector_size * s->pi->n_sectors; s->dirty_page = -1; if (s->blk) { uint64_t perm = BLK_PERM_CONSISTENT_READ | (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0); ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp); if (ret < 0) { return; } trace_m25p80_binding(s); s->storage = blk_blockalign(s->blk, s->size); if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) { error_setg(errp, "failed to read the initial flash content"); return; } } else { trace_m25p80_binding_no_bdrv(s); s->storage = blk_blockalign(NULL, s->size); memset(s->storage, 0xFF, s->size); } } static void m25p80_reset(DeviceState *d) { Flash *s = M25P80(d); reset_memory(s); } static int m25p80_pre_save(void *opaque) { flash_sync_dirty((Flash *)opaque, -1); return 0; } static Property m25p80_properties[] = { /* This is default value for Micron flash */ DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF), DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0), DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8), DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2), DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10), DEFINE_PROP_DRIVE("drive", Flash, blk), DEFINE_PROP_END_OF_LIST(), }; static int m25p80_pre_load(void *opaque) { Flash *s = (Flash *)opaque; s->data_read_loop = false; return 0; } static bool m25p80_data_read_loop_needed(void *opaque) { Flash *s = (Flash *)opaque; return s->data_read_loop; } static const VMStateDescription vmstate_m25p80_data_read_loop = { .name = "m25p80/data_read_loop", .version_id = 1, .minimum_version_id = 1, .needed = m25p80_data_read_loop_needed, .fields = (VMStateField[]) { VMSTATE_BOOL(data_read_loop, Flash), VMSTATE_END_OF_LIST() } }; static bool m25p80_aai_enable_needed(void *opaque) { Flash *s = (Flash *)opaque; return s->aai_enable; } static const VMStateDescription vmstate_m25p80_aai_enable = { .name = "m25p80/aai_enable", .version_id = 1, .minimum_version_id = 1, .needed = m25p80_aai_enable_needed, .fields = (VMStateField[]) { VMSTATE_BOOL(aai_enable, Flash), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_m25p80 = { .name = "m25p80", .version_id = 0, .minimum_version_id = 0, .pre_save = m25p80_pre_save, .pre_load = m25p80_pre_load, .fields = (VMStateField[]) { VMSTATE_UINT8(state, Flash), VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ), VMSTATE_UINT32(len, Flash), VMSTATE_UINT32(pos, Flash), VMSTATE_UINT8(needed_bytes, Flash), VMSTATE_UINT8(cmd_in_progress, Flash), VMSTATE_UINT32(cur_addr, Flash), VMSTATE_BOOL(write_enable, Flash), VMSTATE_BOOL(reset_enable, Flash), VMSTATE_UINT8(ear, Flash), VMSTATE_BOOL(four_bytes_address_mode, Flash), VMSTATE_UINT32(nonvolatile_cfg, Flash), VMSTATE_UINT32(volatile_cfg, Flash), VMSTATE_UINT32(enh_volatile_cfg, Flash), VMSTATE_BOOL(quad_enable, Flash), VMSTATE_UINT8(spansion_cr1nv, Flash), VMSTATE_UINT8(spansion_cr2nv, Flash), VMSTATE_UINT8(spansion_cr3nv, Flash), VMSTATE_UINT8(spansion_cr4nv, Flash), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_m25p80_data_read_loop, &vmstate_m25p80_aai_enable, NULL } }; static void m25p80_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass); M25P80Class *mc = M25P80_CLASS(klass); k->realize = m25p80_realize; k->transfer = m25p80_transfer8; k->set_cs = m25p80_cs; k->cs_polarity = SSI_CS_LOW; dc->vmsd = &vmstate_m25p80; device_class_set_props(dc, m25p80_properties); dc->reset = m25p80_reset; mc->pi = data; } static const TypeInfo m25p80_info = { .name = TYPE_M25P80, .parent = TYPE_SSI_PERIPHERAL, .instance_size = sizeof(Flash), .class_size = sizeof(M25P80Class), .abstract = true, }; static void m25p80_register_types(void) { int i; type_register_static(&m25p80_info); for (i = 0; i < ARRAY_SIZE(known_devices); ++i) { TypeInfo ti = { .name = known_devices[i].part_name, .parent = TYPE_M25P80, .class_init = m25p80_class_init, .class_data = (void *)&known_devices[i], }; type_register(&ti); } } type_init(m25p80_register_types)