/* * QEMU monitor * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "hw/hw.h" #include "monitor/qdev.h" #include "hw/usb.h" #include "hw/i386/pc.h" #include "hw/pci/pci.h" #include "sysemu/watchdog.h" #include "hw/loader.h" #include "exec/gdbstub.h" #include "net/net.h" #include "net/slirp.h" #include "sysemu/char.h" #include "ui/qemu-spice.h" #include "sysemu/sysemu.h" #include "sysemu/numa.h" #include "monitor/monitor.h" #include "qemu/readline.h" #include "ui/console.h" #include "ui/input.h" #include "sysemu/blockdev.h" #include "audio/audio.h" #include "disas/disas.h" #include "sysemu/balloon.h" #include "qemu/timer.h" #include "migration/migration.h" #include "sysemu/kvm.h" #include "qemu/acl.h" #include "sysemu/tpm.h" #include "qapi/qmp/qint.h" #include "qapi/qmp/qfloat.h" #include "qapi/qmp/qlist.h" #include "qapi/qmp/qbool.h" #include "qapi/qmp/qstring.h" #include "qapi/qmp/qjson.h" #include "qapi/qmp/json-streamer.h" #include "qapi/qmp/json-parser.h" #include #include "qemu/osdep.h" #include "cpu.h" #include "trace.h" #include "trace/control.h" #ifdef CONFIG_TRACE_SIMPLE #include "trace/simple.h" #endif #include "exec/memory.h" #include "exec/cpu_ldst.h" #include "qmp-commands.h" #include "hmp.h" #include "qemu/thread.h" #include "block/qapi.h" #include "qapi/qmp-event.h" #include "qapi-event.h" #include "sysemu/block-backend.h" /* for hmp_info_irq/pic */ #if defined(TARGET_SPARC) #include "hw/sparc/sun4m.h" #endif #include "hw/lm32/lm32_pic.h" //#define DEBUG //#define DEBUG_COMPLETION /* * Supported types: * * 'F' filename * 'B' block device name * 's' string (accept optional quote) * 'S' it just appends the rest of the string (accept optional quote) * 'O' option string of the form NAME=VALUE,... * parsed according to QemuOptsList given by its name * Example: 'device:O' uses qemu_device_opts. * Restriction: only lists with empty desc are supported * TODO lift the restriction * 'i' 32 bit integer * 'l' target long (32 or 64 bit) * 'M' Non-negative target long (32 or 64 bit), in user mode the * value is multiplied by 2^20 (think Mebibyte) * 'o' octets (aka bytes) * user mode accepts an optional E, e, P, p, T, t, G, g, M, m, * K, k suffix, which multiplies the value by 2^60 for suffixes E * and e, 2^50 for suffixes P and p, 2^40 for suffixes T and t, * 2^30 for suffixes G and g, 2^20 for M and m, 2^10 for K and k * 'T' double * user mode accepts an optional ms, us, ns suffix, * which divides the value by 1e3, 1e6, 1e9, respectively * '/' optional gdb-like print format (like "/10x") * * '?' optional type (for all types, except '/') * '.' other form of optional type (for 'i' and 'l') * 'b' boolean * user mode accepts "on" or "off" * '-' optional parameter (eg. '-f') * */ typedef struct mon_cmd_t { const char *name; const char *args_type; const char *params; const char *help; union { void (*cmd)(Monitor *mon, const QDict *qdict); int (*cmd_new)(Monitor *mon, const QDict *params, QObject **ret_data); } mhandler; /* @sub_table is a list of 2nd level of commands. If it do not exist, * mhandler should be used. If it exist, sub_table[?].mhandler should be * used, and mhandler of 1st level plays the role of help function. */ struct mon_cmd_t *sub_table; void (*command_completion)(ReadLineState *rs, int nb_args, const char *str); } mon_cmd_t; /* file descriptors passed via SCM_RIGHTS */ typedef struct mon_fd_t mon_fd_t; struct mon_fd_t { char *name; int fd; QLIST_ENTRY(mon_fd_t) next; }; /* file descriptor associated with a file descriptor set */ typedef struct MonFdsetFd MonFdsetFd; struct MonFdsetFd { int fd; bool removed; char *opaque; QLIST_ENTRY(MonFdsetFd) next; }; /* file descriptor set containing fds passed via SCM_RIGHTS */ typedef struct MonFdset MonFdset; struct MonFdset { int64_t id; QLIST_HEAD(, MonFdsetFd) fds; QLIST_HEAD(, MonFdsetFd) dup_fds; QLIST_ENTRY(MonFdset) next; }; typedef struct MonitorControl { QObject *id; JSONMessageParser parser; int command_mode; } MonitorControl; /* * To prevent flooding clients, events can be throttled. The * throttling is calculated globally, rather than per-Monitor * instance. */ typedef struct MonitorQAPIEventState { QAPIEvent event; /* Event being tracked */ int64_t rate; /* Minimum time (in ns) between two events */ int64_t last; /* QEMU_CLOCK_REALTIME value at last emission */ QEMUTimer *timer; /* Timer for handling delayed events */ QObject *data; /* Event pending delayed dispatch */ } MonitorQAPIEventState; struct Monitor { CharDriverState *chr; int reset_seen; int flags; int suspend_cnt; bool skip_flush; QemuMutex out_lock; QString *outbuf; guint out_watch; /* Read under either BQL or out_lock, written with BQL+out_lock. */ int mux_out; ReadLineState *rs; MonitorControl *mc; CPUState *mon_cpu; BlockCompletionFunc *password_completion_cb; void *password_opaque; mon_cmd_t *cmd_table; QError *error; QLIST_HEAD(,mon_fd_t) fds; QLIST_ENTRY(Monitor) entry; }; /* QMP checker flags */ #define QMP_ACCEPT_UNKNOWNS 1 /* Protects mon_list, monitor_event_state. */ static QemuMutex monitor_lock; static QLIST_HEAD(mon_list, Monitor) mon_list; static QLIST_HEAD(mon_fdsets, MonFdset) mon_fdsets; static int mon_refcount; static mon_cmd_t mon_cmds[]; static mon_cmd_t info_cmds[]; static const mon_cmd_t qmp_cmds[]; Monitor *cur_mon; Monitor *default_mon; static void monitor_command_cb(void *opaque, const char *cmdline, void *readline_opaque); static inline int qmp_cmd_mode(const Monitor *mon) { return (mon->mc ? mon->mc->command_mode : 0); } /* Return true if in control mode, false otherwise */ static inline int monitor_ctrl_mode(const Monitor *mon) { return (mon->flags & MONITOR_USE_CONTROL); } /* Return non-zero iff we have a current monitor, and it is in QMP mode. */ int monitor_cur_is_qmp(void) { return cur_mon && monitor_ctrl_mode(cur_mon); } void monitor_read_command(Monitor *mon, int show_prompt) { if (!mon->rs) return; readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL); if (show_prompt) readline_show_prompt(mon->rs); } int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func, void *opaque) { if (mon->rs) { readline_start(mon->rs, "Password: ", 1, readline_func, opaque); /* prompt is printed on return from the command handler */ return 0; } else { monitor_printf(mon, "terminal does not support password prompting\n"); return -ENOTTY; } } static void monitor_flush_locked(Monitor *mon); static gboolean monitor_unblocked(GIOChannel *chan, GIOCondition cond, void *opaque) { Monitor *mon = opaque; qemu_mutex_lock(&mon->out_lock); mon->out_watch = 0; monitor_flush_locked(mon); qemu_mutex_unlock(&mon->out_lock); return FALSE; } /* Called with mon->out_lock held. */ static void monitor_flush_locked(Monitor *mon) { int rc; size_t len; const char *buf; if (mon->skip_flush) { return; } buf = qstring_get_str(mon->outbuf); len = qstring_get_length(mon->outbuf); if (len && !mon->mux_out) { rc = qemu_chr_fe_write(mon->chr, (const uint8_t *) buf, len); if ((rc < 0 && errno != EAGAIN) || (rc == len)) { /* all flushed or error */ QDECREF(mon->outbuf); mon->outbuf = qstring_new(); return; } if (rc > 0) { /* partinal write */ QString *tmp = qstring_from_str(buf + rc); QDECREF(mon->outbuf); mon->outbuf = tmp; } if (mon->out_watch == 0) { mon->out_watch = qemu_chr_fe_add_watch(mon->chr, G_IO_OUT|G_IO_HUP, monitor_unblocked, mon); } } } void monitor_flush(Monitor *mon) { qemu_mutex_lock(&mon->out_lock); monitor_flush_locked(mon); qemu_mutex_unlock(&mon->out_lock); } /* flush at every end of line */ static void monitor_puts(Monitor *mon, const char *str) { char c; qemu_mutex_lock(&mon->out_lock); for(;;) { c = *str++; if (c == '\0') break; if (c == '\n') { qstring_append_chr(mon->outbuf, '\r'); } qstring_append_chr(mon->outbuf, c); if (c == '\n') { monitor_flush_locked(mon); } } qemu_mutex_unlock(&mon->out_lock); } void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap) { char *buf; if (!mon) return; if (monitor_ctrl_mode(mon)) { return; } buf = g_strdup_vprintf(fmt, ap); monitor_puts(mon, buf); g_free(buf); } void monitor_printf(Monitor *mon, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf(mon, fmt, ap); va_end(ap); } static int GCC_FMT_ATTR(2, 3) monitor_fprintf(FILE *stream, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf((Monitor *)stream, fmt, ap); va_end(ap); return 0; } static inline int monitor_has_error(const Monitor *mon) { return mon->error != NULL; } static void monitor_json_emitter(Monitor *mon, const QObject *data) { QString *json; json = mon->flags & MONITOR_USE_PRETTY ? qobject_to_json_pretty(data) : qobject_to_json(data); assert(json != NULL); qstring_append_chr(json, '\n'); monitor_puts(mon, qstring_get_str(json)); QDECREF(json); } static QDict *build_qmp_error_dict(const QError *err) { QObject *obj; obj = qobject_from_jsonf("{ 'error': { 'class': %s, 'desc': %p } }", ErrorClass_lookup[err->err_class], qerror_human(err)); return qobject_to_qdict(obj); } static void monitor_protocol_emitter(Monitor *mon, QObject *data, QError *err) { QDict *qmp; trace_monitor_protocol_emitter(mon); if (!err) { /* success response */ qmp = qdict_new(); if (data) { qobject_incref(data); qdict_put_obj(qmp, "return", data); } else { /* return an empty QDict by default */ qdict_put(qmp, "return", qdict_new()); } } else { /* error response */ qmp = build_qmp_error_dict(err); } if (mon->mc->id) { qdict_put_obj(qmp, "id", mon->mc->id); mon->mc->id = NULL; } monitor_json_emitter(mon, QOBJECT(qmp)); QDECREF(qmp); } static MonitorQAPIEventState monitor_qapi_event_state[QAPI_EVENT_MAX]; /* * Emits the event to every monitor instance, @event is only used for trace * Called with monitor_lock held. */ static void monitor_qapi_event_emit(QAPIEvent event, QObject *data) { Monitor *mon; trace_monitor_protocol_event_emit(event, data); QLIST_FOREACH(mon, &mon_list, entry) { if (monitor_ctrl_mode(mon) && qmp_cmd_mode(mon)) { monitor_json_emitter(mon, data); } } } /* * Queue a new event for emission to Monitor instances, * applying any rate limiting if required. */ static void monitor_qapi_event_queue(QAPIEvent event, QDict *data, Error **errp) { MonitorQAPIEventState *evstate; assert(event < QAPI_EVENT_MAX); int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); evstate = &(monitor_qapi_event_state[event]); trace_monitor_protocol_event_queue(event, data, evstate->rate, evstate->last, now); /* Rate limit of 0 indicates no throttling */ qemu_mutex_lock(&monitor_lock); if (!evstate->rate) { monitor_qapi_event_emit(event, QOBJECT(data)); evstate->last = now; } else { int64_t delta = now - evstate->last; if (evstate->data || delta < evstate->rate) { /* If there's an existing event pending, replace * it with the new event, otherwise schedule a * timer for delayed emission */ if (evstate->data) { qobject_decref(evstate->data); } else { int64_t then = evstate->last + evstate->rate; timer_mod_ns(evstate->timer, then); } evstate->data = QOBJECT(data); qobject_incref(evstate->data); } else { monitor_qapi_event_emit(event, QOBJECT(data)); evstate->last = now; } } qemu_mutex_unlock(&monitor_lock); } /* * The callback invoked by QemuTimer when a delayed * event is ready to be emitted */ static void monitor_qapi_event_handler(void *opaque) { MonitorQAPIEventState *evstate = opaque; int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); trace_monitor_protocol_event_handler(evstate->event, evstate->data, evstate->last, now); qemu_mutex_lock(&monitor_lock); if (evstate->data) { monitor_qapi_event_emit(evstate->event, evstate->data); qobject_decref(evstate->data); evstate->data = NULL; } evstate->last = now; qemu_mutex_unlock(&monitor_lock); } /* * @event: the event ID to be limited * @rate: the rate limit in milliseconds * * Sets a rate limit on a particular event, so no * more than 1 event will be emitted within @rate * milliseconds */ static void monitor_qapi_event_throttle(QAPIEvent event, int64_t rate) { MonitorQAPIEventState *evstate; assert(event < QAPI_EVENT_MAX); evstate = &(monitor_qapi_event_state[event]); trace_monitor_protocol_event_throttle(event, rate); evstate->event = event; assert(rate * SCALE_MS <= INT64_MAX); evstate->rate = rate * SCALE_MS; evstate->last = 0; evstate->data = NULL; evstate->timer = timer_new(QEMU_CLOCK_REALTIME, SCALE_MS, monitor_qapi_event_handler, evstate); } static void monitor_qapi_event_init(void) { /* Limit guest-triggerable events to 1 per second */ monitor_qapi_event_throttle(QAPI_EVENT_RTC_CHANGE, 1000); monitor_qapi_event_throttle(QAPI_EVENT_WATCHDOG, 1000); monitor_qapi_event_throttle(QAPI_EVENT_BALLOON_CHANGE, 1000); monitor_qapi_event_throttle(QAPI_EVENT_QUORUM_REPORT_BAD, 1000); monitor_qapi_event_throttle(QAPI_EVENT_QUORUM_FAILURE, 1000); monitor_qapi_event_throttle(QAPI_EVENT_VSERPORT_CHANGE, 1000); qmp_event_set_func_emit(monitor_qapi_event_queue); } static int do_qmp_capabilities(Monitor *mon, const QDict *params, QObject **ret_data) { /* Will setup QMP capabilities in the future */ if (monitor_ctrl_mode(mon)) { mon->mc->command_mode = 1; } return 0; } static void handle_user_command(Monitor *mon, const char *cmdline); static void monitor_data_init(Monitor *mon) { memset(mon, 0, sizeof(Monitor)); qemu_mutex_init(&mon->out_lock); mon->outbuf = qstring_new(); /* Use *mon_cmds by default. */ mon->cmd_table = mon_cmds; } static void monitor_data_destroy(Monitor *mon) { QDECREF(mon->outbuf); qemu_mutex_destroy(&mon->out_lock); } char *qmp_human_monitor_command(const char *command_line, bool has_cpu_index, int64_t cpu_index, Error **errp) { char *output = NULL; Monitor *old_mon, hmp; monitor_data_init(&hmp); hmp.skip_flush = true; old_mon = cur_mon; cur_mon = &hmp; if (has_cpu_index) { int ret = monitor_set_cpu(cpu_index); if (ret < 0) { cur_mon = old_mon; error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", "a CPU number"); goto out; } } handle_user_command(&hmp, command_line); cur_mon = old_mon; qemu_mutex_lock(&hmp.out_lock); if (qstring_get_length(hmp.outbuf) > 0) { output = g_strdup(qstring_get_str(hmp.outbuf)); } else { output = g_strdup(""); } qemu_mutex_unlock(&hmp.out_lock); out: monitor_data_destroy(&hmp); return output; } static int compare_cmd(const char *name, const char *list) { const char *p, *pstart; int len; len = strlen(name); p = list; for(;;) { pstart = p; p = strchr(p, '|'); if (!p) p = pstart + strlen(pstart); if ((p - pstart) == len && !memcmp(pstart, name, len)) return 1; if (*p == '\0') break; p++; } return 0; } static int get_str(char *buf, int buf_size, const char **pp) { const char *p; char *q; int c; q = buf; p = *pp; while (qemu_isspace(*p)) { p++; } if (*p == '\0') { fail: *q = '\0'; *pp = p; return -1; } if (*p == '\"') { p++; while (*p != '\0' && *p != '\"') { if (*p == '\\') { p++; c = *p++; switch (c) { case 'n': c = '\n'; break; case 'r': c = '\r'; break; case '\\': case '\'': case '\"': break; default: qemu_printf("unsupported escape code: '\\%c'\n", c); goto fail; } if ((q - buf) < buf_size - 1) { *q++ = c; } } else { if ((q - buf) < buf_size - 1) { *q++ = *p; } p++; } } if (*p != '\"') { qemu_printf("unterminated string\n"); goto fail; } p++; } else { while (*p != '\0' && !qemu_isspace(*p)) { if ((q - buf) < buf_size - 1) { *q++ = *p; } p++; } } *q = '\0'; *pp = p; return 0; } #define MAX_ARGS 16 static void free_cmdline_args(char **args, int nb_args) { int i; assert(nb_args <= MAX_ARGS); for (i = 0; i < nb_args; i++) { g_free(args[i]); } } /* * Parse the command line to get valid args. * @cmdline: command line to be parsed. * @pnb_args: location to store the number of args, must NOT be NULL. * @args: location to store the args, which should be freed by caller, must * NOT be NULL. * * Returns 0 on success, negative on failure. * * NOTE: this parser is an approximate form of the real command parser. Number * of args have a limit of MAX_ARGS. If cmdline contains more, it will * return with failure. */ static int parse_cmdline(const char *cmdline, int *pnb_args, char **args) { const char *p; int nb_args, ret; char buf[1024]; p = cmdline; nb_args = 0; for (;;) { while (qemu_isspace(*p)) { p++; } if (*p == '\0') { break; } if (nb_args >= MAX_ARGS) { goto fail; } ret = get_str(buf, sizeof(buf), &p); if (ret < 0) { goto fail; } args[nb_args] = g_strdup(buf); nb_args++; } *pnb_args = nb_args; return 0; fail: free_cmdline_args(args, nb_args); return -1; } static void help_cmd_dump_one(Monitor *mon, const mon_cmd_t *cmd, char **prefix_args, int prefix_args_nb) { int i; for (i = 0; i < prefix_args_nb; i++) { monitor_printf(mon, "%s ", prefix_args[i]); } monitor_printf(mon, "%s %s -- %s\n", cmd->name, cmd->params, cmd->help); } /* @args[@arg_index] is the valid command need to find in @cmds */ static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds, char **args, int nb_args, int arg_index) { const mon_cmd_t *cmd; /* No valid arg need to compare with, dump all in *cmds */ if (arg_index >= nb_args) { for (cmd = cmds; cmd->name != NULL; cmd++) { help_cmd_dump_one(mon, cmd, args, arg_index); } return; } /* Find one entry to dump */ for (cmd = cmds; cmd->name != NULL; cmd++) { if (compare_cmd(args[arg_index], cmd->name)) { if (cmd->sub_table) { /* continue with next arg */ help_cmd_dump(mon, cmd->sub_table, args, nb_args, arg_index + 1); } else { help_cmd_dump_one(mon, cmd, args, arg_index); } break; } } } static void help_cmd(Monitor *mon, const char *name) { char *args[MAX_ARGS]; int nb_args = 0; /* 1. parse user input */ if (name) { /* special case for log, directly dump and return */ if (!strcmp(name, "log")) { const QEMULogItem *item; monitor_printf(mon, "Log items (comma separated):\n"); monitor_printf(mon, "%-10s %s\n", "none", "remove all logs"); for (item = qemu_log_items; item->mask != 0; item++) { monitor_printf(mon, "%-10s %s\n", item->name, item->help); } return; } if (parse_cmdline(name, &nb_args, args) < 0) { return; } } /* 2. dump the contents according to parsed args */ help_cmd_dump(mon, mon->cmd_table, args, nb_args, 0); free_cmdline_args(args, nb_args); } static void do_help_cmd(Monitor *mon, const QDict *qdict) { help_cmd(mon, qdict_get_try_str(qdict, "name")); } static void hmp_trace_event(Monitor *mon, const QDict *qdict) { const char *tp_name = qdict_get_str(qdict, "name"); bool new_state = qdict_get_bool(qdict, "option"); Error *local_err = NULL; qmp_trace_event_set_state(tp_name, new_state, true, true, &local_err); if (local_err) { error_report_err(local_err); } } #ifdef CONFIG_TRACE_SIMPLE static void hmp_trace_file(Monitor *mon, const QDict *qdict) { const char *op = qdict_get_try_str(qdict, "op"); const char *arg = qdict_get_try_str(qdict, "arg"); if (!op) { st_print_trace_file_status((FILE *)mon, &monitor_fprintf); } else if (!strcmp(op, "on")) { st_set_trace_file_enabled(true); } else if (!strcmp(op, "off")) { st_set_trace_file_enabled(false); } else if (!strcmp(op, "flush")) { st_flush_trace_buffer(); } else if (!strcmp(op, "set")) { if (arg) { st_set_trace_file(arg); } } else { monitor_printf(mon, "unexpected argument \"%s\"\n", op); help_cmd(mon, "trace-file"); } } #endif static void hmp_info_help(Monitor *mon, const QDict *qdict) { help_cmd(mon, "info"); } CommandInfoList *qmp_query_commands(Error **errp) { CommandInfoList *info, *cmd_list = NULL; const mon_cmd_t *cmd; for (cmd = qmp_cmds; cmd->name != NULL; cmd++) { info = g_malloc0(sizeof(*info)); info->value = g_malloc0(sizeof(*info->value)); info->value->name = g_strdup(cmd->name); info->next = cmd_list; cmd_list = info; } return cmd_list; } EventInfoList *qmp_query_events(Error **errp) { EventInfoList *info, *ev_list = NULL; QAPIEvent e; for (e = 0 ; e < QAPI_EVENT_MAX ; e++) { const char *event_name = QAPIEvent_lookup[e]; assert(event_name != NULL); info = g_malloc0(sizeof(*info)); info->value = g_malloc0(sizeof(*info->value)); info->value->name = g_strdup(event_name); info->next = ev_list; ev_list = info; } return ev_list; } /* set the current CPU defined by the user */ int monitor_set_cpu(int cpu_index) { CPUState *cpu; cpu = qemu_get_cpu(cpu_index); if (cpu == NULL) { return -1; } cur_mon->mon_cpu = cpu; return 0; } static CPUArchState *mon_get_cpu(void) { if (!cur_mon->mon_cpu) { monitor_set_cpu(0); } cpu_synchronize_state(cur_mon->mon_cpu); return cur_mon->mon_cpu->env_ptr; } int monitor_get_cpu_index(void) { CPUState *cpu = ENV_GET_CPU(mon_get_cpu()); return cpu->cpu_index; } static void hmp_info_registers(Monitor *mon, const QDict *qdict) { CPUState *cpu; CPUArchState *env; env = mon_get_cpu(); cpu = ENV_GET_CPU(env); cpu_dump_state(cpu, (FILE *)mon, monitor_fprintf, CPU_DUMP_FPU); } static void hmp_info_jit(Monitor *mon, const QDict *qdict) { dump_exec_info((FILE *)mon, monitor_fprintf); dump_drift_info((FILE *)mon, monitor_fprintf); } static void hmp_info_opcount(Monitor *mon, const QDict *qdict) { dump_opcount_info((FILE *)mon, monitor_fprintf); } static void hmp_info_history(Monitor *mon, const QDict *qdict) { int i; const char *str; if (!mon->rs) return; i = 0; for(;;) { str = readline_get_history(mon->rs, i); if (!str) break; monitor_printf(mon, "%d: '%s'\n", i, str); i++; } } static void hmp_info_cpustats(Monitor *mon, const QDict *qdict) { CPUState *cpu; CPUArchState *env; env = mon_get_cpu(); cpu = ENV_GET_CPU(env); cpu_dump_statistics(cpu, (FILE *)mon, &monitor_fprintf, 0); } static void hmp_info_trace_events(Monitor *mon, const QDict *qdict) { TraceEventInfoList *events = qmp_trace_event_get_state("*", NULL); TraceEventInfoList *elem; for (elem = events; elem != NULL; elem = elem->next) { monitor_printf(mon, "%s : state %u\n", elem->value->name, elem->value->state == TRACE_EVENT_STATE_ENABLED ? 1 : 0); } qapi_free_TraceEventInfoList(events); } void qmp_client_migrate_info(const char *protocol, const char *hostname, bool has_port, int64_t port, bool has_tls_port, int64_t tls_port, bool has_cert_subject, const char *cert_subject, Error **errp) { if (strcmp(protocol, "spice") == 0) { if (!qemu_using_spice(errp)) { return; } if (!has_port && !has_tls_port) { error_set(errp, QERR_MISSING_PARAMETER, "port/tls-port"); return; } if (qemu_spice_migrate_info(hostname, has_port ? port : -1, has_tls_port ? tls_port : -1, cert_subject)) { error_set(errp, QERR_UNDEFINED_ERROR); return; } return; } error_set(errp, QERR_INVALID_PARAMETER_VALUE, "protocol", "spice"); } static void hmp_logfile(Monitor *mon, const QDict *qdict) { qemu_set_log_filename(qdict_get_str(qdict, "filename")); } static void hmp_log(Monitor *mon, const QDict *qdict) { int mask; const char *items = qdict_get_str(qdict, "items"); if (!strcmp(items, "none")) { mask = 0; } else { mask = qemu_str_to_log_mask(items); if (!mask) { help_cmd(mon, "log"); return; } } qemu_set_log(mask); } static void hmp_singlestep(Monitor *mon, const QDict *qdict) { const char *option = qdict_get_try_str(qdict, "option"); if (!option || !strcmp(option, "on")) { singlestep = 1; } else if (!strcmp(option, "off")) { singlestep = 0; } else { monitor_printf(mon, "unexpected option %s\n", option); } } static void hmp_gdbserver(Monitor *mon, const QDict *qdict) { const char *device = qdict_get_try_str(qdict, "device"); if (!device) device = "tcp::" DEFAULT_GDBSTUB_PORT; if (gdbserver_start(device) < 0) { monitor_printf(mon, "Could not open gdbserver on device '%s'\n", device); } else if (strcmp(device, "none") == 0) { monitor_printf(mon, "Disabled gdbserver\n"); } else { monitor_printf(mon, "Waiting for gdb connection on device '%s'\n", device); } } static void hmp_watchdog_action(Monitor *mon, const QDict *qdict) { const char *action = qdict_get_str(qdict, "action"); if (select_watchdog_action(action) == -1) { monitor_printf(mon, "Unknown watchdog action '%s'\n", action); } } static void monitor_printc(Monitor *mon, int c) { monitor_printf(mon, "'"); switch(c) { case '\'': monitor_printf(mon, "\\'"); break; case '\\': monitor_printf(mon, "\\\\"); break; case '\n': monitor_printf(mon, "\\n"); break; case '\r': monitor_printf(mon, "\\r"); break; default: if (c >= 32 && c <= 126) { monitor_printf(mon, "%c", c); } else { monitor_printf(mon, "\\x%02x", c); } break; } monitor_printf(mon, "'"); } static void memory_dump(Monitor *mon, int count, int format, int wsize, hwaddr addr, int is_physical) { CPUArchState *env; int l, line_size, i, max_digits, len; uint8_t buf[16]; uint64_t v; if (format == 'i') { int flags; flags = 0; env = mon_get_cpu(); #ifdef TARGET_I386 if (wsize == 2) { flags = 1; } else if (wsize == 4) { flags = 0; } else { /* as default we use the current CS size */ flags = 0; if (env) { #ifdef TARGET_X86_64 if ((env->efer & MSR_EFER_LMA) && (env->segs[R_CS].flags & DESC_L_MASK)) flags = 2; else #endif if (!(env->segs[R_CS].flags & DESC_B_MASK)) flags = 1; } } #endif #ifdef TARGET_PPC flags = msr_le << 16; flags |= env->bfd_mach; #endif monitor_disas(mon, env, addr, count, is_physical, flags); return; } len = wsize * count; if (wsize == 1) line_size = 8; else line_size = 16; max_digits = 0; switch(format) { case 'o': max_digits = (wsize * 8 + 2) / 3; break; default: case 'x': max_digits = (wsize * 8) / 4; break; case 'u': case 'd': max_digits = (wsize * 8 * 10 + 32) / 33; break; case 'c': wsize = 1; break; } while (len > 0) { if (is_physical) monitor_printf(mon, TARGET_FMT_plx ":", addr); else monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr); l = len; if (l > line_size) l = line_size; if (is_physical) { cpu_physical_memory_read(addr, buf, l); } else { env = mon_get_cpu(); if (cpu_memory_rw_debug(ENV_GET_CPU(env), addr, buf, l, 0) < 0) { monitor_printf(mon, " Cannot access memory\n"); break; } } i = 0; while (i < l) { switch(wsize) { default: case 1: v = ldub_p(buf + i); break; case 2: v = lduw_p(buf + i); break; case 4: v = (uint32_t)ldl_p(buf + i); break; case 8: v = ldq_p(buf + i); break; } monitor_printf(mon, " "); switch(format) { case 'o': monitor_printf(mon, "%#*" PRIo64, max_digits, v); break; case 'x': monitor_printf(mon, "0x%0*" PRIx64, max_digits, v); break; case 'u': monitor_printf(mon, "%*" PRIu64, max_digits, v); break; case 'd': monitor_printf(mon, "%*" PRId64, max_digits, v); break; case 'c': monitor_printc(mon, v); break; } i += wsize; } monitor_printf(mon, "\n"); addr += l; len -= l; } } static void hmp_memory_dump(Monitor *mon, const QDict *qdict) { int count = qdict_get_int(qdict, "count"); int format = qdict_get_int(qdict, "format"); int size = qdict_get_int(qdict, "size"); target_long addr = qdict_get_int(qdict, "addr"); memory_dump(mon, count, format, size, addr, 0); } static void hmp_physical_memory_dump(Monitor *mon, const QDict *qdict) { int count = qdict_get_int(qdict, "count"); int format = qdict_get_int(qdict, "format"); int size = qdict_get_int(qdict, "size"); hwaddr addr = qdict_get_int(qdict, "addr"); memory_dump(mon, count, format, size, addr, 1); } static void do_print(Monitor *mon, const QDict *qdict) { int format = qdict_get_int(qdict, "format"); hwaddr val = qdict_get_int(qdict, "val"); switch(format) { case 'o': monitor_printf(mon, "%#" HWADDR_PRIo, val); break; case 'x': monitor_printf(mon, "%#" HWADDR_PRIx, val); break; case 'u': monitor_printf(mon, "%" HWADDR_PRIu, val); break; default: case 'd': monitor_printf(mon, "%" HWADDR_PRId, val); break; case 'c': monitor_printc(mon, val); break; } monitor_printf(mon, "\n"); } static void hmp_sum(Monitor *mon, const QDict *qdict) { uint32_t addr; uint16_t sum; uint32_t start = qdict_get_int(qdict, "start"); uint32_t size = qdict_get_int(qdict, "size"); sum = 0; for(addr = start; addr < (start + size); addr++) { uint8_t val = address_space_ldub(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, NULL); /* BSD sum algorithm ('sum' Unix command) */ sum = (sum >> 1) | (sum << 15); sum += val; } monitor_printf(mon, "%05d\n", sum); } static int mouse_button_state; static void hmp_mouse_move(Monitor *mon, const QDict *qdict) { int dx, dy, dz, button; const char *dx_str = qdict_get_str(qdict, "dx_str"); const char *dy_str = qdict_get_str(qdict, "dy_str"); const char *dz_str = qdict_get_try_str(qdict, "dz_str"); dx = strtol(dx_str, NULL, 0); dy = strtol(dy_str, NULL, 0); qemu_input_queue_rel(NULL, INPUT_AXIS_X, dx); qemu_input_queue_rel(NULL, INPUT_AXIS_Y, dy); if (dz_str) { dz = strtol(dz_str, NULL, 0); if (dz != 0) { button = (dz > 0) ? INPUT_BUTTON_WHEEL_UP : INPUT_BUTTON_WHEEL_DOWN; qemu_input_queue_btn(NULL, button, true); qemu_input_event_sync(); qemu_input_queue_btn(NULL, button, false); } } qemu_input_event_sync(); } static void hmp_mouse_button(Monitor *mon, const QDict *qdict) { static uint32_t bmap[INPUT_BUTTON_MAX] = { [INPUT_BUTTON_LEFT] = MOUSE_EVENT_LBUTTON, [INPUT_BUTTON_MIDDLE] = MOUSE_EVENT_MBUTTON, [INPUT_BUTTON_RIGHT] = MOUSE_EVENT_RBUTTON, }; int button_state = qdict_get_int(qdict, "button_state"); if (mouse_button_state == button_state) { return; } qemu_input_update_buttons(NULL, bmap, mouse_button_state, button_state); qemu_input_event_sync(); mouse_button_state = button_state; } static void hmp_ioport_read(Monitor *mon, const QDict *qdict) { int size = qdict_get_int(qdict, "size"); int addr = qdict_get_int(qdict, "addr"); int has_index = qdict_haskey(qdict, "index"); uint32_t val; int suffix; if (has_index) { int index = qdict_get_int(qdict, "index"); cpu_outb(addr & IOPORTS_MASK, index & 0xff); addr++; } addr &= 0xffff; switch(size) { default: case 1: val = cpu_inb(addr); suffix = 'b'; break; case 2: val = cpu_inw(addr); suffix = 'w'; break; case 4: val = cpu_inl(addr); suffix = 'l'; break; } monitor_printf(mon, "port%c[0x%04x] = %#0*x\n", suffix, addr, size * 2, val); } static void hmp_ioport_write(Monitor *mon, const QDict *qdict) { int size = qdict_get_int(qdict, "size"); int addr = qdict_get_int(qdict, "addr"); int val = qdict_get_int(qdict, "val"); addr &= IOPORTS_MASK; switch (size) { default: case 1: cpu_outb(addr, val); break; case 2: cpu_outw(addr, val); break; case 4: cpu_outl(addr, val); break; } } static void hmp_boot_set(Monitor *mon, const QDict *qdict) { Error *local_err = NULL; const char *bootdevice = qdict_get_str(qdict, "bootdevice"); qemu_boot_set(bootdevice, &local_err); if (local_err) { monitor_printf(mon, "%s\n", error_get_pretty(local_err)); error_free(local_err); } else { monitor_printf(mon, "boot device list now set to %s\n", bootdevice); } } #if defined(TARGET_I386) static void print_pte(Monitor *mon, hwaddr addr, hwaddr pte, hwaddr mask) { #ifdef TARGET_X86_64 if (addr & (1ULL << 47)) { addr |= -1LL << 48; } #endif monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx " %c%c%c%c%c%c%c%c%c\n", addr, pte & mask, pte & PG_NX_MASK ? 'X' : '-', pte & PG_GLOBAL_MASK ? 'G' : '-', pte & PG_PSE_MASK ? 'P' : '-', pte & PG_DIRTY_MASK ? 'D' : '-', pte & PG_ACCESSED_MASK ? 'A' : '-', pte & PG_PCD_MASK ? 'C' : '-', pte & PG_PWT_MASK ? 'T' : '-', pte & PG_USER_MASK ? 'U' : '-', pte & PG_RW_MASK ? 'W' : '-'); } static void tlb_info_32(Monitor *mon, CPUArchState *env) { unsigned int l1, l2; uint32_t pgd, pde, pte; pgd = env->cr[3] & ~0xfff; for(l1 = 0; l1 < 1024; l1++) { cpu_physical_memory_read(pgd + l1 * 4, &pde, 4); pde = le32_to_cpu(pde); if (pde & PG_PRESENT_MASK) { if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { /* 4M pages */ print_pte(mon, (l1 << 22), pde, ~((1 << 21) - 1)); } else { for(l2 = 0; l2 < 1024; l2++) { cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4); pte = le32_to_cpu(pte); if (pte & PG_PRESENT_MASK) { print_pte(mon, (l1 << 22) + (l2 << 12), pte & ~PG_PSE_MASK, ~0xfff); } } } } } } static void tlb_info_pae32(Monitor *mon, CPUArchState *env) { unsigned int l1, l2, l3; uint64_t pdpe, pde, pte; uint64_t pdp_addr, pd_addr, pt_addr; pdp_addr = env->cr[3] & ~0x1f; for (l1 = 0; l1 < 4; l1++) { cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); if (pdpe & PG_PRESENT_MASK) { pd_addr = pdpe & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8); pde = le64_to_cpu(pde); if (pde & PG_PRESENT_MASK) { if (pde & PG_PSE_MASK) { /* 2M pages with PAE, CR4.PSE is ignored */ print_pte(mon, (l1 << 30 ) + (l2 << 21), pde, ~((hwaddr)(1 << 20) - 1)); } else { pt_addr = pde & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8); pte = le64_to_cpu(pte); if (pte & PG_PRESENT_MASK) { print_pte(mon, (l1 << 30 ) + (l2 << 21) + (l3 << 12), pte & ~PG_PSE_MASK, ~(hwaddr)0xfff); } } } } } } } } #ifdef TARGET_X86_64 static void tlb_info_64(Monitor *mon, CPUArchState *env) { uint64_t l1, l2, l3, l4; uint64_t pml4e, pdpe, pde, pte; uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr; pml4_addr = env->cr[3] & 0x3fffffffff000ULL; for (l1 = 0; l1 < 512; l1++) { cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8); pml4e = le64_to_cpu(pml4e); if (pml4e & PG_PRESENT_MASK) { pdp_addr = pml4e & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); if (pdpe & PG_PRESENT_MASK) { if (pdpe & PG_PSE_MASK) { /* 1G pages, CR4.PSE is ignored */ print_pte(mon, (l1 << 39) + (l2 << 30), pdpe, 0x3ffffc0000000ULL); } else { pd_addr = pdpe & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8); pde = le64_to_cpu(pde); if (pde & PG_PRESENT_MASK) { if (pde & PG_PSE_MASK) { /* 2M pages, CR4.PSE is ignored */ print_pte(mon, (l1 << 39) + (l2 << 30) + (l3 << 21), pde, 0x3ffffffe00000ULL); } else { pt_addr = pde & 0x3fffffffff000ULL; for (l4 = 0; l4 < 512; l4++) { cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8); pte = le64_to_cpu(pte); if (pte & PG_PRESENT_MASK) { print_pte(mon, (l1 << 39) + (l2 << 30) + (l3 << 21) + (l4 << 12), pte & ~PG_PSE_MASK, 0x3fffffffff000ULL); } } } } } } } } } } } #endif static void hmp_info_tlb(Monitor *mon, const QDict *qdict) { CPUArchState *env; env = mon_get_cpu(); if (!(env->cr[0] & CR0_PG_MASK)) { monitor_printf(mon, "PG disabled\n"); return; } if (env->cr[4] & CR4_PAE_MASK) { #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { tlb_info_64(mon, env); } else #endif { tlb_info_pae32(mon, env); } } else { tlb_info_32(mon, env); } } static void mem_print(Monitor *mon, hwaddr *pstart, int *plast_prot, hwaddr end, int prot) { int prot1; prot1 = *plast_prot; if (prot != prot1) { if (*pstart != -1) { monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " " TARGET_FMT_plx " %c%c%c\n", *pstart, end, end - *pstart, prot1 & PG_USER_MASK ? 'u' : '-', 'r', prot1 & PG_RW_MASK ? 'w' : '-'); } if (prot != 0) *pstart = end; else *pstart = -1; *plast_prot = prot; } } static void mem_info_32(Monitor *mon, CPUArchState *env) { unsigned int l1, l2; int prot, last_prot; uint32_t pgd, pde, pte; hwaddr start, end; pgd = env->cr[3] & ~0xfff; last_prot = 0; start = -1; for(l1 = 0; l1 < 1024; l1++) { cpu_physical_memory_read(pgd + l1 * 4, &pde, 4); pde = le32_to_cpu(pde); end = l1 << 22; if (pde & PG_PRESENT_MASK) { if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); mem_print(mon, &start, &last_prot, end, prot); } else { for(l2 = 0; l2 < 1024; l2++) { cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4); pte = le32_to_cpu(pte); end = (l1 << 22) + (l2 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); } else { prot = 0; } mem_print(mon, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, &start, &last_prot, end, prot); } } /* Flush last range */ mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0); } static void mem_info_pae32(Monitor *mon, CPUArchState *env) { unsigned int l1, l2, l3; int prot, last_prot; uint64_t pdpe, pde, pte; uint64_t pdp_addr, pd_addr, pt_addr; hwaddr start, end; pdp_addr = env->cr[3] & ~0x1f; last_prot = 0; start = -1; for (l1 = 0; l1 < 4; l1++) { cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); end = l1 << 30; if (pdpe & PG_PRESENT_MASK) { pd_addr = pdpe & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8); pde = le64_to_cpu(pde); end = (l1 << 30) + (l2 << 21); if (pde & PG_PRESENT_MASK) { if (pde & PG_PSE_MASK) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); mem_print(mon, &start, &last_prot, end, prot); } else { pt_addr = pde & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8); pte = le64_to_cpu(pte); end = (l1 << 30) + (l2 << 21) + (l3 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); } else { prot = 0; } mem_print(mon, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, &start, &last_prot, end, prot); } } /* Flush last range */ mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0); } #ifdef TARGET_X86_64 static void mem_info_64(Monitor *mon, CPUArchState *env) { int prot, last_prot; uint64_t l1, l2, l3, l4; uint64_t pml4e, pdpe, pde, pte; uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end; pml4_addr = env->cr[3] & 0x3fffffffff000ULL; last_prot = 0; start = -1; for (l1 = 0; l1 < 512; l1++) { cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8); pml4e = le64_to_cpu(pml4e); end = l1 << 39; if (pml4e & PG_PRESENT_MASK) { pdp_addr = pml4e & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); end = (l1 << 39) + (l2 << 30); if (pdpe & PG_PRESENT_MASK) { if (pdpe & PG_PSE_MASK) { prot = pdpe & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml4e; mem_print(mon, &start, &last_prot, end, prot); } else { pd_addr = pdpe & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8); pde = le64_to_cpu(pde); end = (l1 << 39) + (l2 << 30) + (l3 << 21); if (pde & PG_PRESENT_MASK) { if (pde & PG_PSE_MASK) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml4e & pdpe; mem_print(mon, &start, &last_prot, end, prot); } else { pt_addr = pde & 0x3fffffffff000ULL; for (l4 = 0; l4 < 512; l4++) { cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8); pte = le64_to_cpu(pte); end = (l1 << 39) + (l2 << 30) + (l3 << 21) + (l4 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml4e & pdpe & pde; } else { prot = 0; } mem_print(mon, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, &start, &last_prot, end, prot); } } } } else { prot = 0; mem_print(mon, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, &start, &last_prot, end, prot); } } /* Flush last range */ mem_print(mon, &start, &last_prot, (hwaddr)1 << 48, 0); } #endif static void hmp_info_mem(Monitor *mon, const QDict *qdict) { CPUArchState *env; env = mon_get_cpu(); if (!(env->cr[0] & CR0_PG_MASK)) { monitor_printf(mon, "PG disabled\n"); return; } if (env->cr[4] & CR4_PAE_MASK) { #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { mem_info_64(mon, env); } else #endif { mem_info_pae32(mon, env); } } else { mem_info_32(mon, env); } } #endif #if defined(TARGET_SH4) static void print_tlb(Monitor *mon, int idx, tlb_t *tlb) { monitor_printf(mon, " tlb%i:\t" "asid=%hhu vpn=%x\tppn=%x\tsz=%hhu size=%u\t" "v=%hhu shared=%hhu cached=%hhu prot=%hhu " "dirty=%hhu writethrough=%hhu\n", idx, tlb->asid, tlb->vpn, tlb->ppn, tlb->sz, tlb->size, tlb->v, tlb->sh, tlb->c, tlb->pr, tlb->d, tlb->wt); } static void hmp_info_tlb(Monitor *mon, const QDict *qdict) { CPUArchState *env = mon_get_cpu(); int i; monitor_printf (mon, "ITLB:\n"); for (i = 0 ; i < ITLB_SIZE ; i++) print_tlb (mon, i, &env->itlb[i]); monitor_printf (mon, "UTLB:\n"); for (i = 0 ; i < UTLB_SIZE ; i++) print_tlb (mon, i, &env->utlb[i]); } #endif #if defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_XTENSA) static void hmp_info_tlb(Monitor *mon, const QDict *qdict) { CPUArchState *env1 = mon_get_cpu(); dump_mmu((FILE*)mon, (fprintf_function)monitor_printf, env1); } #endif static void hmp_info_mtree(Monitor *mon, const QDict *qdict) { mtree_info((fprintf_function)monitor_printf, mon); } static void hmp_info_numa(Monitor *mon, const QDict *qdict) { int i; CPUState *cpu; uint64_t *node_mem; node_mem = g_new0(uint64_t, nb_numa_nodes); query_numa_node_mem(node_mem); monitor_printf(mon, "%d nodes\n", nb_numa_nodes); for (i = 0; i < nb_numa_nodes; i++) { monitor_printf(mon, "node %d cpus:", i); CPU_FOREACH(cpu) { if (cpu->numa_node == i) { monitor_printf(mon, " %d", cpu->cpu_index); } } monitor_printf(mon, "\n"); monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i, node_mem[i] >> 20); } g_free(node_mem); } #ifdef CONFIG_PROFILER int64_t tcg_time; int64_t dev_time; static void hmp_info_profile(Monitor *mon, const QDict *qdict) { monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n", dev_time, dev_time / (double)get_ticks_per_sec()); monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n", tcg_time, tcg_time / (double)get_ticks_per_sec()); tcg_time = 0; dev_time = 0; } #else static void hmp_info_profile(Monitor *mon, const QDict *qdict) { monitor_printf(mon, "Internal profiler not compiled\n"); } #endif /* Capture support */ static QLIST_HEAD (capture_list_head, CaptureState) capture_head; static void hmp_info_capture(Monitor *mon, const QDict *qdict) { int i; CaptureState *s; for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) { monitor_printf(mon, "[%d]: ", i); s->ops.info (s->opaque); } } static void hmp_stopcapture(Monitor *mon, const QDict *qdict) { int i; int n = qdict_get_int(qdict, "n"); CaptureState *s; for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) { if (i == n) { s->ops.destroy (s->opaque); QLIST_REMOVE (s, entries); g_free (s); return; } } } static void hmp_wavcapture(Monitor *mon, const QDict *qdict) { const char *path = qdict_get_str(qdict, "path"); int has_freq = qdict_haskey(qdict, "freq"); int freq = qdict_get_try_int(qdict, "freq", -1); int has_bits = qdict_haskey(qdict, "bits"); int bits = qdict_get_try_int(qdict, "bits", -1); int has_channels = qdict_haskey(qdict, "nchannels"); int nchannels = qdict_get_try_int(qdict, "nchannels", -1); CaptureState *s; s = g_malloc0 (sizeof (*s)); freq = has_freq ? freq : 44100; bits = has_bits ? bits : 16; nchannels = has_channels ? nchannels : 2; if (wav_start_capture (s, path, freq, bits, nchannels)) { monitor_printf(mon, "Failed to add wave capture\n"); g_free (s); return; } QLIST_INSERT_HEAD (&capture_head, s, entries); } static qemu_acl *find_acl(Monitor *mon, const char *name) { qemu_acl *acl = qemu_acl_find(name); if (!acl) { monitor_printf(mon, "acl: unknown list '%s'\n", name); } return acl; } static void hmp_acl_show(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); qemu_acl *acl = find_acl(mon, aclname); qemu_acl_entry *entry; int i = 0; if (acl) { monitor_printf(mon, "policy: %s\n", acl->defaultDeny ? "deny" : "allow"); QTAILQ_FOREACH(entry, &acl->entries, next) { i++; monitor_printf(mon, "%d: %s %s\n", i, entry->deny ? "deny" : "allow", entry->match); } } } static void hmp_acl_reset(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); qemu_acl *acl = find_acl(mon, aclname); if (acl) { qemu_acl_reset(acl); monitor_printf(mon, "acl: removed all rules\n"); } } static void hmp_acl_policy(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *policy = qdict_get_str(qdict, "policy"); qemu_acl *acl = find_acl(mon, aclname); if (acl) { if (strcmp(policy, "allow") == 0) { acl->defaultDeny = 0; monitor_printf(mon, "acl: policy set to 'allow'\n"); } else if (strcmp(policy, "deny") == 0) { acl->defaultDeny = 1; monitor_printf(mon, "acl: policy set to 'deny'\n"); } else { monitor_printf(mon, "acl: unknown policy '%s', " "expected 'deny' or 'allow'\n", policy); } } } static void hmp_acl_add(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *match = qdict_get_str(qdict, "match"); const char *policy = qdict_get_str(qdict, "policy"); int has_index = qdict_haskey(qdict, "index"); int index = qdict_get_try_int(qdict, "index", -1); qemu_acl *acl = find_acl(mon, aclname); int deny, ret; if (acl) { if (strcmp(policy, "allow") == 0) { deny = 0; } else if (strcmp(policy, "deny") == 0) { deny = 1; } else { monitor_printf(mon, "acl: unknown policy '%s', " "expected 'deny' or 'allow'\n", policy); return; } if (has_index) ret = qemu_acl_insert(acl, deny, match, index); else ret = qemu_acl_append(acl, deny, match); if (ret < 0) monitor_printf(mon, "acl: unable to add acl entry\n"); else monitor_printf(mon, "acl: added rule at position %d\n", ret); } } static void hmp_acl_remove(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *match = qdict_get_str(qdict, "match"); qemu_acl *acl = find_acl(mon, aclname); int ret; if (acl) { ret = qemu_acl_remove(acl, match); if (ret < 0) monitor_printf(mon, "acl: no matching acl entry\n"); else monitor_printf(mon, "acl: removed rule at position %d\n", ret); } } #if defined(TARGET_I386) static void hmp_mce(Monitor *mon, const QDict *qdict) { X86CPU *cpu; CPUState *cs; int cpu_index = qdict_get_int(qdict, "cpu_index"); int bank = qdict_get_int(qdict, "bank"); uint64_t status = qdict_get_int(qdict, "status"); uint64_t mcg_status = qdict_get_int(qdict, "mcg_status"); uint64_t addr = qdict_get_int(qdict, "addr"); uint64_t misc = qdict_get_int(qdict, "misc"); int flags = MCE_INJECT_UNCOND_AO; if (qdict_get_try_bool(qdict, "broadcast", 0)) { flags |= MCE_INJECT_BROADCAST; } cs = qemu_get_cpu(cpu_index); if (cs != NULL) { cpu = X86_CPU(cs); cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc, flags); } } #endif void qmp_getfd(const char *fdname, Error **errp) { mon_fd_t *monfd; int fd; fd = qemu_chr_fe_get_msgfd(cur_mon->chr); if (fd == -1) { error_set(errp, QERR_FD_NOT_SUPPLIED); return; } if (qemu_isdigit(fdname[0])) { close(fd); error_set(errp, QERR_INVALID_PARAMETER_VALUE, "fdname", "a name not starting with a digit"); return; } QLIST_FOREACH(monfd, &cur_mon->fds, next) { if (strcmp(monfd->name, fdname) != 0) { continue; } close(monfd->fd); monfd->fd = fd; return; } monfd = g_malloc0(sizeof(mon_fd_t)); monfd->name = g_strdup(fdname); monfd->fd = fd; QLIST_INSERT_HEAD(&cur_mon->fds, monfd, next); } void qmp_closefd(const char *fdname, Error **errp) { mon_fd_t *monfd; QLIST_FOREACH(monfd, &cur_mon->fds, next) { if (strcmp(monfd->name, fdname) != 0) { continue; } QLIST_REMOVE(monfd, next); close(monfd->fd); g_free(monfd->name); g_free(monfd); return; } error_set(errp, QERR_FD_NOT_FOUND, fdname); } static void hmp_loadvm(Monitor *mon, const QDict *qdict) { int saved_vm_running = runstate_is_running(); const char *name = qdict_get_str(qdict, "name"); vm_stop(RUN_STATE_RESTORE_VM); if (load_vmstate(name) == 0 && saved_vm_running) { vm_start(); } } int monitor_get_fd(Monitor *mon, const char *fdname, Error **errp) { mon_fd_t *monfd; QLIST_FOREACH(monfd, &mon->fds, next) { int fd; if (strcmp(monfd->name, fdname) != 0) { continue; } fd = monfd->fd; /* caller takes ownership of fd */ QLIST_REMOVE(monfd, next); g_free(monfd->name); g_free(monfd); return fd; } error_setg(errp, "File descriptor named '%s' has not been found", fdname); return -1; } static void monitor_fdset_cleanup(MonFdset *mon_fdset) { MonFdsetFd *mon_fdset_fd; MonFdsetFd *mon_fdset_fd_next; QLIST_FOREACH_SAFE(mon_fdset_fd, &mon_fdset->fds, next, mon_fdset_fd_next) { if ((mon_fdset_fd->removed || (QLIST_EMPTY(&mon_fdset->dup_fds) && mon_refcount == 0)) && runstate_is_running()) { close(mon_fdset_fd->fd); g_free(mon_fdset_fd->opaque); QLIST_REMOVE(mon_fdset_fd, next); g_free(mon_fdset_fd); } } if (QLIST_EMPTY(&mon_fdset->fds) && QLIST_EMPTY(&mon_fdset->dup_fds)) { QLIST_REMOVE(mon_fdset, next); g_free(mon_fdset); } } static void monitor_fdsets_cleanup(void) { MonFdset *mon_fdset; MonFdset *mon_fdset_next; QLIST_FOREACH_SAFE(mon_fdset, &mon_fdsets, next, mon_fdset_next) { monitor_fdset_cleanup(mon_fdset); } } AddfdInfo *qmp_add_fd(bool has_fdset_id, int64_t fdset_id, bool has_opaque, const char *opaque, Error **errp) { int fd; Monitor *mon = cur_mon; AddfdInfo *fdinfo; fd = qemu_chr_fe_get_msgfd(mon->chr); if (fd == -1) { error_set(errp, QERR_FD_NOT_SUPPLIED); goto error; } fdinfo = monitor_fdset_add_fd(fd, has_fdset_id, fdset_id, has_opaque, opaque, errp); if (fdinfo) { return fdinfo; } error: if (fd != -1) { close(fd); } return NULL; } void qmp_remove_fd(int64_t fdset_id, bool has_fd, int64_t fd, Error **errp) { MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd; char fd_str[60]; QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { if (mon_fdset->id != fdset_id) { continue; } QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) { if (has_fd) { if (mon_fdset_fd->fd != fd) { continue; } mon_fdset_fd->removed = true; break; } else { mon_fdset_fd->removed = true; } } if (has_fd && !mon_fdset_fd) { goto error; } monitor_fdset_cleanup(mon_fdset); return; } error: if (has_fd) { snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64 ", fd:%" PRId64, fdset_id, fd); } else { snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64, fdset_id); } error_set(errp, QERR_FD_NOT_FOUND, fd_str); } FdsetInfoList *qmp_query_fdsets(Error **errp) { MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd; FdsetInfoList *fdset_list = NULL; QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { FdsetInfoList *fdset_info = g_malloc0(sizeof(*fdset_info)); FdsetFdInfoList *fdsetfd_list = NULL; fdset_info->value = g_malloc0(sizeof(*fdset_info->value)); fdset_info->value->fdset_id = mon_fdset->id; QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) { FdsetFdInfoList *fdsetfd_info; fdsetfd_info = g_malloc0(sizeof(*fdsetfd_info)); fdsetfd_info->value = g_malloc0(sizeof(*fdsetfd_info->value)); fdsetfd_info->value->fd = mon_fdset_fd->fd; if (mon_fdset_fd->opaque) { fdsetfd_info->value->has_opaque = true; fdsetfd_info->value->opaque = g_strdup(mon_fdset_fd->opaque); } else { fdsetfd_info->value->has_opaque = false; } fdsetfd_info->next = fdsetfd_list; fdsetfd_list = fdsetfd_info; } fdset_info->value->fds = fdsetfd_list; fdset_info->next = fdset_list; fdset_list = fdset_info; } return fdset_list; } AddfdInfo *monitor_fdset_add_fd(int fd, bool has_fdset_id, int64_t fdset_id, bool has_opaque, const char *opaque, Error **errp) { MonFdset *mon_fdset = NULL; MonFdsetFd *mon_fdset_fd; AddfdInfo *fdinfo; if (has_fdset_id) { QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { /* Break if match found or match impossible due to ordering by ID */ if (fdset_id <= mon_fdset->id) { if (fdset_id < mon_fdset->id) { mon_fdset = NULL; } break; } } } if (mon_fdset == NULL) { int64_t fdset_id_prev = -1; MonFdset *mon_fdset_cur = QLIST_FIRST(&mon_fdsets); if (has_fdset_id) { if (fdset_id < 0) { error_set(errp, QERR_INVALID_PARAMETER_VALUE, "fdset-id", "a non-negative value"); return NULL; } /* Use specified fdset ID */ QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { mon_fdset_cur = mon_fdset; if (fdset_id < mon_fdset_cur->id) { break; } } } else { /* Use first available fdset ID */ QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { mon_fdset_cur = mon_fdset; if (fdset_id_prev == mon_fdset_cur->id - 1) { fdset_id_prev = mon_fdset_cur->id; continue; } break; } } mon_fdset = g_malloc0(sizeof(*mon_fdset)); if (has_fdset_id) { mon_fdset->id = fdset_id; } else { mon_fdset->id = fdset_id_prev + 1; } /* The fdset list is ordered by fdset ID */ if (!mon_fdset_cur) { QLIST_INSERT_HEAD(&mon_fdsets, mon_fdset, next); } else if (mon_fdset->id < mon_fdset_cur->id) { QLIST_INSERT_BEFORE(mon_fdset_cur, mon_fdset, next); } else { QLIST_INSERT_AFTER(mon_fdset_cur, mon_fdset, next); } } mon_fdset_fd = g_malloc0(sizeof(*mon_fdset_fd)); mon_fdset_fd->fd = fd; mon_fdset_fd->removed = false; if (has_opaque) { mon_fdset_fd->opaque = g_strdup(opaque); } QLIST_INSERT_HEAD(&mon_fdset->fds, mon_fdset_fd, next); fdinfo = g_malloc0(sizeof(*fdinfo)); fdinfo->fdset_id = mon_fdset->id; fdinfo->fd = mon_fdset_fd->fd; return fdinfo; } int monitor_fdset_get_fd(int64_t fdset_id, int flags) { #ifndef _WIN32 MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd; int mon_fd_flags; QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { if (mon_fdset->id != fdset_id) { continue; } QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) { mon_fd_flags = fcntl(mon_fdset_fd->fd, F_GETFL); if (mon_fd_flags == -1) { return -1; } if ((flags & O_ACCMODE) == (mon_fd_flags & O_ACCMODE)) { return mon_fdset_fd->fd; } } errno = EACCES; return -1; } #endif errno = ENOENT; return -1; } int monitor_fdset_dup_fd_add(int64_t fdset_id, int dup_fd) { MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd_dup; QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { if (mon_fdset->id != fdset_id) { continue; } QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) { if (mon_fdset_fd_dup->fd == dup_fd) { return -1; } } mon_fdset_fd_dup = g_malloc0(sizeof(*mon_fdset_fd_dup)); mon_fdset_fd_dup->fd = dup_fd; QLIST_INSERT_HEAD(&mon_fdset->dup_fds, mon_fdset_fd_dup, next); return 0; } return -1; } static int monitor_fdset_dup_fd_find_remove(int dup_fd, bool remove) { MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd_dup; QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) { if (mon_fdset_fd_dup->fd == dup_fd) { if (remove) { QLIST_REMOVE(mon_fdset_fd_dup, next); if (QLIST_EMPTY(&mon_fdset->dup_fds)) { monitor_fdset_cleanup(mon_fdset); } return -1; } else { return mon_fdset->id; } } } } return -1; } int monitor_fdset_dup_fd_find(int dup_fd) { return monitor_fdset_dup_fd_find_remove(dup_fd, false); } void monitor_fdset_dup_fd_remove(int dup_fd) { monitor_fdset_dup_fd_find_remove(dup_fd, true); } int monitor_fd_param(Monitor *mon, const char *fdname, Error **errp) { int fd; Error *local_err = NULL; if (!qemu_isdigit(fdname[0]) && mon) { fd = monitor_get_fd(mon, fdname, &local_err); } else { fd = qemu_parse_fd(fdname); if (fd == -1) { error_setg(&local_err, "Invalid file descriptor number '%s'", fdname); } } if (local_err) { error_propagate(errp, local_err); assert(fd == -1); } else { assert(fd != -1); } return fd; } /* Please update hmp-commands.hx when adding or changing commands */ static mon_cmd_t info_cmds[] = { { .name = "version", .args_type = "", .params = "", .help = "show the version of QEMU", .mhandler.cmd = hmp_info_version, }, { .name = "network", .args_type = "", .params = "", .help = "show the network state", .mhandler.cmd = hmp_info_network, }, { .name = "chardev", .args_type = "", .params = "", .help = "show the character devices", .mhandler.cmd = hmp_info_chardev, }, { .name = "block", .args_type = "nodes:-n,verbose:-v,device:B?", .params = "[-n] [-v] [device]", .help = "show info of one block device or all block devices " "(-n: show named nodes; -v: show details)", .mhandler.cmd = hmp_info_block, }, { .name = "blockstats", .args_type = "", .params = "", .help = "show block device statistics", .mhandler.cmd = hmp_info_blockstats, }, { .name = "block-jobs", .args_type = "", .params = "", .help = "show progress of ongoing block device operations", .mhandler.cmd = hmp_info_block_jobs, }, { .name = "registers", .args_type = "", .params = "", .help = "show the cpu registers", .mhandler.cmd = hmp_info_registers, }, { .name = "cpus", .args_type = "", .params = "", .help = "show infos for each CPU", .mhandler.cmd = hmp_info_cpus, }, { .name = "history", .args_type = "", .params = "", .help = "show the command line history", .mhandler.cmd = hmp_info_history, }, #if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_MIPS) || \ defined(TARGET_LM32) || (defined(TARGET_SPARC) && !defined(TARGET_SPARC64)) { .name = "irq", .args_type = "", .params = "", .help = "show the interrupts statistics (if available)", #ifdef TARGET_SPARC .mhandler.cmd = sun4m_hmp_info_irq, #elif defined(TARGET_LM32) .mhandler.cmd = lm32_hmp_info_irq, #else .mhandler.cmd = hmp_info_irq, #endif }, { .name = "pic", .args_type = "", .params = "", .help = "show i8259 (PIC) state", #ifdef TARGET_SPARC .mhandler.cmd = sun4m_hmp_info_pic, #elif defined(TARGET_LM32) .mhandler.cmd = lm32_hmp_info_pic, #else .mhandler.cmd = hmp_info_pic, #endif }, #endif { .name = "pci", .args_type = "", .params = "", .help = "show PCI info", .mhandler.cmd = hmp_info_pci, }, #if defined(TARGET_I386) || defined(TARGET_SH4) || defined(TARGET_SPARC) || \ defined(TARGET_PPC) || defined(TARGET_XTENSA) { .name = "tlb", .args_type = "", .params = "", .help = "show virtual to physical memory mappings", .mhandler.cmd = hmp_info_tlb, }, #endif #if defined(TARGET_I386) { .name = "mem", .args_type = "", .params = "", .help = "show the active virtual memory mappings", .mhandler.cmd = hmp_info_mem, }, #endif { .name = "mtree", .args_type = "", .params = "", .help = "show memory tree", .mhandler.cmd = hmp_info_mtree, }, { .name = "jit", .args_type = "", .params = "", .help = "show dynamic compiler info", .mhandler.cmd = hmp_info_jit, }, { .name = "opcount", .args_type = "", .params = "", .help = "show dynamic compiler opcode counters", .mhandler.cmd = hmp_info_opcount, }, { .name = "kvm", .args_type = "", .params = "", .help = "show KVM information", .mhandler.cmd = hmp_info_kvm, }, { .name = "numa", .args_type = "", .params = "", .help = "show NUMA information", .mhandler.cmd = hmp_info_numa, }, { .name = "usb", .args_type = "", .params = "", .help = "show guest USB devices", .mhandler.cmd = hmp_info_usb, }, { .name = "usbhost", .args_type = "", .params = "", .help = "show host USB devices", .mhandler.cmd = hmp_info_usbhost, }, { .name = "profile", .args_type = "", .params = "", .help = "show profiling information", .mhandler.cmd = hmp_info_profile, }, { .name = "capture", .args_type = "", .params = "", .help = "show capture information", .mhandler.cmd = hmp_info_capture, }, { .name = "snapshots", .args_type = "", .params = "", .help = "show the currently saved VM snapshots", .mhandler.cmd = hmp_info_snapshots, }, { .name = "status", .args_type = "", .params = "", .help = "show the current VM status (running|paused)", .mhandler.cmd = hmp_info_status, }, { .name = "mice", .args_type = "", .params = "", .help = "show which guest mouse is receiving events", .mhandler.cmd = hmp_info_mice, }, { .name = "vnc", .args_type = "", .params = "", .help = "show the vnc server status", .mhandler.cmd = hmp_info_vnc, }, #if defined(CONFIG_SPICE) { .name = "spice", .args_type = "", .params = "", .help = "show the spice server status", .mhandler.cmd = hmp_info_spice, }, #endif { .name = "name", .args_type = "", .params = "", .help = "show the current VM name", .mhandler.cmd = hmp_info_name, }, { .name = "uuid", .args_type = "", .params = "", .help = "show the current VM UUID", .mhandler.cmd = hmp_info_uuid, }, { .name = "cpustats", .args_type = "", .params = "", .help = "show CPU statistics", .mhandler.cmd = hmp_info_cpustats, }, #if defined(CONFIG_SLIRP) { .name = "usernet", .args_type = "", .params = "", .help = "show user network stack connection states", .mhandler.cmd = hmp_info_usernet, }, #endif { .name = "migrate", .args_type = "", .params = "", .help = "show migration status", .mhandler.cmd = hmp_info_migrate, }, { .name = "migrate_capabilities", .args_type = "", .params = "", .help = "show current migration capabilities", .mhandler.cmd = hmp_info_migrate_capabilities, }, { .name = "migrate_parameters", .args_type = "", .params = "", .help = "show current migration parameters", .mhandler.cmd = hmp_info_migrate_parameters, }, { .name = "migrate_cache_size", .args_type = "", .params = "", .help = "show current migration xbzrle cache size", .mhandler.cmd = hmp_info_migrate_cache_size, }, { .name = "balloon", .args_type = "", .params = "", .help = "show balloon information", .mhandler.cmd = hmp_info_balloon, }, { .name = "qtree", .args_type = "", .params = "", .help = "show device tree", .mhandler.cmd = hmp_info_qtree, }, { .name = "qdm", .args_type = "", .params = "", .help = "show qdev device model list", .mhandler.cmd = hmp_info_qdm, }, { .name = "qom-tree", .args_type = "path:s?", .params = "[path]", .help = "show QOM composition tree", .mhandler.cmd = hmp_info_qom_tree, }, { .name = "roms", .args_type = "", .params = "", .help = "show roms", .mhandler.cmd = hmp_info_roms, }, { .name = "trace-events", .args_type = "", .params = "", .help = "show available trace-events & their state", .mhandler.cmd = hmp_info_trace_events, }, { .name = "tpm", .args_type = "", .params = "", .help = "show the TPM device", .mhandler.cmd = hmp_info_tpm, }, { .name = "memdev", .args_type = "", .params = "", .help = "show memory backends", .mhandler.cmd = hmp_info_memdev, }, { .name = "memory-devices", .args_type = "", .params = "", .help = "show memory devices", .mhandler.cmd = hmp_info_memory_devices, }, { .name = NULL, }, }; /* mon_cmds and info_cmds would be sorted at runtime */ static mon_cmd_t mon_cmds[] = { #include "hmp-commands.h" { NULL, NULL, }, }; static const mon_cmd_t qmp_cmds[] = { #include "qmp-commands-old.h" { /* NULL */ }, }; /*******************************************************************/ static const char *pch; static sigjmp_buf expr_env; #define MD_TLONG 0 #define MD_I32 1 typedef struct MonitorDef { const char *name; int offset; target_long (*get_value)(const struct MonitorDef *md, int val); int type; } MonitorDef; #if defined(TARGET_I386) static target_long monitor_get_pc (const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); return env->eip + env->segs[R_CS].base; } #endif #if defined(TARGET_PPC) static target_long monitor_get_ccr (const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); unsigned int u; int i; u = 0; for (i = 0; i < 8; i++) u |= env->crf[i] << (32 - (4 * (i + 1))); return u; } static target_long monitor_get_msr (const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); return env->msr; } static target_long monitor_get_xer (const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); return env->xer; } static target_long monitor_get_decr (const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); return cpu_ppc_load_decr(env); } static target_long monitor_get_tbu (const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); return cpu_ppc_load_tbu(env); } static target_long monitor_get_tbl (const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); return cpu_ppc_load_tbl(env); } #endif #if defined(TARGET_SPARC) #ifndef TARGET_SPARC64 static target_long monitor_get_psr (const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); return cpu_get_psr(env); } #endif static target_long monitor_get_reg(const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu(); return env->regwptr[val]; } #endif static const MonitorDef monitor_defs[] = { #ifdef TARGET_I386 #define SEG(name, seg) \ { name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\ { name ".base", offsetof(CPUX86State, segs[seg].base) },\ { name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 }, { "eax", offsetof(CPUX86State, regs[0]) }, { "ecx", offsetof(CPUX86State, regs[1]) }, { "edx", offsetof(CPUX86State, regs[2]) }, { "ebx", offsetof(CPUX86State, regs[3]) }, { "esp|sp", offsetof(CPUX86State, regs[4]) }, { "ebp|fp", offsetof(CPUX86State, regs[5]) }, { "esi", offsetof(CPUX86State, regs[6]) }, { "edi", offsetof(CPUX86State, regs[7]) }, #ifdef TARGET_X86_64 { "r8", offsetof(CPUX86State, regs[8]) }, { "r9", offsetof(CPUX86State, regs[9]) }, { "r10", offsetof(CPUX86State, regs[10]) }, { "r11", offsetof(CPUX86State, regs[11]) }, { "r12", offsetof(CPUX86State, regs[12]) }, { "r13", offsetof(CPUX86State, regs[13]) }, { "r14", offsetof(CPUX86State, regs[14]) }, { "r15", offsetof(CPUX86State, regs[15]) }, #endif { "eflags", offsetof(CPUX86State, eflags) }, { "eip", offsetof(CPUX86State, eip) }, SEG("cs", R_CS) SEG("ds", R_DS) SEG("es", R_ES) SEG("ss", R_SS) SEG("fs", R_FS) SEG("gs", R_GS) { "pc", 0, monitor_get_pc, }, #elif defined(TARGET_PPC) /* General purpose registers */ { "r0", offsetof(CPUPPCState, gpr[0]) }, { "r1", offsetof(CPUPPCState, gpr[1]) }, { "r2", offsetof(CPUPPCState, gpr[2]) }, { "r3", offsetof(CPUPPCState, gpr[3]) }, { "r4", offsetof(CPUPPCState, gpr[4]) }, { "r5", offsetof(CPUPPCState, gpr[5]) }, { "r6", offsetof(CPUPPCState, gpr[6]) }, { "r7", offsetof(CPUPPCState, gpr[7]) }, { "r8", offsetof(CPUPPCState, gpr[8]) }, { "r9", offsetof(CPUPPCState, gpr[9]) }, { "r10", offsetof(CPUPPCState, gpr[10]) }, { "r11", offsetof(CPUPPCState, gpr[11]) }, { "r12", offsetof(CPUPPCState, gpr[12]) }, { "r13", offsetof(CPUPPCState, gpr[13]) }, { "r14", offsetof(CPUPPCState, gpr[14]) }, { "r15", offsetof(CPUPPCState, gpr[15]) }, { "r16", offsetof(CPUPPCState, gpr[16]) }, { "r17", offsetof(CPUPPCState, gpr[17]) }, { "r18", offsetof(CPUPPCState, gpr[18]) }, { "r19", offsetof(CPUPPCState, gpr[19]) }, { "r20", offsetof(CPUPPCState, gpr[20]) }, { "r21", offsetof(CPUPPCState, gpr[21]) }, { "r22", offsetof(CPUPPCState, gpr[22]) }, { "r23", offsetof(CPUPPCState, gpr[23]) }, { "r24", offsetof(CPUPPCState, gpr[24]) }, { "r25", offsetof(CPUPPCState, gpr[25]) }, { "r26", offsetof(CPUPPCState, gpr[26]) }, { "r27", offsetof(CPUPPCState, gpr[27]) }, { "r28", offsetof(CPUPPCState, gpr[28]) }, { "r29", offsetof(CPUPPCState, gpr[29]) }, { "r30", offsetof(CPUPPCState, gpr[30]) }, { "r31", offsetof(CPUPPCState, gpr[31]) }, /* Floating point registers */ { "f0", offsetof(CPUPPCState, fpr[0]) }, { "f1", offsetof(CPUPPCState, fpr[1]) }, { "f2", offsetof(CPUPPCState, fpr[2]) }, { "f3", offsetof(CPUPPCState, fpr[3]) }, { "f4", offsetof(CPUPPCState, fpr[4]) }, { "f5", offsetof(CPUPPCState, fpr[5]) }, { "f6", offsetof(CPUPPCState, fpr[6]) }, { "f7", offsetof(CPUPPCState, fpr[7]) }, { "f8", offsetof(CPUPPCState, fpr[8]) }, { "f9", offsetof(CPUPPCState, fpr[9]) }, { "f10", offsetof(CPUPPCState, fpr[10]) }, { "f11", offsetof(CPUPPCState, fpr[11]) }, { "f12", offsetof(CPUPPCState, fpr[12]) }, { "f13", offsetof(CPUPPCState, fpr[13]) }, { "f14", offsetof(CPUPPCState, fpr[14]) }, { "f15", offsetof(CPUPPCState, fpr[15]) }, { "f16", offsetof(CPUPPCState, fpr[16]) }, { "f17", offsetof(CPUPPCState, fpr[17]) }, { "f18", offsetof(CPUPPCState, fpr[18]) }, { "f19", offsetof(CPUPPCState, fpr[19]) }, { "f20", offsetof(CPUPPCState, fpr[20]) }, { "f21", offsetof(CPUPPCState, fpr[21]) }, { "f22", offsetof(CPUPPCState, fpr[22]) }, { "f23", offsetof(CPUPPCState, fpr[23]) }, { "f24", offsetof(CPUPPCState, fpr[24]) }, { "f25", offsetof(CPUPPCState, fpr[25]) }, { "f26", offsetof(CPUPPCState, fpr[26]) }, { "f27", offsetof(CPUPPCState, fpr[27]) }, { "f28", offsetof(CPUPPCState, fpr[28]) }, { "f29", offsetof(CPUPPCState, fpr[29]) }, { "f30", offsetof(CPUPPCState, fpr[30]) }, { "f31", offsetof(CPUPPCState, fpr[31]) }, { "fpscr", offsetof(CPUPPCState, fpscr) }, /* Next instruction pointer */ { "nip|pc", offsetof(CPUPPCState, nip) }, { "lr", offsetof(CPUPPCState, lr) }, { "ctr", offsetof(CPUPPCState, ctr) }, { "decr", 0, &monitor_get_decr, }, { "ccr", 0, &monitor_get_ccr, }, /* Machine state register */ { "msr", 0, &monitor_get_msr, }, { "xer", 0, &monitor_get_xer, }, { "tbu", 0, &monitor_get_tbu, }, { "tbl", 0, &monitor_get_tbl, }, /* Segment registers */ { "sdr1", offsetof(CPUPPCState, spr[SPR_SDR1]) }, { "sr0", offsetof(CPUPPCState, sr[0]) }, { "sr1", offsetof(CPUPPCState, sr[1]) }, { "sr2", offsetof(CPUPPCState, sr[2]) }, { "sr3", offsetof(CPUPPCState, sr[3]) }, { "sr4", offsetof(CPUPPCState, sr[4]) }, { "sr5", offsetof(CPUPPCState, sr[5]) }, { "sr6", offsetof(CPUPPCState, sr[6]) }, { "sr7", offsetof(CPUPPCState, sr[7]) }, { "sr8", offsetof(CPUPPCState, sr[8]) }, { "sr9", offsetof(CPUPPCState, sr[9]) }, { "sr10", offsetof(CPUPPCState, sr[10]) }, { "sr11", offsetof(CPUPPCState, sr[11]) }, { "sr12", offsetof(CPUPPCState, sr[12]) }, { "sr13", offsetof(CPUPPCState, sr[13]) }, { "sr14", offsetof(CPUPPCState, sr[14]) }, { "sr15", offsetof(CPUPPCState, sr[15]) }, /* Too lazy to put BATs... */ { "pvr", offsetof(CPUPPCState, spr[SPR_PVR]) }, { "srr0", offsetof(CPUPPCState, spr[SPR_SRR0]) }, { "srr1", offsetof(CPUPPCState, spr[SPR_SRR1]) }, { "dar", offsetof(CPUPPCState, spr[SPR_DAR]) }, { "dsisr", offsetof(CPUPPCState, spr[SPR_DSISR]) }, { "cfar", offsetof(CPUPPCState, spr[SPR_CFAR]) }, { "sprg0", offsetof(CPUPPCState, spr[SPR_SPRG0]) }, { "sprg1", offsetof(CPUPPCState, spr[SPR_SPRG1]) }, { "sprg2", offsetof(CPUPPCState, spr[SPR_SPRG2]) }, { "sprg3", offsetof(CPUPPCState, spr[SPR_SPRG3]) }, { "sprg4", offsetof(CPUPPCState, spr[SPR_SPRG4]) }, { "sprg5", offsetof(CPUPPCState, spr[SPR_SPRG5]) }, { "sprg6", offsetof(CPUPPCState, spr[SPR_SPRG6]) }, { "sprg7", offsetof(CPUPPCState, spr[SPR_SPRG7]) }, { "pid", offsetof(CPUPPCState, spr[SPR_BOOKE_PID]) }, { "csrr0", offsetof(CPUPPCState, spr[SPR_BOOKE_CSRR0]) }, { "csrr1", offsetof(CPUPPCState, spr[SPR_BOOKE_CSRR1]) }, { "esr", offsetof(CPUPPCState, spr[SPR_BOOKE_ESR]) }, { "dear", offsetof(CPUPPCState, spr[SPR_BOOKE_DEAR]) }, { "mcsr", offsetof(CPUPPCState, spr[SPR_BOOKE_MCSR]) }, { "tsr", offsetof(CPUPPCState, spr[SPR_BOOKE_TSR]) }, { "tcr", offsetof(CPUPPCState, spr[SPR_BOOKE_TCR]) }, { "vrsave", offsetof(CPUPPCState, spr[SPR_VRSAVE]) }, { "pir", offsetof(CPUPPCState, spr[SPR_BOOKE_PIR]) }, { "mcsrr0", offsetof(CPUPPCState, spr[SPR_BOOKE_MCSRR0]) }, { "mcsrr1", offsetof(CPUPPCState, spr[SPR_BOOKE_MCSRR1]) }, { "decar", offsetof(CPUPPCState, spr[SPR_BOOKE_DECAR]) }, { "ivpr", offsetof(CPUPPCState, spr[SPR_BOOKE_IVPR]) }, { "epcr", offsetof(CPUPPCState, spr[SPR_BOOKE_EPCR]) }, { "sprg8", offsetof(CPUPPCState, spr[SPR_BOOKE_SPRG8]) }, { "ivor0", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR0]) }, { "ivor1", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR1]) }, { "ivor2", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR2]) }, { "ivor3", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR3]) }, { "ivor4", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR4]) }, { "ivor5", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR5]) }, { "ivor6", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR6]) }, { "ivor7", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR7]) }, { "ivor8", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR8]) }, { "ivor9", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR9]) }, { "ivor10", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR10]) }, { "ivor11", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR11]) }, { "ivor12", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR12]) }, { "ivor13", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR13]) }, { "ivor14", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR14]) }, { "ivor15", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR15]) }, { "ivor32", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR32]) }, { "ivor33", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR33]) }, { "ivor34", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR34]) }, { "ivor35", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR35]) }, { "ivor36", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR36]) }, { "ivor37", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR37]) }, { "mas0", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS0]) }, { "mas1", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS1]) }, { "mas2", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS2]) }, { "mas3", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS3]) }, { "mas4", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS4]) }, { "mas6", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS6]) }, { "mas7", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS7]) }, { "mmucfg", offsetof(CPUPPCState, spr[SPR_MMUCFG]) }, { "tlb0cfg", offsetof(CPUPPCState, spr[SPR_BOOKE_TLB0CFG]) }, { "tlb1cfg", offsetof(CPUPPCState, spr[SPR_BOOKE_TLB1CFG]) }, { "epr", offsetof(CPUPPCState, spr[SPR_BOOKE_EPR]) }, { "eplc", offsetof(CPUPPCState, spr[SPR_BOOKE_EPLC]) }, { "epsc", offsetof(CPUPPCState, spr[SPR_BOOKE_EPSC]) }, { "svr", offsetof(CPUPPCState, spr[SPR_E500_SVR]) }, { "mcar", offsetof(CPUPPCState, spr[SPR_Exxx_MCAR]) }, { "pid1", offsetof(CPUPPCState, spr[SPR_BOOKE_PID1]) }, { "pid2", offsetof(CPUPPCState, spr[SPR_BOOKE_PID2]) }, { "hid0", offsetof(CPUPPCState, spr[SPR_HID0]) }, #elif defined(TARGET_SPARC) { "g0", offsetof(CPUSPARCState, gregs[0]) }, { "g1", offsetof(CPUSPARCState, gregs[1]) }, { "g2", offsetof(CPUSPARCState, gregs[2]) }, { "g3", offsetof(CPUSPARCState, gregs[3]) }, { "g4", offsetof(CPUSPARCState, gregs[4]) }, { "g5", offsetof(CPUSPARCState, gregs[5]) }, { "g6", offsetof(CPUSPARCState, gregs[6]) }, { "g7", offsetof(CPUSPARCState, gregs[7]) }, { "o0", 0, monitor_get_reg }, { "o1", 1, monitor_get_reg }, { "o2", 2, monitor_get_reg }, { "o3", 3, monitor_get_reg }, { "o4", 4, monitor_get_reg }, { "o5", 5, monitor_get_reg }, { "o6", 6, monitor_get_reg }, { "o7", 7, monitor_get_reg }, { "l0", 8, monitor_get_reg }, { "l1", 9, monitor_get_reg }, { "l2", 10, monitor_get_reg }, { "l3", 11, monitor_get_reg }, { "l4", 12, monitor_get_reg }, { "l5", 13, monitor_get_reg }, { "l6", 14, monitor_get_reg }, { "l7", 15, monitor_get_reg }, { "i0", 16, monitor_get_reg }, { "i1", 17, monitor_get_reg }, { "i2", 18, monitor_get_reg }, { "i3", 19, monitor_get_reg }, { "i4", 20, monitor_get_reg }, { "i5", 21, monitor_get_reg }, { "i6", 22, monitor_get_reg }, { "i7", 23, monitor_get_reg }, { "pc", offsetof(CPUSPARCState, pc) }, { "npc", offsetof(CPUSPARCState, npc) }, { "y", offsetof(CPUSPARCState, y) }, #ifndef TARGET_SPARC64 { "psr", 0, &monitor_get_psr, }, { "wim", offsetof(CPUSPARCState, wim) }, #endif { "tbr", offsetof(CPUSPARCState, tbr) }, { "fsr", offsetof(CPUSPARCState, fsr) }, { "f0", offsetof(CPUSPARCState, fpr[0].l.upper) }, { "f1", offsetof(CPUSPARCState, fpr[0].l.lower) }, { "f2", offsetof(CPUSPARCState, fpr[1].l.upper) }, { "f3", offsetof(CPUSPARCState, fpr[1].l.lower) }, { "f4", offsetof(CPUSPARCState, fpr[2].l.upper) }, { "f5", offsetof(CPUSPARCState, fpr[2].l.lower) }, { "f6", offsetof(CPUSPARCState, fpr[3].l.upper) }, { "f7", offsetof(CPUSPARCState, fpr[3].l.lower) }, { "f8", offsetof(CPUSPARCState, fpr[4].l.upper) }, { "f9", offsetof(CPUSPARCState, fpr[4].l.lower) }, { "f10", offsetof(CPUSPARCState, fpr[5].l.upper) }, { "f11", offsetof(CPUSPARCState, fpr[5].l.lower) }, { "f12", offsetof(CPUSPARCState, fpr[6].l.upper) }, { "f13", offsetof(CPUSPARCState, fpr[6].l.lower) }, { "f14", offsetof(CPUSPARCState, fpr[7].l.upper) }, { "f15", offsetof(CPUSPARCState, fpr[7].l.lower) }, { "f16", offsetof(CPUSPARCState, fpr[8].l.upper) }, { "f17", offsetof(CPUSPARCState, fpr[8].l.lower) }, { "f18", offsetof(CPUSPARCState, fpr[9].l.upper) }, { "f19", offsetof(CPUSPARCState, fpr[9].l.lower) }, { "f20", offsetof(CPUSPARCState, fpr[10].l.upper) }, { "f21", offsetof(CPUSPARCState, fpr[10].l.lower) }, { "f22", offsetof(CPUSPARCState, fpr[11].l.upper) }, { "f23", offsetof(CPUSPARCState, fpr[11].l.lower) }, { "f24", offsetof(CPUSPARCState, fpr[12].l.upper) }, { "f25", offsetof(CPUSPARCState, fpr[12].l.lower) }, { "f26", offsetof(CPUSPARCState, fpr[13].l.upper) }, { "f27", offsetof(CPUSPARCState, fpr[13].l.lower) }, { "f28", offsetof(CPUSPARCState, fpr[14].l.upper) }, { "f29", offsetof(CPUSPARCState, fpr[14].l.lower) }, { "f30", offsetof(CPUSPARCState, fpr[15].l.upper) }, { "f31", offsetof(CPUSPARCState, fpr[15].l.lower) }, #ifdef TARGET_SPARC64 { "f32", offsetof(CPUSPARCState, fpr[16]) }, { "f34", offsetof(CPUSPARCState, fpr[17]) }, { "f36", offsetof(CPUSPARCState, fpr[18]) }, { "f38", offsetof(CPUSPARCState, fpr[19]) }, { "f40", offsetof(CPUSPARCState, fpr[20]) }, { "f42", offsetof(CPUSPARCState, fpr[21]) }, { "f44", offsetof(CPUSPARCState, fpr[22]) }, { "f46", offsetof(CPUSPARCState, fpr[23]) }, { "f48", offsetof(CPUSPARCState, fpr[24]) }, { "f50", offsetof(CPUSPARCState, fpr[25]) }, { "f52", offsetof(CPUSPARCState, fpr[26]) }, { "f54", offsetof(CPUSPARCState, fpr[27]) }, { "f56", offsetof(CPUSPARCState, fpr[28]) }, { "f58", offsetof(CPUSPARCState, fpr[29]) }, { "f60", offsetof(CPUSPARCState, fpr[30]) }, { "f62", offsetof(CPUSPARCState, fpr[31]) }, { "asi", offsetof(CPUSPARCState, asi) }, { "pstate", offsetof(CPUSPARCState, pstate) }, { "cansave", offsetof(CPUSPARCState, cansave) }, { "canrestore", offsetof(CPUSPARCState, canrestore) }, { "otherwin", offsetof(CPUSPARCState, otherwin) }, { "wstate", offsetof(CPUSPARCState, wstate) }, { "cleanwin", offsetof(CPUSPARCState, cleanwin) }, { "fprs", offsetof(CPUSPARCState, fprs) }, #endif #endif { NULL }, }; static void GCC_FMT_ATTR(2, 3) QEMU_NORETURN expr_error(Monitor *mon, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf(mon, fmt, ap); monitor_printf(mon, "\n"); va_end(ap); siglongjmp(expr_env, 1); } /* return 0 if OK, -1 if not found */ static int get_monitor_def(target_long *pval, const char *name) { const MonitorDef *md; void *ptr; for(md = monitor_defs; md->name != NULL; md++) { if (compare_cmd(name, md->name)) { if (md->get_value) { *pval = md->get_value(md, md->offset); } else { CPUArchState *env = mon_get_cpu(); ptr = (uint8_t *)env + md->offset; switch(md->type) { case MD_I32: *pval = *(int32_t *)ptr; break; case MD_TLONG: *pval = *(target_long *)ptr; break; default: *pval = 0; break; } } return 0; } } return -1; } static void next(void) { if (*pch != '\0') { pch++; while (qemu_isspace(*pch)) pch++; } } static int64_t expr_sum(Monitor *mon); static int64_t expr_unary(Monitor *mon) { int64_t n; char *p; int ret; switch(*pch) { case '+': next(); n = expr_unary(mon); break; case '-': next(); n = -expr_unary(mon); break; case '~': next(); n = ~expr_unary(mon); break; case '(': next(); n = expr_sum(mon); if (*pch != ')') { expr_error(mon, "')' expected"); } next(); break; case '\'': pch++; if (*pch == '\0') expr_error(mon, "character constant expected"); n = *pch; pch++; if (*pch != '\'') expr_error(mon, "missing terminating \' character"); next(); break; case '$': { char buf[128], *q; target_long reg=0; pch++; q = buf; while ((*pch >= 'a' && *pch <= 'z') || (*pch >= 'A' && *pch <= 'Z') || (*pch >= '0' && *pch <= '9') || *pch == '_' || *pch == '.') { if ((q - buf) < sizeof(buf) - 1) *q++ = *pch; pch++; } while (qemu_isspace(*pch)) pch++; *q = 0; ret = get_monitor_def(®, buf); if (ret < 0) expr_error(mon, "unknown register"); n = reg; } break; case '\0': expr_error(mon, "unexpected end of expression"); n = 0; break; default: errno = 0; n = strtoull(pch, &p, 0); if (errno == ERANGE) { expr_error(mon, "number too large"); } if (pch == p) { expr_error(mon, "invalid char '%c' in expression", *p); } pch = p; while (qemu_isspace(*pch)) pch++; break; } return n; } static int64_t expr_prod(Monitor *mon) { int64_t val, val2; int op; val = expr_unary(mon); for(;;) { op = *pch; if (op != '*' && op != '/' && op != '%') break; next(); val2 = expr_unary(mon); switch(op) { default: case '*': val *= val2; break; case '/': case '%': if (val2 == 0) expr_error(mon, "division by zero"); if (op == '/') val /= val2; else val %= val2; break; } } return val; } static int64_t expr_logic(Monitor *mon) { int64_t val, val2; int op; val = expr_prod(mon); for(;;) { op = *pch; if (op != '&' && op != '|' && op != '^') break; next(); val2 = expr_prod(mon); switch(op) { default: case '&': val &= val2; break; case '|': val |= val2; break; case '^': val ^= val2; break; } } return val; } static int64_t expr_sum(Monitor *mon) { int64_t val, val2; int op; val = expr_logic(mon); for(;;) { op = *pch; if (op != '+' && op != '-') break; next(); val2 = expr_logic(mon); if (op == '+') val += val2; else val -= val2; } return val; } static int get_expr(Monitor *mon, int64_t *pval, const char **pp) { pch = *pp; if (sigsetjmp(expr_env, 0)) { *pp = pch; return -1; } while (qemu_isspace(*pch)) pch++; *pval = expr_sum(mon); *pp = pch; return 0; } static int get_double(Monitor *mon, double *pval, const char **pp) { const char *p = *pp; char *tailp; double d; d = strtod(p, &tailp); if (tailp == p) { monitor_printf(mon, "Number expected\n"); return -1; } if (d != d || d - d != 0) { /* NaN or infinity */ monitor_printf(mon, "Bad number\n"); return -1; } *pval = d; *pp = tailp; return 0; } /* * Store the command-name in cmdname, and return a pointer to * the remaining of the command string. */ static const char *get_command_name(const char *cmdline, char *cmdname, size_t nlen) { size_t len; const char *p, *pstart; p = cmdline; while (qemu_isspace(*p)) p++; if (*p == '\0') return NULL; pstart = p; while (*p != '\0' && *p != '/' && !qemu_isspace(*p)) p++; len = p - pstart; if (len > nlen - 1) len = nlen - 1; memcpy(cmdname, pstart, len); cmdname[len] = '\0'; return p; } /** * Read key of 'type' into 'key' and return the current * 'type' pointer. */ static char *key_get_info(const char *type, char **key) { size_t len; char *p, *str; if (*type == ',') type++; p = strchr(type, ':'); if (!p) { *key = NULL; return NULL; } len = p - type; str = g_malloc(len + 1); memcpy(str, type, len); str[len] = '\0'; *key = str; return ++p; } static int default_fmt_format = 'x'; static int default_fmt_size = 4; static int is_valid_option(const char *c, const char *typestr) { char option[3]; option[0] = '-'; option[1] = *c; option[2] = '\0'; typestr = strstr(typestr, option); return (typestr != NULL); } static const mon_cmd_t *search_dispatch_table(const mon_cmd_t *disp_table, const char *cmdname) { const mon_cmd_t *cmd; for (cmd = disp_table; cmd->name != NULL; cmd++) { if (compare_cmd(cmdname, cmd->name)) { return cmd; } } return NULL; } static const mon_cmd_t *qmp_find_cmd(const char *cmdname) { return search_dispatch_table(qmp_cmds, cmdname); } /* * Parse @cmdline according to command table @table. * If @cmdline is blank, return NULL. * If it can't be parsed, report to @mon, and return NULL. * Else, insert command arguments into @qdict, and return the command. * If a sub-command table exists, and if @cmdline contains an additional string * for a sub-command, this function will try to search the sub-command table. * If no additional string for a sub-command is present, this function will * return the command found in @table. * Do not assume the returned command points into @table! It doesn't * when the command is a sub-command. */ static const mon_cmd_t *monitor_parse_command(Monitor *mon, const char *cmdline, int start, mon_cmd_t *table, QDict *qdict) { const char *p, *typestr; int c; const mon_cmd_t *cmd; char cmdname[256]; char buf[1024]; char *key; #ifdef DEBUG monitor_printf(mon, "command='%s', start='%d'\n", cmdline, start); #endif /* extract the command name */ p = get_command_name(cmdline + start, cmdname, sizeof(cmdname)); if (!p) return NULL; cmd = search_dispatch_table(table, cmdname); if (!cmd) { monitor_printf(mon, "unknown command: '%.*s'\n", (int)(p - cmdline), cmdline); return NULL; } /* filter out following useless space */ while (qemu_isspace(*p)) { p++; } /* search sub command */ if (cmd->sub_table != NULL) { /* check if user set additional command */ if (*p == '\0') { return cmd; } return monitor_parse_command(mon, cmdline, p - cmdline, cmd->sub_table, qdict); } /* parse the parameters */ typestr = cmd->args_type; for(;;) { typestr = key_get_info(typestr, &key); if (!typestr) break; c = *typestr; typestr++; switch(c) { case 'F': case 'B': case 's': { int ret; while (qemu_isspace(*p)) p++; if (*typestr == '?') { typestr++; if (*p == '\0') { /* no optional string: NULL argument */ break; } } ret = get_str(buf, sizeof(buf), &p); if (ret < 0) { switch(c) { case 'F': monitor_printf(mon, "%s: filename expected\n", cmdname); break; case 'B': monitor_printf(mon, "%s: block device name expected\n", cmdname); break; default: monitor_printf(mon, "%s: string expected\n", cmdname); break; } goto fail; } qdict_put(qdict, key, qstring_from_str(buf)); } break; case 'O': { QemuOptsList *opts_list; QemuOpts *opts; opts_list = qemu_find_opts(key); if (!opts_list || opts_list->desc->name) { goto bad_type; } while (qemu_isspace(*p)) { p++; } if (!*p) break; if (get_str(buf, sizeof(buf), &p) < 0) { goto fail; } opts = qemu_opts_parse(opts_list, buf, 1); if (!opts) { goto fail; } qemu_opts_to_qdict(opts, qdict); qemu_opts_del(opts); } break; case '/': { int count, format, size; while (qemu_isspace(*p)) p++; if (*p == '/') { /* format found */ p++; count = 1; if (qemu_isdigit(*p)) { count = 0; while (qemu_isdigit(*p)) { count = count * 10 + (*p - '0'); p++; } } size = -1; format = -1; for(;;) { switch(*p) { case 'o': case 'd': case 'u': case 'x': case 'i': case 'c': format = *p++; break; case 'b': size = 1; p++; break; case 'h': size = 2; p++; break; case 'w': size = 4; p++; break; case 'g': case 'L': size = 8; p++; break; default: goto next; } } next: if (*p != '\0' && !qemu_isspace(*p)) { monitor_printf(mon, "invalid char in format: '%c'\n", *p); goto fail; } if (format < 0) format = default_fmt_format; if (format != 'i') { /* for 'i', not specifying a size gives -1 as size */ if (size < 0) size = default_fmt_size; default_fmt_size = size; } default_fmt_format = format; } else { count = 1; format = default_fmt_format; if (format != 'i') { size = default_fmt_size; } else { size = -1; } } qdict_put(qdict, "count", qint_from_int(count)); qdict_put(qdict, "format", qint_from_int(format)); qdict_put(qdict, "size", qint_from_int(size)); } break; case 'i': case 'l': case 'M': { int64_t val; while (qemu_isspace(*p)) p++; if (*typestr == '?' || *typestr == '.') { if (*typestr == '?') { if (*p == '\0') { typestr++; break; } } else { if (*p == '.') { p++; while (qemu_isspace(*p)) p++; } else { typestr++; break; } } typestr++; } if (get_expr(mon, &val, &p)) goto fail; /* Check if 'i' is greater than 32-bit */ if ((c == 'i') && ((val >> 32) & 0xffffffff)) { monitor_printf(mon, "\'%s\' has failed: ", cmdname); monitor_printf(mon, "integer is for 32-bit values\n"); goto fail; } else if (c == 'M') { if (val < 0) { monitor_printf(mon, "enter a positive value\n"); goto fail; } val <<= 20; } qdict_put(qdict, key, qint_from_int(val)); } break; case 'o': { int64_t val; char *end; while (qemu_isspace(*p)) { p++; } if (*typestr == '?') { typestr++; if (*p == '\0') { break; } } val = strtosz(p, &end); if (val < 0) { monitor_printf(mon, "invalid size\n"); goto fail; } qdict_put(qdict, key, qint_from_int(val)); p = end; } break; case 'T': { double val; while (qemu_isspace(*p)) p++; if (*typestr == '?') { typestr++; if (*p == '\0') { break; } } if (get_double(mon, &val, &p) < 0) { goto fail; } if (p[0] && p[1] == 's') { switch (*p) { case 'm': val /= 1e3; p += 2; break; case 'u': val /= 1e6; p += 2; break; case 'n': val /= 1e9; p += 2; break; } } if (*p && !qemu_isspace(*p)) { monitor_printf(mon, "Unknown unit suffix\n"); goto fail; } qdict_put(qdict, key, qfloat_from_double(val)); } break; case 'b': { const char *beg; int val; while (qemu_isspace(*p)) { p++; } beg = p; while (qemu_isgraph(*p)) { p++; } if (p - beg == 2 && !memcmp(beg, "on", p - beg)) { val = 1; } else if (p - beg == 3 && !memcmp(beg, "off", p - beg)) { val = 0; } else { monitor_printf(mon, "Expected 'on' or 'off'\n"); goto fail; } qdict_put(qdict, key, qbool_from_int(val)); } break; case '-': { const char *tmp = p; int skip_key = 0; /* option */ c = *typestr++; if (c == '\0') goto bad_type; while (qemu_isspace(*p)) p++; if (*p == '-') { p++; if(c != *p) { if(!is_valid_option(p, typestr)) { monitor_printf(mon, "%s: unsupported option -%c\n", cmdname, *p); goto fail; } else { skip_key = 1; } } if(skip_key) { p = tmp; } else { /* has option */ p++; qdict_put(qdict, key, qbool_from_int(1)); } } } break; case 'S': { /* package all remaining string */ int len; while (qemu_isspace(*p)) { p++; } if (*typestr == '?') { typestr++; if (*p == '\0') { /* no remaining string: NULL argument */ break; } } len = strlen(p); if (len <= 0) { monitor_printf(mon, "%s: string expected\n", cmdname); break; } qdict_put(qdict, key, qstring_from_str(p)); p += len; } break; default: bad_type: monitor_printf(mon, "%s: unknown type '%c'\n", cmdname, c); goto fail; } g_free(key); key = NULL; } /* check that all arguments were parsed */ while (qemu_isspace(*p)) p++; if (*p != '\0') { monitor_printf(mon, "%s: extraneous characters at the end of line\n", cmdname); goto fail; } return cmd; fail: g_free(key); return NULL; } void monitor_set_error(Monitor *mon, QError *qerror) { /* report only the first error */ if (!mon->error) { mon->error = qerror; } else { QDECREF(qerror); } } static void handle_user_command(Monitor *mon, const char *cmdline) { QDict *qdict; const mon_cmd_t *cmd; qdict = qdict_new(); cmd = monitor_parse_command(mon, cmdline, 0, mon->cmd_table, qdict); if (cmd) { cmd->mhandler.cmd(mon, qdict); } QDECREF(qdict); } static void cmd_completion(Monitor *mon, const char *name, const char *list) { const char *p, *pstart; char cmd[128]; int len; p = list; for(;;) { pstart = p; p = strchr(p, '|'); if (!p) p = pstart + strlen(pstart); len = p - pstart; if (len > sizeof(cmd) - 2) len = sizeof(cmd) - 2; memcpy(cmd, pstart, len); cmd[len] = '\0'; if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) { readline_add_completion(mon->rs, cmd); } if (*p == '\0') break; p++; } } static void file_completion(Monitor *mon, const char *input) { DIR *ffs; struct dirent *d; char path[1024]; char file[1024], file_prefix[1024]; int input_path_len; const char *p; p = strrchr(input, '/'); if (!p) { input_path_len = 0; pstrcpy(file_prefix, sizeof(file_prefix), input); pstrcpy(path, sizeof(path), "."); } else { input_path_len = p - input + 1; memcpy(path, input, input_path_len); if (input_path_len > sizeof(path) - 1) input_path_len = sizeof(path) - 1; path[input_path_len] = '\0'; pstrcpy(file_prefix, sizeof(file_prefix), p + 1); } #ifdef DEBUG_COMPLETION monitor_printf(mon, "input='%s' path='%s' prefix='%s'\n", input, path, file_prefix); #endif ffs = opendir(path); if (!ffs) return; for(;;) { struct stat sb; d = readdir(ffs); if (!d) break; if (strcmp(d->d_name, ".") == 0 || strcmp(d->d_name, "..") == 0) { continue; } if (strstart(d->d_name, file_prefix, NULL)) { memcpy(file, input, input_path_len); if (input_path_len < sizeof(file)) pstrcpy(file + input_path_len, sizeof(file) - input_path_len, d->d_name); /* stat the file to find out if it's a directory. * In that case add a slash to speed up typing long paths */ if (stat(file, &sb) == 0 && S_ISDIR(sb.st_mode)) { pstrcat(file, sizeof(file), "/"); } readline_add_completion(mon->rs, file); } } closedir(ffs); } static const char *next_arg_type(const char *typestr) { const char *p = strchr(typestr, ':'); return (p != NULL ? ++p : typestr); } static void add_completion_option(ReadLineState *rs, const char *str, const char *option) { if (!str || !option) { return; } if (!strncmp(option, str, strlen(str))) { readline_add_completion(rs, option); } } void chardev_add_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; ChardevBackendInfoList *list, *start; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); start = list = qmp_query_chardev_backends(NULL); while (list) { const char *chr_name = list->value->name; if (!strncmp(chr_name, str, len)) { readline_add_completion(rs, chr_name); } list = list->next; } qapi_free_ChardevBackendInfoList(start); } void netdev_add_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; int i; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); for (i = 0; NetClientOptionsKind_lookup[i]; i++) { add_completion_option(rs, str, NetClientOptionsKind_lookup[i]); } } void device_add_completion(ReadLineState *rs, int nb_args, const char *str) { GSList *list, *elt; size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); list = elt = object_class_get_list(TYPE_DEVICE, false); while (elt) { const char *name; DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, TYPE_DEVICE); name = object_class_get_name(OBJECT_CLASS(dc)); if (!dc->cannot_instantiate_with_device_add_yet && !strncmp(name, str, len)) { readline_add_completion(rs, name); } elt = elt->next; } g_slist_free(list); } void object_add_completion(ReadLineState *rs, int nb_args, const char *str) { GSList *list, *elt; size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); list = elt = object_class_get_list(TYPE_USER_CREATABLE, false); while (elt) { const char *name; name = object_class_get_name(OBJECT_CLASS(elt->data)); if (!strncmp(name, str, len) && strcmp(name, TYPE_USER_CREATABLE)) { readline_add_completion(rs, name); } elt = elt->next; } g_slist_free(list); } static void peripheral_device_del_completion(ReadLineState *rs, const char *str, size_t len) { Object *peripheral = container_get(qdev_get_machine(), "/peripheral"); GSList *list, *item; list = qdev_build_hotpluggable_device_list(peripheral); if (!list) { return; } for (item = list; item; item = g_slist_next(item)) { DeviceState *dev = item->data; if (dev->id && !strncmp(str, dev->id, len)) { readline_add_completion(rs, dev->id); } } g_slist_free(list); } void chardev_remove_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; ChardevInfoList *list, *start; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); start = list = qmp_query_chardev(NULL); while (list) { ChardevInfo *chr = list->value; if (!strncmp(chr->label, str, len)) { readline_add_completion(rs, chr->label); } list = list->next; } qapi_free_ChardevInfoList(start); } static void ringbuf_completion(ReadLineState *rs, const char *str) { size_t len; ChardevInfoList *list, *start; len = strlen(str); readline_set_completion_index(rs, len); start = list = qmp_query_chardev(NULL); while (list) { ChardevInfo *chr_info = list->value; if (!strncmp(chr_info->label, str, len)) { CharDriverState *chr = qemu_chr_find(chr_info->label); if (chr && chr_is_ringbuf(chr)) { readline_add_completion(rs, chr_info->label); } } list = list->next; } qapi_free_ChardevInfoList(start); } void ringbuf_write_completion(ReadLineState *rs, int nb_args, const char *str) { if (nb_args != 2) { return; } ringbuf_completion(rs, str); } void device_del_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); peripheral_device_del_completion(rs, str, len); } void object_del_completion(ReadLineState *rs, int nb_args, const char *str) { ObjectPropertyInfoList *list, *start; size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); start = list = qmp_qom_list("/objects", NULL); while (list) { ObjectPropertyInfo *info = list->value; if (!strncmp(info->type, "child<", 5) && !strncmp(info->name, str, len)) { readline_add_completion(rs, info->name); } list = list->next; } qapi_free_ObjectPropertyInfoList(start); } void sendkey_completion(ReadLineState *rs, int nb_args, const char *str) { int i; char *sep; size_t len; if (nb_args != 2) { return; } sep = strrchr(str, '-'); if (sep) { str = sep + 1; } len = strlen(str); readline_set_completion_index(rs, len); for (i = 0; i < Q_KEY_CODE_MAX; i++) { if (!strncmp(str, QKeyCode_lookup[i], len)) { readline_add_completion(rs, QKeyCode_lookup[i]); } } } void set_link_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { NetClientState *ncs[MAX_QUEUE_NUM]; int count, i; count = qemu_find_net_clients_except(NULL, ncs, NET_CLIENT_OPTIONS_KIND_NONE, MAX_QUEUE_NUM); for (i = 0; i < MIN(count, MAX_QUEUE_NUM); i++) { const char *name = ncs[i]->name; if (!strncmp(str, name, len)) { readline_add_completion(rs, name); } } } else if (nb_args == 3) { add_completion_option(rs, str, "on"); add_completion_option(rs, str, "off"); } } void netdev_del_completion(ReadLineState *rs, int nb_args, const char *str) { int len, count, i; NetClientState *ncs[MAX_QUEUE_NUM]; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); count = qemu_find_net_clients_except(NULL, ncs, NET_CLIENT_OPTIONS_KIND_NIC, MAX_QUEUE_NUM); for (i = 0; i < MIN(count, MAX_QUEUE_NUM); i++) { QemuOpts *opts; const char *name = ncs[i]->name; if (strncmp(str, name, len)) { continue; } opts = qemu_opts_find(qemu_find_opts_err("netdev", NULL), name); if (opts) { readline_add_completion(rs, name); } } } void watchdog_action_completion(ReadLineState *rs, int nb_args, const char *str) { int i; if (nb_args != 2) { return; } readline_set_completion_index(rs, strlen(str)); for (i = 0; WatchdogExpirationAction_lookup[i]; i++) { add_completion_option(rs, str, WatchdogExpirationAction_lookup[i]); } } void migrate_set_capability_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { int i; for (i = 0; i < MIGRATION_CAPABILITY_MAX; i++) { const char *name = MigrationCapability_lookup[i]; if (!strncmp(str, name, len)) { readline_add_completion(rs, name); } } } else if (nb_args == 3) { add_completion_option(rs, str, "on"); add_completion_option(rs, str, "off"); } } void migrate_set_parameter_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { int i; for (i = 0; i < MIGRATION_PARAMETER_MAX; i++) { const char *name = MigrationParameter_lookup[i]; if (!strncmp(str, name, len)) { readline_add_completion(rs, name); } } } } void host_net_add_completion(ReadLineState *rs, int nb_args, const char *str) { int i; size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); for (i = 0; host_net_devices[i]; i++) { if (!strncmp(host_net_devices[i], str, len)) { readline_add_completion(rs, host_net_devices[i]); } } } void host_net_remove_completion(ReadLineState *rs, int nb_args, const char *str) { NetClientState *ncs[MAX_QUEUE_NUM]; int count, i, len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { count = qemu_find_net_clients_except(NULL, ncs, NET_CLIENT_OPTIONS_KIND_NONE, MAX_QUEUE_NUM); for (i = 0; i < MIN(count, MAX_QUEUE_NUM); i++) { int id; char name[16]; if (net_hub_id_for_client(ncs[i], &id)) { continue; } snprintf(name, sizeof(name), "%d", id); if (!strncmp(str, name, len)) { readline_add_completion(rs, name); } } return; } else if (nb_args == 3) { count = qemu_find_net_clients_except(NULL, ncs, NET_CLIENT_OPTIONS_KIND_NIC, MAX_QUEUE_NUM); for (i = 0; i < MIN(count, MAX_QUEUE_NUM); i++) { int id; const char *name; if (ncs[i]->info->type == NET_CLIENT_OPTIONS_KIND_HUBPORT || net_hub_id_for_client(ncs[i], &id)) { continue; } name = ncs[i]->name; if (!strncmp(str, name, len)) { readline_add_completion(rs, name); } } return; } } static void vm_completion(ReadLineState *rs, const char *str) { size_t len; BlockDriverState *bs = NULL; len = strlen(str); readline_set_completion_index(rs, len); while ((bs = bdrv_next(bs))) { SnapshotInfoList *snapshots, *snapshot; if (!bdrv_can_snapshot(bs)) { continue; } if (bdrv_query_snapshot_info_list(bs, &snapshots, NULL)) { continue; } snapshot = snapshots; while (snapshot) { char *completion = snapshot->value->name; if (!strncmp(str, completion, len)) { readline_add_completion(rs, completion); } completion = snapshot->value->id; if (!strncmp(str, completion, len)) { readline_add_completion(rs, completion); } snapshot = snapshot->next; } qapi_free_SnapshotInfoList(snapshots); } } void delvm_completion(ReadLineState *rs, int nb_args, const char *str) { if (nb_args == 2) { vm_completion(rs, str); } } void loadvm_completion(ReadLineState *rs, int nb_args, const char *str) { if (nb_args == 2) { vm_completion(rs, str); } } static void monitor_find_completion_by_table(Monitor *mon, const mon_cmd_t *cmd_table, char **args, int nb_args) { const char *cmdname; int i; const char *ptype, *str, *name; const mon_cmd_t *cmd; BlockDriverState *bs; if (nb_args <= 1) { /* command completion */ if (nb_args == 0) cmdname = ""; else cmdname = args[0]; readline_set_completion_index(mon->rs, strlen(cmdname)); for (cmd = cmd_table; cmd->name != NULL; cmd++) { cmd_completion(mon, cmdname, cmd->name); } } else { /* find the command */ for (cmd = cmd_table; cmd->name != NULL; cmd++) { if (compare_cmd(args[0], cmd->name)) { break; } } if (!cmd->name) { return; } if (cmd->sub_table) { /* do the job again */ monitor_find_completion_by_table(mon, cmd->sub_table, &args[1], nb_args - 1); return; } if (cmd->command_completion) { cmd->command_completion(mon->rs, nb_args, args[nb_args - 1]); return; } ptype = next_arg_type(cmd->args_type); for(i = 0; i < nb_args - 2; i++) { if (*ptype != '\0') { ptype = next_arg_type(ptype); while (*ptype == '?') ptype = next_arg_type(ptype); } } str = args[nb_args - 1]; while (*ptype == '-' && ptype[1] != '\0') { ptype = next_arg_type(ptype); } switch(*ptype) { case 'F': /* file completion */ readline_set_completion_index(mon->rs, strlen(str)); file_completion(mon, str); break; case 'B': /* block device name completion */ readline_set_completion_index(mon->rs, strlen(str)); for (bs = bdrv_next(NULL); bs; bs = bdrv_next(bs)) { name = bdrv_get_device_name(bs); if (str[0] == '\0' || !strncmp(name, str, strlen(str))) { readline_add_completion(mon->rs, name); } } break; case 's': case 'S': if (!strcmp(cmd->name, "help|?")) { monitor_find_completion_by_table(mon, cmd_table, &args[1], nb_args - 1); } break; default: break; } } } static void monitor_find_completion(void *opaque, const char *cmdline) { Monitor *mon = opaque; char *args[MAX_ARGS]; int nb_args, len; /* 1. parse the cmdline */ if (parse_cmdline(cmdline, &nb_args, args) < 0) { return; } #ifdef DEBUG_COMPLETION { int i; for (i = 0; i < nb_args; i++) { monitor_printf(mon, "arg%d = '%s'\n", i, args[i]); } } #endif /* if the line ends with a space, it means we want to complete the next arg */ len = strlen(cmdline); if (len > 0 && qemu_isspace(cmdline[len - 1])) { if (nb_args >= MAX_ARGS) { goto cleanup; } args[nb_args++] = g_strdup(""); } /* 2. auto complete according to args */ monitor_find_completion_by_table(mon, mon->cmd_table, args, nb_args); cleanup: free_cmdline_args(args, nb_args); } static int monitor_can_read(void *opaque) { Monitor *mon = opaque; return (mon->suspend_cnt == 0) ? 1 : 0; } static bool invalid_qmp_mode(const Monitor *mon, const mon_cmd_t *cmd, Error **errp) { bool is_cap = cmd->mhandler.cmd_new == do_qmp_capabilities; if (is_cap && qmp_cmd_mode(mon)) { error_set(errp, ERROR_CLASS_COMMAND_NOT_FOUND, "Capabilities negotiation is already complete, command " "'%s' ignored", cmd->name); return true; } if (!is_cap && !qmp_cmd_mode(mon)) { error_set(errp, ERROR_CLASS_COMMAND_NOT_FOUND, "Expecting capabilities negotiation with " "'qmp_capabilities' before command '%s'", cmd->name); return true; } return false; } /* * Argument validation rules: * * 1. The argument must exist in cmd_args qdict * 2. The argument type must be the expected one * * Special case: If the argument doesn't exist in cmd_args and * the QMP_ACCEPT_UNKNOWNS flag is set, then the * checking is skipped for it. */ static void check_client_args_type(const QDict *client_args, const QDict *cmd_args, int flags, Error **errp) { const QDictEntry *ent; for (ent = qdict_first(client_args); ent;ent = qdict_next(client_args,ent)){ QObject *obj; QString *arg_type; const QObject *client_arg = qdict_entry_value(ent); const char *client_arg_name = qdict_entry_key(ent); obj = qdict_get(cmd_args, client_arg_name); if (!obj) { if (flags & QMP_ACCEPT_UNKNOWNS) { /* handler accepts unknowns */ continue; } /* client arg doesn't exist */ error_set(errp, QERR_INVALID_PARAMETER, client_arg_name); return; } arg_type = qobject_to_qstring(obj); assert(arg_type != NULL); /* check if argument's type is correct */ switch (qstring_get_str(arg_type)[0]) { case 'F': case 'B': case 's': if (qobject_type(client_arg) != QTYPE_QSTRING) { error_set(errp, QERR_INVALID_PARAMETER_TYPE, client_arg_name, "string"); return; } break; case 'i': case 'l': case 'M': case 'o': if (qobject_type(client_arg) != QTYPE_QINT) { error_set(errp, QERR_INVALID_PARAMETER_TYPE, client_arg_name, "int"); return; } break; case 'T': if (qobject_type(client_arg) != QTYPE_QINT && qobject_type(client_arg) != QTYPE_QFLOAT) { error_set(errp, QERR_INVALID_PARAMETER_TYPE, client_arg_name, "number"); return; } break; case 'b': case '-': if (qobject_type(client_arg) != QTYPE_QBOOL) { error_set(errp, QERR_INVALID_PARAMETER_TYPE, client_arg_name, "bool"); return; } break; case 'O': assert(flags & QMP_ACCEPT_UNKNOWNS); break; case 'q': /* Any QObject can be passed. */ break; case '/': case '.': /* * These types are not supported by QMP and thus are not * handled here. Fall through. */ default: abort(); } } } /* * - Check if the client has passed all mandatory args * - Set special flags for argument validation */ static void check_mandatory_args(const QDict *cmd_args, const QDict *client_args, int *flags, Error **errp) { const QDictEntry *ent; for (ent = qdict_first(cmd_args); ent; ent = qdict_next(cmd_args, ent)) { const char *cmd_arg_name = qdict_entry_key(ent); QString *type = qobject_to_qstring(qdict_entry_value(ent)); assert(type != NULL); if (qstring_get_str(type)[0] == 'O') { assert((*flags & QMP_ACCEPT_UNKNOWNS) == 0); *flags |= QMP_ACCEPT_UNKNOWNS; } else if (qstring_get_str(type)[0] != '-' && qstring_get_str(type)[1] != '?' && !qdict_haskey(client_args, cmd_arg_name)) { error_set(errp, QERR_MISSING_PARAMETER, cmd_arg_name); return; } } } static QDict *qdict_from_args_type(const char *args_type) { int i; QDict *qdict; QString *key, *type, *cur_qs; assert(args_type != NULL); qdict = qdict_new(); if (args_type == NULL || args_type[0] == '\0') { /* no args, empty qdict */ goto out; } key = qstring_new(); type = qstring_new(); cur_qs = key; for (i = 0;; i++) { switch (args_type[i]) { case ',': case '\0': qdict_put(qdict, qstring_get_str(key), type); QDECREF(key); if (args_type[i] == '\0') { goto out; } type = qstring_new(); /* qdict has ref */ cur_qs = key = qstring_new(); break; case ':': cur_qs = type; break; default: qstring_append_chr(cur_qs, args_type[i]); break; } } out: return qdict; } /* * Client argument checking rules: * * 1. Client must provide all mandatory arguments * 2. Each argument provided by the client must be expected * 3. Each argument provided by the client must have the type expected * by the command */ static void qmp_check_client_args(const mon_cmd_t *cmd, QDict *client_args, Error **errp) { Error *err = NULL; int flags; QDict *cmd_args; cmd_args = qdict_from_args_type(cmd->args_type); flags = 0; check_mandatory_args(cmd_args, client_args, &flags, &err); if (err) { goto out; } check_client_args_type(client_args, cmd_args, flags, &err); out: error_propagate(errp, err); QDECREF(cmd_args); } /* * Input object checking rules * * 1. Input object must be a dict * 2. The "execute" key must exist * 3. The "execute" key must be a string * 4. If the "arguments" key exists, it must be a dict * 5. If the "id" key exists, it can be anything (ie. json-value) * 6. Any argument not listed above is considered invalid */ static QDict *qmp_check_input_obj(QObject *input_obj, Error **errp) { const QDictEntry *ent; int has_exec_key = 0; QDict *input_dict; if (qobject_type(input_obj) != QTYPE_QDICT) { error_set(errp, QERR_QMP_BAD_INPUT_OBJECT, "object"); return NULL; } input_dict = qobject_to_qdict(input_obj); for (ent = qdict_first(input_dict); ent; ent = qdict_next(input_dict, ent)){ const char *arg_name = qdict_entry_key(ent); const QObject *arg_obj = qdict_entry_value(ent); if (!strcmp(arg_name, "execute")) { if (qobject_type(arg_obj) != QTYPE_QSTRING) { error_set(errp, QERR_QMP_BAD_INPUT_OBJECT_MEMBER, "execute", "string"); return NULL; } has_exec_key = 1; } else if (!strcmp(arg_name, "arguments")) { if (qobject_type(arg_obj) != QTYPE_QDICT) { error_set(errp, QERR_QMP_BAD_INPUT_OBJECT_MEMBER, "arguments", "object"); return NULL; } } else { error_set(errp, QERR_QMP_EXTRA_MEMBER, arg_name); return NULL; } } if (!has_exec_key) { error_set(errp, QERR_QMP_BAD_INPUT_OBJECT, "execute"); return NULL; } return input_dict; } static void handle_qmp_command(JSONMessageParser *parser, QList *tokens) { Error *local_err = NULL; QObject *obj, *data; QDict *input, *args; const mon_cmd_t *cmd; const char *cmd_name; Monitor *mon = cur_mon; args = input = NULL; data = NULL; obj = json_parser_parse(tokens, NULL); if (!obj) { // FIXME: should be triggered in json_parser_parse() qerror_report(QERR_JSON_PARSING); goto err_out; } input = qmp_check_input_obj(obj, &local_err); if (!input) { qerror_report_err(local_err); qobject_decref(obj); goto err_out; } mon->mc->id = qdict_get(input, "id"); qobject_incref(mon->mc->id); cmd_name = qdict_get_str(input, "execute"); trace_handle_qmp_command(mon, cmd_name); cmd = qmp_find_cmd(cmd_name); if (!cmd) { qerror_report(ERROR_CLASS_COMMAND_NOT_FOUND, "The command %s has not been found", cmd_name); goto err_out; } if (invalid_qmp_mode(mon, cmd, &local_err)) { qerror_report_err(local_err); goto err_out; } obj = qdict_get(input, "arguments"); if (!obj) { args = qdict_new(); } else { args = qobject_to_qdict(obj); QINCREF(args); } qmp_check_client_args(cmd, args, &local_err); if (local_err) { qerror_report_err(local_err); goto err_out; } if (cmd->mhandler.cmd_new(mon, args, &data)) { /* Command failed... */ if (!monitor_has_error(mon)) { /* ... without setting an error, so make one up */ qerror_report(QERR_UNDEFINED_ERROR); } } err_out: monitor_protocol_emitter(mon, data, mon->error); qobject_decref(data); QDECREF(mon->error); mon->error = NULL; QDECREF(input); QDECREF(args); } /** * monitor_control_read(): Read and handle QMP input */ static void monitor_control_read(void *opaque, const uint8_t *buf, int size) { Monitor *old_mon = cur_mon; cur_mon = opaque; json_message_parser_feed(&cur_mon->mc->parser, (const char *) buf, size); cur_mon = old_mon; } static void monitor_read(void *opaque, const uint8_t *buf, int size) { Monitor *old_mon = cur_mon; int i; cur_mon = opaque; if (cur_mon->rs) { for (i = 0; i < size; i++) readline_handle_byte(cur_mon->rs, buf[i]); } else { if (size == 0 || buf[size - 1] != 0) monitor_printf(cur_mon, "corrupted command\n"); else handle_user_command(cur_mon, (char *)buf); } cur_mon = old_mon; } static void monitor_command_cb(void *opaque, const char *cmdline, void *readline_opaque) { Monitor *mon = opaque; monitor_suspend(mon); handle_user_command(mon, cmdline); monitor_resume(mon); } int monitor_suspend(Monitor *mon) { if (!mon->rs) return -ENOTTY; mon->suspend_cnt++; return 0; } void monitor_resume(Monitor *mon) { if (!mon->rs) return; if (--mon->suspend_cnt == 0) readline_show_prompt(mon->rs); } static QObject *get_qmp_greeting(void) { QObject *ver = NULL; qmp_marshal_input_query_version(NULL, NULL, &ver); return qobject_from_jsonf("{'QMP':{'version': %p,'capabilities': []}}",ver); } /** * monitor_control_event(): Print QMP gretting */ static void monitor_control_event(void *opaque, int event) { QObject *data; Monitor *mon = opaque; switch (event) { case CHR_EVENT_OPENED: mon->mc->command_mode = 0; data = get_qmp_greeting(); monitor_json_emitter(mon, data); qobject_decref(data); mon_refcount++; break; case CHR_EVENT_CLOSED: json_message_parser_destroy(&mon->mc->parser); json_message_parser_init(&mon->mc->parser, handle_qmp_command); mon_refcount--; monitor_fdsets_cleanup(); break; } } static void monitor_event(void *opaque, int event) { Monitor *mon = opaque; switch (event) { case CHR_EVENT_MUX_IN: qemu_mutex_lock(&mon->out_lock); mon->mux_out = 0; qemu_mutex_unlock(&mon->out_lock); if (mon->reset_seen) { readline_restart(mon->rs); monitor_resume(mon); monitor_flush(mon); } else { mon->suspend_cnt = 0; } break; case CHR_EVENT_MUX_OUT: if (mon->reset_seen) { if (mon->suspend_cnt == 0) { monitor_printf(mon, "\n"); } monitor_flush(mon); monitor_suspend(mon); } else { mon->suspend_cnt++; } qemu_mutex_lock(&mon->out_lock); mon->mux_out = 1; qemu_mutex_unlock(&mon->out_lock); break; case CHR_EVENT_OPENED: monitor_printf(mon, "QEMU %s monitor - type 'help' for more " "information\n", QEMU_VERSION); if (!mon->mux_out) { readline_restart(mon->rs); readline_show_prompt(mon->rs); } mon->reset_seen = 1; mon_refcount++; break; case CHR_EVENT_CLOSED: mon_refcount--; monitor_fdsets_cleanup(); break; } } static int compare_mon_cmd(const void *a, const void *b) { return strcmp(((const mon_cmd_t *)a)->name, ((const mon_cmd_t *)b)->name); } static void sortcmdlist(void) { int array_num; int elem_size = sizeof(mon_cmd_t); array_num = sizeof(mon_cmds)/elem_size-1; qsort((void *)mon_cmds, array_num, elem_size, compare_mon_cmd); array_num = sizeof(info_cmds)/elem_size-1; qsort((void *)info_cmds, array_num, elem_size, compare_mon_cmd); } /* * Local variables: * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 8 * End: */ /* These functions just adapt the readline interface in a typesafe way. We * could cast function pointers but that discards compiler checks. */ static void GCC_FMT_ATTR(2, 3) monitor_readline_printf(void *opaque, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf(opaque, fmt, ap); va_end(ap); } static void monitor_readline_flush(void *opaque) { monitor_flush(opaque); } static void __attribute__((constructor)) monitor_lock_init(void) { qemu_mutex_init(&monitor_lock); } void monitor_init(CharDriverState *chr, int flags) { static int is_first_init = 1; Monitor *mon; if (is_first_init) { monitor_qapi_event_init(); sortcmdlist(); is_first_init = 0; } mon = g_malloc(sizeof(*mon)); monitor_data_init(mon); mon->chr = chr; mon->flags = flags; if (flags & MONITOR_USE_READLINE) { mon->rs = readline_init(monitor_readline_printf, monitor_readline_flush, mon, monitor_find_completion); monitor_read_command(mon, 0); } if (monitor_ctrl_mode(mon)) { mon->mc = g_malloc0(sizeof(MonitorControl)); /* Control mode requires special handlers */ qemu_chr_add_handlers(chr, monitor_can_read, monitor_control_read, monitor_control_event, mon); qemu_chr_fe_set_echo(chr, true); json_message_parser_init(&mon->mc->parser, handle_qmp_command); } else { qemu_chr_add_handlers(chr, monitor_can_read, monitor_read, monitor_event, mon); } qemu_mutex_lock(&monitor_lock); QLIST_INSERT_HEAD(&mon_list, mon, entry); qemu_mutex_unlock(&monitor_lock); if (!default_mon || (flags & MONITOR_IS_DEFAULT)) default_mon = mon; } static void bdrv_password_cb(void *opaque, const char *password, void *readline_opaque) { Monitor *mon = opaque; BlockDriverState *bs = readline_opaque; int ret = 0; Error *local_err = NULL; bdrv_add_key(bs, password, &local_err); if (local_err) { monitor_printf(mon, "%s\n", error_get_pretty(local_err)); error_free(local_err); ret = -EPERM; } if (mon->password_completion_cb) mon->password_completion_cb(mon->password_opaque, ret); monitor_read_command(mon, 1); } int monitor_read_bdrv_key_start(Monitor *mon, BlockDriverState *bs, BlockCompletionFunc *completion_cb, void *opaque) { int err; monitor_printf(mon, "%s (%s) is encrypted.\n", bdrv_get_device_name(bs), bdrv_get_encrypted_filename(bs)); mon->password_completion_cb = completion_cb; mon->password_opaque = opaque; err = monitor_read_password(mon, bdrv_password_cb, bs); if (err && completion_cb) completion_cb(opaque, err); return err; } int monitor_read_block_device_key(Monitor *mon, const char *device, BlockCompletionFunc *completion_cb, void *opaque) { Error *err = NULL; BlockBackend *blk; blk = blk_by_name(device); if (!blk) { monitor_printf(mon, "Device not found %s\n", device); return -1; } bdrv_add_key(blk_bs(blk), NULL, &err); if (err) { error_free(err); return monitor_read_bdrv_key_start(mon, blk_bs(blk), completion_cb, opaque); } if (completion_cb) { completion_cb(opaque, 0); } return 0; } QemuOptsList qemu_mon_opts = { .name = "mon", .implied_opt_name = "chardev", .head = QTAILQ_HEAD_INITIALIZER(qemu_mon_opts.head), .desc = { { .name = "mode", .type = QEMU_OPT_STRING, },{ .name = "chardev", .type = QEMU_OPT_STRING, },{ .name = "default", .type = QEMU_OPT_BOOL, },{ .name = "pretty", .type = QEMU_OPT_BOOL, }, { /* end of list */ } }, }; #ifndef TARGET_I386 void qmp_rtc_reset_reinjection(Error **errp) { error_set(errp, QERR_FEATURE_DISABLED, "rtc-reset-reinjection"); } #endif