/* * QEMU PowerPC PowerNV CPU Core model * * Copyright (c) 2016, IBM Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "sysemu/reset.h" #include "qapi/error.h" #include "qemu/log.h" #include "qemu/module.h" #include "target/ppc/cpu.h" #include "hw/ppc/ppc.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_core.h" #include "hw/ppc/pnv_xscom.h" #include "hw/ppc/xics.h" #include "hw/qdev-properties.h" static const char *pnv_core_cpu_typename(PnvCore *pc) { const char *core_type = object_class_get_name(object_get_class(OBJECT(pc))); int len = strlen(core_type) - strlen(PNV_CORE_TYPE_SUFFIX); char *s = g_strdup_printf(POWERPC_CPU_TYPE_NAME("%.*s"), len, core_type); const char *cpu_type = object_class_get_name(object_class_by_name(s)); g_free(s); return cpu_type; } static void pnv_core_cpu_reset(PowerPCCPU *cpu, PnvChip *chip) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); cpu_reset(cs); /* * the skiboot firmware elects a primary thread to initialize the * system and it can be any. */ env->gpr[3] = PNV_FDT_ADDR; env->nip = 0x10; env->msr |= MSR_HVB; /* Hypervisor mode */ pcc->intc_reset(chip, cpu); } /* * These values are read by the PowerNV HW monitors under Linux */ #define PNV_XSCOM_EX_DTS_RESULT0 0x50000 #define PNV_XSCOM_EX_DTS_RESULT1 0x50001 static uint64_t pnv_core_power8_xscom_read(void *opaque, hwaddr addr, unsigned int width) { uint32_t offset = addr >> 3; uint64_t val = 0; /* The result should be 38 C */ switch (offset) { case PNV_XSCOM_EX_DTS_RESULT0: val = 0x26f024f023f0000ull; break; case PNV_XSCOM_EX_DTS_RESULT1: val = 0x24f000000000000ull; break; default: qemu_log_mask(LOG_UNIMP, "Warning: reading reg=0x%" HWADDR_PRIx "\n", addr); } return val; } static void pnv_core_power8_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned int width) { qemu_log_mask(LOG_UNIMP, "Warning: writing to reg=0x%" HWADDR_PRIx "\n", addr); } static const MemoryRegionOps pnv_core_power8_xscom_ops = { .read = pnv_core_power8_xscom_read, .write = pnv_core_power8_xscom_write, .valid.min_access_size = 8, .valid.max_access_size = 8, .impl.min_access_size = 8, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; /* * POWER9 core controls */ #define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP 0xf010d #define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR 0xf010a static uint64_t pnv_core_power9_xscom_read(void *opaque, hwaddr addr, unsigned int width) { uint32_t offset = addr >> 3; uint64_t val = 0; /* The result should be 38 C */ switch (offset) { case PNV_XSCOM_EX_DTS_RESULT0: val = 0x26f024f023f0000ull; break; case PNV_XSCOM_EX_DTS_RESULT1: val = 0x24f000000000000ull; break; case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP: case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR: val = 0x0; break; default: qemu_log_mask(LOG_UNIMP, "Warning: reading reg=0x%" HWADDR_PRIx "\n", addr); } return val; } static void pnv_core_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned int width) { uint32_t offset = addr >> 3; switch (offset) { case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP: case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR: break; default: qemu_log_mask(LOG_UNIMP, "Warning: writing to reg=0x%" HWADDR_PRIx "\n", addr); } } static const MemoryRegionOps pnv_core_power9_xscom_ops = { .read = pnv_core_power9_xscom_read, .write = pnv_core_power9_xscom_write, .valid.min_access_size = 8, .valid.max_access_size = 8, .impl.min_access_size = 8, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static void pnv_core_cpu_realize(PowerPCCPU *cpu, PnvChip *chip, Error **errp) { CPUPPCState *env = &cpu->env; int core_pir; int thread_index = 0; /* TODO: TCG supports only one thread */ ppc_spr_t *pir = &env->spr_cb[SPR_PIR]; Error *local_err = NULL; PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); if (local_err) { error_propagate(errp, local_err); return; } pcc->intc_create(chip, cpu, &local_err); if (local_err) { error_propagate(errp, local_err); return; } core_pir = object_property_get_uint(OBJECT(cpu), "core-pir", &error_abort); /* * The PIR of a thread is the core PIR + the thread index. We will * need to find a way to get the thread index when TCG supports * more than 1. We could use the object name ? */ pir->default_value = core_pir + thread_index; /* Set time-base frequency to 512 MHz */ cpu_ppc_tb_init(env, PNV_TIMEBASE_FREQ); } static void pnv_core_reset(void *dev) { CPUCore *cc = CPU_CORE(dev); PnvCore *pc = PNV_CORE(dev); int i; for (i = 0; i < cc->nr_threads; i++) { pnv_core_cpu_reset(pc->threads[i], pc->chip); } } static void pnv_core_realize(DeviceState *dev, Error **errp) { PnvCore *pc = PNV_CORE(OBJECT(dev)); PnvCoreClass *pcc = PNV_CORE_GET_CLASS(pc); CPUCore *cc = CPU_CORE(OBJECT(dev)); const char *typename = pnv_core_cpu_typename(pc); Error *local_err = NULL; void *obj; int i, j; char name[32]; Object *chip; chip = object_property_get_link(OBJECT(dev), "chip", &local_err); if (!chip) { error_propagate_prepend(errp, local_err, "required link 'chip' not found: "); return; } pc->chip = PNV_CHIP(chip); pc->threads = g_new(PowerPCCPU *, cc->nr_threads); for (i = 0; i < cc->nr_threads; i++) { PowerPCCPU *cpu; obj = object_new(typename); cpu = POWERPC_CPU(obj); pc->threads[i] = POWERPC_CPU(obj); snprintf(name, sizeof(name), "thread[%d]", i); object_property_add_child(OBJECT(pc), name, obj, &error_abort); object_property_add_alias(obj, "core-pir", OBJECT(pc), "pir", &error_abort); cpu->machine_data = g_new0(PnvCPUState, 1); object_unref(obj); } for (j = 0; j < cc->nr_threads; j++) { pnv_core_cpu_realize(pc->threads[j], pc->chip, &local_err); if (local_err) { goto err; } } snprintf(name, sizeof(name), "xscom-core.%d", cc->core_id); pnv_xscom_region_init(&pc->xscom_regs, OBJECT(dev), pcc->xscom_ops, pc, name, PNV_XSCOM_EX_SIZE); qemu_register_reset(pnv_core_reset, pc); return; err: while (--i >= 0) { obj = OBJECT(pc->threads[i]); object_unparent(obj); } g_free(pc->threads); error_propagate(errp, local_err); } static void pnv_core_cpu_unrealize(PowerPCCPU *cpu, PnvChip *chip) { PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); pcc->intc_destroy(chip, cpu); cpu_remove_sync(CPU(cpu)); cpu->machine_data = NULL; g_free(pnv_cpu); object_unparent(OBJECT(cpu)); } static void pnv_core_unrealize(DeviceState *dev, Error **errp) { PnvCore *pc = PNV_CORE(dev); CPUCore *cc = CPU_CORE(dev); int i; qemu_unregister_reset(pnv_core_reset, pc); for (i = 0; i < cc->nr_threads; i++) { pnv_core_cpu_unrealize(pc->threads[i], pc->chip); } g_free(pc->threads); } static Property pnv_core_properties[] = { DEFINE_PROP_UINT32("pir", PnvCore, pir, 0), DEFINE_PROP_END_OF_LIST(), }; static void pnv_core_power8_class_init(ObjectClass *oc, void *data) { PnvCoreClass *pcc = PNV_CORE_CLASS(oc); pcc->xscom_ops = &pnv_core_power8_xscom_ops; } static void pnv_core_power9_class_init(ObjectClass *oc, void *data) { PnvCoreClass *pcc = PNV_CORE_CLASS(oc); pcc->xscom_ops = &pnv_core_power9_xscom_ops; } static void pnv_core_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = pnv_core_realize; dc->unrealize = pnv_core_unrealize; dc->props = pnv_core_properties; } #define DEFINE_PNV_CORE_TYPE(family, cpu_model) \ { \ .parent = TYPE_PNV_CORE, \ .name = PNV_CORE_TYPE_NAME(cpu_model), \ .class_init = pnv_core_##family##_class_init, \ } static const TypeInfo pnv_core_infos[] = { { .name = TYPE_PNV_CORE, .parent = TYPE_CPU_CORE, .instance_size = sizeof(PnvCore), .class_size = sizeof(PnvCoreClass), .class_init = pnv_core_class_init, .abstract = true, }, DEFINE_PNV_CORE_TYPE(power8, "power8e_v2.1"), DEFINE_PNV_CORE_TYPE(power8, "power8_v2.0"), DEFINE_PNV_CORE_TYPE(power8, "power8nvl_v1.0"), DEFINE_PNV_CORE_TYPE(power9, "power9_v2.0"), }; DEFINE_TYPES(pnv_core_infos) /* * POWER9 Quads */ #define P9X_EX_NCU_SPEC_BAR 0x11010 static uint64_t pnv_quad_xscom_read(void *opaque, hwaddr addr, unsigned int width) { uint32_t offset = addr >> 3; uint64_t val = -1; switch (offset) { case P9X_EX_NCU_SPEC_BAR: case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */ val = 0; break; default: qemu_log_mask(LOG_UNIMP, "%s: writing @0x%08x\n", __func__, offset); } return val; } static void pnv_quad_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned int width) { uint32_t offset = addr >> 3; switch (offset) { case P9X_EX_NCU_SPEC_BAR: case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */ break; default: qemu_log_mask(LOG_UNIMP, "%s: writing @0x%08x\n", __func__, offset); } } static const MemoryRegionOps pnv_quad_xscom_ops = { .read = pnv_quad_xscom_read, .write = pnv_quad_xscom_write, .valid.min_access_size = 8, .valid.max_access_size = 8, .impl.min_access_size = 8, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static void pnv_quad_realize(DeviceState *dev, Error **errp) { PnvQuad *eq = PNV_QUAD(dev); char name[32]; snprintf(name, sizeof(name), "xscom-quad.%d", eq->id); pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev), &pnv_quad_xscom_ops, eq, name, PNV9_XSCOM_EQ_SIZE); } static Property pnv_quad_properties[] = { DEFINE_PROP_UINT32("id", PnvQuad, id, 0), DEFINE_PROP_END_OF_LIST(), }; static void pnv_quad_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = pnv_quad_realize; dc->props = pnv_quad_properties; } static const TypeInfo pnv_quad_info = { .name = TYPE_PNV_QUAD, .parent = TYPE_DEVICE, .instance_size = sizeof(PnvQuad), .class_init = pnv_quad_class_init, }; static void pnv_core_register_types(void) { type_register_static(&pnv_quad_info); } type_init(pnv_core_register_types)