#include "qemu/osdep.h" #include "hw/boards.h" #include "migration/vmstate.h" #include "hw/acpi/cpu.h" #include "qapi/error.h" #include "qapi/qapi-events-misc.h" #include "trace.h" #include "sysemu/numa.h" #define ACPI_CPU_HOTPLUG_REG_LEN 12 #define ACPI_CPU_SELECTOR_OFFSET_WR 0 #define ACPI_CPU_FLAGS_OFFSET_RW 4 #define ACPI_CPU_CMD_OFFSET_WR 5 #define ACPI_CPU_CMD_DATA_OFFSET_RW 8 #define ACPI_CPU_CMD_DATA2_OFFSET_R 0 #define OVMF_CPUHP_SMI_CMD 4 enum { CPHP_GET_NEXT_CPU_WITH_EVENT_CMD = 0, CPHP_OST_EVENT_CMD = 1, CPHP_OST_STATUS_CMD = 2, CPHP_GET_CPU_ID_CMD = 3, CPHP_CMD_MAX }; static ACPIOSTInfo *acpi_cpu_device_status(int idx, AcpiCpuStatus *cdev) { ACPIOSTInfo *info = g_new0(ACPIOSTInfo, 1); info->slot_type = ACPI_SLOT_TYPE_CPU; info->slot = g_strdup_printf("%d", idx); info->source = cdev->ost_event; info->status = cdev->ost_status; if (cdev->cpu) { DeviceState *dev = DEVICE(cdev->cpu); if (dev->id) { info->device = g_strdup(dev->id); info->has_device = true; } } return info; } void acpi_cpu_ospm_status(CPUHotplugState *cpu_st, ACPIOSTInfoList ***list) { int i; for (i = 0; i < cpu_st->dev_count; i++) { ACPIOSTInfoList *elem = g_new0(ACPIOSTInfoList, 1); elem->value = acpi_cpu_device_status(i, &cpu_st->devs[i]); elem->next = NULL; **list = elem; *list = &elem->next; } } static uint64_t cpu_hotplug_rd(void *opaque, hwaddr addr, unsigned size) { uint64_t val = 0; CPUHotplugState *cpu_st = opaque; AcpiCpuStatus *cdev; if (cpu_st->selector >= cpu_st->dev_count) { return val; } cdev = &cpu_st->devs[cpu_st->selector]; switch (addr) { case ACPI_CPU_FLAGS_OFFSET_RW: /* pack and return is_* fields */ val |= cdev->cpu ? 1 : 0; val |= cdev->is_inserting ? 2 : 0; val |= cdev->is_removing ? 4 : 0; trace_cpuhp_acpi_read_flags(cpu_st->selector, val); break; case ACPI_CPU_CMD_DATA_OFFSET_RW: switch (cpu_st->command) { case CPHP_GET_NEXT_CPU_WITH_EVENT_CMD: val = cpu_st->selector; break; case CPHP_GET_CPU_ID_CMD: val = cdev->arch_id & 0xFFFFFFFF; break; default: break; } trace_cpuhp_acpi_read_cmd_data(cpu_st->selector, val); break; case ACPI_CPU_CMD_DATA2_OFFSET_R: switch (cpu_st->command) { case CPHP_GET_NEXT_CPU_WITH_EVENT_CMD: val = 0; break; case CPHP_GET_CPU_ID_CMD: val = cdev->arch_id >> 32; break; default: break; } trace_cpuhp_acpi_read_cmd_data2(cpu_st->selector, val); break; default: break; } return val; } static void cpu_hotplug_wr(void *opaque, hwaddr addr, uint64_t data, unsigned int size) { CPUHotplugState *cpu_st = opaque; AcpiCpuStatus *cdev; ACPIOSTInfo *info; assert(cpu_st->dev_count); if (addr) { if (cpu_st->selector >= cpu_st->dev_count) { trace_cpuhp_acpi_invalid_idx_selected(cpu_st->selector); return; } } switch (addr) { case ACPI_CPU_SELECTOR_OFFSET_WR: /* current CPU selector */ cpu_st->selector = data; trace_cpuhp_acpi_write_idx(cpu_st->selector); break; case ACPI_CPU_FLAGS_OFFSET_RW: /* set is_* fields */ cdev = &cpu_st->devs[cpu_st->selector]; if (data & 2) { /* clear insert event */ cdev->is_inserting = false; trace_cpuhp_acpi_clear_inserting_evt(cpu_st->selector); } else if (data & 4) { /* clear remove event */ cdev->is_removing = false; trace_cpuhp_acpi_clear_remove_evt(cpu_st->selector); } else if (data & 8) { DeviceState *dev = NULL; HotplugHandler *hotplug_ctrl = NULL; if (!cdev->cpu || cdev->cpu == first_cpu) { trace_cpuhp_acpi_ejecting_invalid_cpu(cpu_st->selector); break; } trace_cpuhp_acpi_ejecting_cpu(cpu_st->selector); dev = DEVICE(cdev->cpu); hotplug_ctrl = qdev_get_hotplug_handler(dev); hotplug_handler_unplug(hotplug_ctrl, dev, NULL); object_unparent(OBJECT(dev)); } break; case ACPI_CPU_CMD_OFFSET_WR: trace_cpuhp_acpi_write_cmd(cpu_st->selector, data); if (data < CPHP_CMD_MAX) { cpu_st->command = data; if (cpu_st->command == CPHP_GET_NEXT_CPU_WITH_EVENT_CMD) { uint32_t iter = cpu_st->selector; do { cdev = &cpu_st->devs[iter]; if (cdev->is_inserting || cdev->is_removing) { cpu_st->selector = iter; trace_cpuhp_acpi_cpu_has_events(cpu_st->selector, cdev->is_inserting, cdev->is_removing); break; } iter = iter + 1 < cpu_st->dev_count ? iter + 1 : 0; } while (iter != cpu_st->selector); } } break; case ACPI_CPU_CMD_DATA_OFFSET_RW: switch (cpu_st->command) { case CPHP_OST_EVENT_CMD: { cdev = &cpu_st->devs[cpu_st->selector]; cdev->ost_event = data; trace_cpuhp_acpi_write_ost_ev(cpu_st->selector, cdev->ost_event); break; } case CPHP_OST_STATUS_CMD: { cdev = &cpu_st->devs[cpu_st->selector]; cdev->ost_status = data; info = acpi_cpu_device_status(cpu_st->selector, cdev); qapi_event_send_acpi_device_ost(info); qapi_free_ACPIOSTInfo(info); trace_cpuhp_acpi_write_ost_status(cpu_st->selector, cdev->ost_status); break; } default: break; } break; default: break; } } static const MemoryRegionOps cpu_hotplug_ops = { .read = cpu_hotplug_rd, .write = cpu_hotplug_wr, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 4, }, }; void cpu_hotplug_hw_init(MemoryRegion *as, Object *owner, CPUHotplugState *state, hwaddr base_addr) { MachineState *machine = MACHINE(qdev_get_machine()); MachineClass *mc = MACHINE_GET_CLASS(machine); const CPUArchIdList *id_list; int i; assert(mc->possible_cpu_arch_ids); id_list = mc->possible_cpu_arch_ids(machine); state->dev_count = id_list->len; state->devs = g_new0(typeof(*state->devs), state->dev_count); for (i = 0; i < id_list->len; i++) { state->devs[i].cpu = CPU(id_list->cpus[i].cpu); state->devs[i].arch_id = id_list->cpus[i].arch_id; } memory_region_init_io(&state->ctrl_reg, owner, &cpu_hotplug_ops, state, "acpi-cpu-hotplug", ACPI_CPU_HOTPLUG_REG_LEN); memory_region_add_subregion(as, base_addr, &state->ctrl_reg); } static AcpiCpuStatus *get_cpu_status(CPUHotplugState *cpu_st, DeviceState *dev) { CPUClass *k = CPU_GET_CLASS(dev); uint64_t cpu_arch_id = k->get_arch_id(CPU(dev)); int i; for (i = 0; i < cpu_st->dev_count; i++) { if (cpu_arch_id == cpu_st->devs[i].arch_id) { return &cpu_st->devs[i]; } } return NULL; } void acpi_cpu_plug_cb(HotplugHandler *hotplug_dev, CPUHotplugState *cpu_st, DeviceState *dev, Error **errp) { AcpiCpuStatus *cdev; cdev = get_cpu_status(cpu_st, dev); if (!cdev) { return; } cdev->cpu = CPU(dev); if (dev->hotplugged) { cdev->is_inserting = true; acpi_send_event(DEVICE(hotplug_dev), ACPI_CPU_HOTPLUG_STATUS); } } void acpi_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, CPUHotplugState *cpu_st, DeviceState *dev, Error **errp) { AcpiCpuStatus *cdev; cdev = get_cpu_status(cpu_st, dev); if (!cdev) { return; } cdev->is_removing = true; acpi_send_event(DEVICE(hotplug_dev), ACPI_CPU_HOTPLUG_STATUS); } void acpi_cpu_unplug_cb(CPUHotplugState *cpu_st, DeviceState *dev, Error **errp) { AcpiCpuStatus *cdev; cdev = get_cpu_status(cpu_st, dev); if (!cdev) { return; } cdev->cpu = NULL; } static const VMStateDescription vmstate_cpuhp_sts = { .name = "CPU hotplug device state", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_BOOL(is_inserting, AcpiCpuStatus), VMSTATE_BOOL(is_removing, AcpiCpuStatus), VMSTATE_UINT32(ost_event, AcpiCpuStatus), VMSTATE_UINT32(ost_status, AcpiCpuStatus), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_cpu_hotplug = { .name = "CPU hotplug state", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(selector, CPUHotplugState), VMSTATE_UINT8(command, CPUHotplugState), VMSTATE_STRUCT_VARRAY_POINTER_UINT32(devs, CPUHotplugState, dev_count, vmstate_cpuhp_sts, AcpiCpuStatus), VMSTATE_END_OF_LIST() } }; #define CPU_NAME_FMT "C%.03X" #define CPUHP_RES_DEVICE "PRES" #define CPU_LOCK "CPLK" #define CPU_STS_METHOD "CSTA" #define CPU_SCAN_METHOD "CSCN" #define CPU_NOTIFY_METHOD "CTFY" #define CPU_EJECT_METHOD "CEJ0" #define CPU_OST_METHOD "COST" #define CPU_ADDED_LIST "CNEW" #define CPU_ENABLED "CPEN" #define CPU_SELECTOR "CSEL" #define CPU_COMMAND "CCMD" #define CPU_DATA "CDAT" #define CPU_INSERT_EVENT "CINS" #define CPU_REMOVE_EVENT "CRMV" #define CPU_EJECT_EVENT "CEJ0" void build_cpus_aml(Aml *table, MachineState *machine, CPUHotplugFeatures opts, hwaddr io_base, const char *res_root, const char *event_handler_method) { Aml *ifctx; Aml *field; Aml *method; Aml *cpu_ctrl_dev; Aml *cpus_dev; Aml *zero = aml_int(0); Aml *one = aml_int(1); Aml *sb_scope = aml_scope("_SB"); MachineClass *mc = MACHINE_GET_CLASS(machine); const CPUArchIdList *arch_ids = mc->possible_cpu_arch_ids(machine); char *cphp_res_path = g_strdup_printf("%s." CPUHP_RES_DEVICE, res_root); Object *obj = object_resolve_path_type("", TYPE_ACPI_DEVICE_IF, NULL); AcpiDeviceIfClass *adevc = ACPI_DEVICE_IF_GET_CLASS(obj); AcpiDeviceIf *adev = ACPI_DEVICE_IF(obj); cpu_ctrl_dev = aml_device("%s", cphp_res_path); { Aml *crs; aml_append(cpu_ctrl_dev, aml_name_decl("_HID", aml_eisaid("PNP0A06"))); aml_append(cpu_ctrl_dev, aml_name_decl("_UID", aml_string("CPU Hotplug resources"))); aml_append(cpu_ctrl_dev, aml_mutex(CPU_LOCK, 0)); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, io_base, io_base, 1, ACPI_CPU_HOTPLUG_REG_LEN)); aml_append(cpu_ctrl_dev, aml_name_decl("_CRS", crs)); /* declare CPU hotplug MMIO region with related access fields */ aml_append(cpu_ctrl_dev, aml_operation_region("PRST", AML_SYSTEM_IO, aml_int(io_base), ACPI_CPU_HOTPLUG_REG_LEN)); field = aml_field("PRST", AML_BYTE_ACC, AML_NOLOCK, AML_WRITE_AS_ZEROS); aml_append(field, aml_reserved_field(ACPI_CPU_FLAGS_OFFSET_RW * 8)); /* 1 if enabled, read only */ aml_append(field, aml_named_field(CPU_ENABLED, 1)); /* (read) 1 if has a insert event. (write) 1 to clear event */ aml_append(field, aml_named_field(CPU_INSERT_EVENT, 1)); /* (read) 1 if has a remove event. (write) 1 to clear event */ aml_append(field, aml_named_field(CPU_REMOVE_EVENT, 1)); /* initiates device eject, write only */ aml_append(field, aml_named_field(CPU_EJECT_EVENT, 1)); aml_append(field, aml_reserved_field(4)); aml_append(field, aml_named_field(CPU_COMMAND, 8)); aml_append(cpu_ctrl_dev, field); field = aml_field("PRST", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE); /* CPU selector, write only */ aml_append(field, aml_named_field(CPU_SELECTOR, 32)); /* flags + cmd + 2byte align */ aml_append(field, aml_reserved_field(4 * 8)); aml_append(field, aml_named_field(CPU_DATA, 32)); aml_append(cpu_ctrl_dev, field); if (opts.has_legacy_cphp) { method = aml_method("_INI", 0, AML_SERIALIZED); /* switch off legacy CPU hotplug HW and use new one, * on reboot system is in new mode and writing 0 * in CPU_SELECTOR selects BSP, which is NOP at * the time _INI is called */ aml_append(method, aml_store(zero, aml_name(CPU_SELECTOR))); aml_append(cpu_ctrl_dev, method); } } aml_append(sb_scope, cpu_ctrl_dev); cpus_dev = aml_device("\\_SB.CPUS"); { int i; Aml *ctrl_lock = aml_name("%s.%s", cphp_res_path, CPU_LOCK); Aml *cpu_selector = aml_name("%s.%s", cphp_res_path, CPU_SELECTOR); Aml *is_enabled = aml_name("%s.%s", cphp_res_path, CPU_ENABLED); Aml *cpu_cmd = aml_name("%s.%s", cphp_res_path, CPU_COMMAND); Aml *cpu_data = aml_name("%s.%s", cphp_res_path, CPU_DATA); Aml *ins_evt = aml_name("%s.%s", cphp_res_path, CPU_INSERT_EVENT); Aml *rm_evt = aml_name("%s.%s", cphp_res_path, CPU_REMOVE_EVENT); Aml *ej_evt = aml_name("%s.%s", cphp_res_path, CPU_EJECT_EVENT); aml_append(cpus_dev, aml_name_decl("_HID", aml_string("ACPI0010"))); aml_append(cpus_dev, aml_name_decl("_CID", aml_eisaid("PNP0A05"))); method = aml_method(CPU_NOTIFY_METHOD, 2, AML_NOTSERIALIZED); for (i = 0; i < arch_ids->len; i++) { Aml *cpu = aml_name(CPU_NAME_FMT, i); Aml *uid = aml_arg(0); Aml *event = aml_arg(1); ifctx = aml_if(aml_equal(uid, aml_int(i))); { aml_append(ifctx, aml_notify(cpu, event)); } aml_append(method, ifctx); } aml_append(cpus_dev, method); method = aml_method(CPU_STS_METHOD, 1, AML_SERIALIZED); { Aml *idx = aml_arg(0); Aml *sta = aml_local(0); aml_append(method, aml_acquire(ctrl_lock, 0xFFFF)); aml_append(method, aml_store(idx, cpu_selector)); aml_append(method, aml_store(zero, sta)); ifctx = aml_if(aml_equal(is_enabled, one)); { aml_append(ifctx, aml_store(aml_int(0xF), sta)); } aml_append(method, ifctx); aml_append(method, aml_release(ctrl_lock)); aml_append(method, aml_return(sta)); } aml_append(cpus_dev, method); method = aml_method(CPU_EJECT_METHOD, 1, AML_SERIALIZED); { Aml *idx = aml_arg(0); aml_append(method, aml_acquire(ctrl_lock, 0xFFFF)); aml_append(method, aml_store(idx, cpu_selector)); aml_append(method, aml_store(one, ej_evt)); aml_append(method, aml_release(ctrl_lock)); } aml_append(cpus_dev, method); method = aml_method(CPU_SCAN_METHOD, 0, AML_SERIALIZED); { const uint8_t max_cpus_per_pass = 255; Aml *else_ctx; Aml *while_ctx, *while_ctx2; Aml *has_event = aml_local(0); Aml *dev_chk = aml_int(1); Aml *eject_req = aml_int(3); Aml *next_cpu_cmd = aml_int(CPHP_GET_NEXT_CPU_WITH_EVENT_CMD); Aml *num_added_cpus = aml_local(1); Aml *cpu_idx = aml_local(2); Aml *uid = aml_local(3); Aml *has_job = aml_local(4); Aml *new_cpus = aml_name(CPU_ADDED_LIST); aml_append(method, aml_acquire(ctrl_lock, 0xFFFF)); /* * Windows versions newer than XP (including Windows 10/Windows * Server 2019), do support* VarPackageOp but, it is cripled to hold * the same elements number as old PackageOp. * For compatibility with Windows XP (so it won't crash) use ACPI1.0 * PackageOp which can hold max 255 elements. * * use named package as old Windows don't support it in local var */ aml_append(method, aml_name_decl(CPU_ADDED_LIST, aml_package(max_cpus_per_pass))); aml_append(method, aml_store(zero, uid)); aml_append(method, aml_store(one, has_job)); /* * CPU_ADDED_LIST can hold limited number of elements, outer loop * allows to process CPUs in batches which let us to handle more * CPUs than CPU_ADDED_LIST can hold. */ while_ctx2 = aml_while(aml_equal(has_job, one)); { aml_append(while_ctx2, aml_store(zero, has_job)); aml_append(while_ctx2, aml_store(one, has_event)); aml_append(while_ctx2, aml_store(zero, num_added_cpus)); /* * Scan CPUs, till there are CPUs with events or * CPU_ADDED_LIST capacity is exhausted */ while_ctx = aml_while(aml_land(aml_equal(has_event, one), aml_lless(uid, aml_int(arch_ids->len)))); { /* * clear loop exit condition, ins_evt/rm_evt checks will * set it to 1 while next_cpu_cmd returns a CPU with events */ aml_append(while_ctx, aml_store(zero, has_event)); aml_append(while_ctx, aml_store(uid, cpu_selector)); aml_append(while_ctx, aml_store(next_cpu_cmd, cpu_cmd)); /* * wrap around case, scan is complete, exit loop. * It happens since events are not cleared in scan loop, * so next_cpu_cmd continues to find already processed CPUs */ ifctx = aml_if(aml_lless(cpu_data, uid)); { aml_append(ifctx, aml_break()); } aml_append(while_ctx, ifctx); /* * if CPU_ADDED_LIST is full, exit inner loop and process * collected CPUs */ ifctx = aml_if( aml_equal(num_added_cpus, aml_int(max_cpus_per_pass))); { aml_append(ifctx, aml_store(one, has_job)); aml_append(ifctx, aml_break()); } aml_append(while_ctx, ifctx); aml_append(while_ctx, aml_store(cpu_data, uid)); ifctx = aml_if(aml_equal(ins_evt, one)); { /* cache added CPUs to Notify/Wakeup later */ aml_append(ifctx, aml_store(uid, aml_index(new_cpus, num_added_cpus))); aml_append(ifctx, aml_increment(num_added_cpus)); aml_append(ifctx, aml_store(one, has_event)); } aml_append(while_ctx, ifctx); else_ctx = aml_else(); ifctx = aml_if(aml_equal(rm_evt, one)); { aml_append(ifctx, aml_call2(CPU_NOTIFY_METHOD, uid, eject_req)); aml_append(ifctx, aml_store(one, rm_evt)); aml_append(ifctx, aml_store(one, has_event)); } aml_append(else_ctx, ifctx); aml_append(while_ctx, else_ctx); aml_append(while_ctx, aml_increment(uid)); } aml_append(while_ctx2, while_ctx); /* * in case FW negotiated ICH9_LPC_SMI_F_CPU_HOTPLUG_BIT, * make upcall to FW, so it can pull in new CPUs before * OS is notified and wakes them up */ if (opts.smi_path) { ifctx = aml_if(aml_lgreater(num_added_cpus, zero)); { aml_append(ifctx, aml_store(aml_int(OVMF_CPUHP_SMI_CMD), aml_name("%s", opts.smi_path))); } aml_append(while_ctx2, ifctx); } /* Notify OSPM about new CPUs and clear insert events */ aml_append(while_ctx2, aml_store(zero, cpu_idx)); while_ctx = aml_while(aml_lless(cpu_idx, num_added_cpus)); { aml_append(while_ctx, aml_store(aml_derefof(aml_index(new_cpus, cpu_idx)), uid)); aml_append(while_ctx, aml_call2(CPU_NOTIFY_METHOD, uid, dev_chk)); aml_append(while_ctx, aml_store(uid, aml_debug())); aml_append(while_ctx, aml_store(uid, cpu_selector)); aml_append(while_ctx, aml_store(one, ins_evt)); aml_append(while_ctx, aml_increment(cpu_idx)); } aml_append(while_ctx2, while_ctx); /* * If another batch is needed, then it will resume scanning * exactly at -- and not after -- the last CPU that's currently * in CPU_ADDED_LIST. In other words, the last CPU in * CPU_ADDED_LIST is going to be re-checked. That's OK: we've * just cleared the insert event for *all* CPUs in * CPU_ADDED_LIST, including the last one. So the scan will * simply seek past it. */ } aml_append(method, while_ctx2); aml_append(method, aml_release(ctrl_lock)); } aml_append(cpus_dev, method); method = aml_method(CPU_OST_METHOD, 4, AML_SERIALIZED); { Aml *uid = aml_arg(0); Aml *ev_cmd = aml_int(CPHP_OST_EVENT_CMD); Aml *st_cmd = aml_int(CPHP_OST_STATUS_CMD); aml_append(method, aml_acquire(ctrl_lock, 0xFFFF)); aml_append(method, aml_store(uid, cpu_selector)); aml_append(method, aml_store(ev_cmd, cpu_cmd)); aml_append(method, aml_store(aml_arg(1), cpu_data)); aml_append(method, aml_store(st_cmd, cpu_cmd)); aml_append(method, aml_store(aml_arg(2), cpu_data)); aml_append(method, aml_release(ctrl_lock)); } aml_append(cpus_dev, method); /* build Processor object for each processor */ for (i = 0; i < arch_ids->len; i++) { Aml *dev; Aml *uid = aml_int(i); GArray *madt_buf = g_array_new(0, 1, 1); int arch_id = arch_ids->cpus[i].arch_id; if (opts.acpi_1_compatible && arch_id < 255) { dev = aml_processor(i, 0, 0, CPU_NAME_FMT, i); } else { dev = aml_device(CPU_NAME_FMT, i); aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007"))); aml_append(dev, aml_name_decl("_UID", uid)); } method = aml_method("_STA", 0, AML_SERIALIZED); aml_append(method, aml_return(aml_call1(CPU_STS_METHOD, uid))); aml_append(dev, method); /* build _MAT object */ assert(adevc && adevc->madt_cpu); adevc->madt_cpu(adev, i, arch_ids, madt_buf); switch (madt_buf->data[0]) { case ACPI_APIC_PROCESSOR: { AcpiMadtProcessorApic *apic = (void *)madt_buf->data; apic->flags = cpu_to_le32(1); break; } case ACPI_APIC_LOCAL_X2APIC: { AcpiMadtProcessorX2Apic *apic = (void *)madt_buf->data; apic->flags = cpu_to_le32(1); break; } default: assert(0); } aml_append(dev, aml_name_decl("_MAT", aml_buffer(madt_buf->len, (uint8_t *)madt_buf->data))); g_array_free(madt_buf, true); if (CPU(arch_ids->cpus[i].cpu) != first_cpu) { method = aml_method("_EJ0", 1, AML_NOTSERIALIZED); aml_append(method, aml_call1(CPU_EJECT_METHOD, uid)); aml_append(dev, method); } method = aml_method("_OST", 3, AML_SERIALIZED); aml_append(method, aml_call4(CPU_OST_METHOD, uid, aml_arg(0), aml_arg(1), aml_arg(2)) ); aml_append(dev, method); /* Linux guests discard SRAT info for non-present CPUs * as a result _PXM is required for all CPUs which might * be hot-plugged. For simplicity, add it for all CPUs. */ if (arch_ids->cpus[i].props.has_node_id) { aml_append(dev, aml_name_decl("_PXM", aml_int(arch_ids->cpus[i].props.node_id))); } aml_append(cpus_dev, dev); } } aml_append(sb_scope, cpus_dev); aml_append(table, sb_scope); method = aml_method(event_handler_method, 0, AML_NOTSERIALIZED); aml_append(method, aml_call0("\\_SB.CPUS." CPU_SCAN_METHOD)); aml_append(table, method); g_free(cphp_res_path); }