/* * ARM AMBA PrimeCell PL031 RTC * * Copyright (c) 2007 CodeSourcery * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include "hw.h" #include "primecell.h" #include "qemu-timer.h" //#define DEBUG_PL031 #ifdef DEBUG_PL031 #define DPRINTF(fmt, ...) \ do { printf("pl031: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do {} while(0) #endif #define RTC_DR 0x00 /* Data read register */ #define RTC_MR 0x04 /* Match register */ #define RTC_LR 0x08 /* Data load register */ #define RTC_CR 0x0c /* Control register */ #define RTC_IMSC 0x10 /* Interrupt mask and set register */ #define RTC_RIS 0x14 /* Raw interrupt status register */ #define RTC_MIS 0x18 /* Masked interrupt status register */ #define RTC_ICR 0x1c /* Interrupt clear register */ typedef struct { QEMUTimer *timer; qemu_irq irq; uint32_t tick_offset; uint32_t mr; uint32_t lr; uint32_t cr; uint32_t im; uint32_t is; } pl031_state; static const unsigned char pl031_id[] = { 0x31, 0x10, 0x14, 0x00, /* Device ID */ 0x0d, 0xf0, 0x05, 0xb1 /* Cell ID */ }; static void pl031_update(pl031_state *s) { qemu_set_irq(s->irq, s->is & s->im); } static void pl031_interrupt(void * opaque) { pl031_state *s = (pl031_state *)opaque; s->im = 1; DPRINTF("Alarm raised\n"); pl031_update(s); } static uint32_t pl031_get_count(pl031_state *s) { /* This assumes qemu_get_clock returns the time since the machine was created. */ return s->tick_offset + qemu_get_clock(vm_clock) / ticks_per_sec; } static void pl031_set_alarm(pl031_state *s) { int64_t now; uint32_t ticks; now = qemu_get_clock(vm_clock); ticks = s->tick_offset + now / ticks_per_sec; /* The timer wraps around. This subtraction also wraps in the same way, and gives correct results when alarm < now_ticks. */ ticks = s->mr - ticks; DPRINTF("Alarm set in %ud ticks\n", ticks); if (ticks == 0) { qemu_del_timer(s->timer); pl031_interrupt(s); } else { qemu_mod_timer(s->timer, now + (int64_t)ticks * ticks_per_sec); } } static uint32_t pl031_read(void *opaque, target_phys_addr_t offset) { pl031_state *s = (pl031_state *)opaque; if (offset >= 0xfe0 && offset < 0x1000) return pl031_id[(offset - 0xfe0) >> 2]; switch (offset) { case RTC_DR: return pl031_get_count(s); case RTC_MR: return s->mr; case RTC_IMSC: return s->im; case RTC_RIS: return s->is; case RTC_LR: return s->lr; case RTC_CR: /* RTC is permanently enabled. */ return 1; case RTC_MIS: return s->is & s->im; case RTC_ICR: fprintf(stderr, "qemu: pl031_read: Unexpected offset 0x%x\n", (int)offset); break; default: hw_error("pl031_read: Bad offset 0x%x\n", (int)offset); break; } return 0; } static void pl031_write(void * opaque, target_phys_addr_t offset, uint32_t value) { pl031_state *s = (pl031_state *)opaque; switch (offset) { case RTC_LR: s->tick_offset += value - pl031_get_count(s); pl031_set_alarm(s); break; case RTC_MR: s->mr = value; pl031_set_alarm(s); break; case RTC_IMSC: s->im = value & 1; DPRINTF("Interrupt mask %d\n", s->im); pl031_update(s); break; case RTC_ICR: /* The PL031 documentation (DDI0224B) states that the interupt is cleared when bit 0 of the written value is set. However the arm926e documentation (DDI0287B) states that the interrupt is cleared when any value is written. */ DPRINTF("Interrupt cleared"); s->is = 0; pl031_update(s); break; case RTC_CR: /* Written value is ignored. */ break; case RTC_DR: case RTC_MIS: case RTC_RIS: fprintf(stderr, "qemu: pl031_write: Unexpected offset 0x%x\n", (int)offset); break; default: hw_error("pl031_write: Bad offset 0x%x\n", (int)offset); break; } } static CPUWriteMemoryFunc * pl031_writefn[] = { pl031_write, pl031_write, pl031_write }; static CPUReadMemoryFunc * pl031_readfn[] = { pl031_read, pl031_read, pl031_read }; void pl031_init(uint32_t base, qemu_irq irq) { int iomemtype; pl031_state *s; struct tm tm; s = qemu_mallocz(sizeof(pl031_state)); iomemtype = cpu_register_io_memory(0, pl031_readfn, pl031_writefn, s); if (iomemtype == -1) { hw_error("pl031_init: Can't register I/O memory\n"); } cpu_register_physical_memory(base, 0x00001000, iomemtype); s->irq = irq; /* ??? We assume vm_clock is zero at this point. */ qemu_get_timedate(&tm, 0); s->tick_offset = mktimegm(&tm); s->timer = qemu_new_timer(vm_clock, pl031_interrupt, s); }