/* * PXA270-based Clamshell PDA platforms. * * Copyright (c) 2006 Openedhand Ltd. * Written by Andrzej Zaborowski * * This code is licensed under the GNU GPL v2. */ #include "hw.h" #include "pxa.h" #include "arm-misc.h" #include "sysemu.h" #include "pcmcia.h" #include "i2c.h" #include "flash.h" #include "qemu-timer.h" #include "devices.h" #include "sharpsl.h" #include "console.h" #include "block.h" #include "audio/audio.h" #include "boards.h" #define spitz_printf(format, ...) \ fprintf(stderr, "%s: " format, __FUNCTION__, ##__VA_ARGS__) #undef REG_FMT #if TARGET_PHYS_ADDR_BITS == 32 #define REG_FMT "0x%02x" #else #define REG_FMT "0x%02lx" #endif /* Spitz Flash */ #define FLASH_BASE 0x0c000000 #define FLASH_ECCLPLB 0x00 /* Line parity 7 - 0 bit */ #define FLASH_ECCLPUB 0x04 /* Line parity 15 - 8 bit */ #define FLASH_ECCCP 0x08 /* Column parity 5 - 0 bit */ #define FLASH_ECCCNTR 0x0c /* ECC byte counter */ #define FLASH_ECCCLRR 0x10 /* Clear ECC */ #define FLASH_FLASHIO 0x14 /* Flash I/O */ #define FLASH_FLASHCTL 0x18 /* Flash Control */ #define FLASHCTL_CE0 (1 << 0) #define FLASHCTL_CLE (1 << 1) #define FLASHCTL_ALE (1 << 2) #define FLASHCTL_WP (1 << 3) #define FLASHCTL_CE1 (1 << 4) #define FLASHCTL_RYBY (1 << 5) #define FLASHCTL_NCE (FLASHCTL_CE0 | FLASHCTL_CE1) struct sl_nand_s { target_phys_addr_t target_base; struct nand_flash_s *nand; uint8_t ctl; struct ecc_state_s ecc; }; static uint32_t sl_readb(void *opaque, target_phys_addr_t addr) { struct sl_nand_s *s = (struct sl_nand_s *) opaque; int ryby; addr -= s->target_base; switch (addr) { #define BSHR(byte, from, to) ((s->ecc.lp[byte] >> (from - to)) & (1 << to)) case FLASH_ECCLPLB: return BSHR(0, 4, 0) | BSHR(0, 5, 2) | BSHR(0, 6, 4) | BSHR(0, 7, 6) | BSHR(1, 4, 1) | BSHR(1, 5, 3) | BSHR(1, 6, 5) | BSHR(1, 7, 7); #define BSHL(byte, from, to) ((s->ecc.lp[byte] << (to - from)) & (1 << to)) case FLASH_ECCLPUB: return BSHL(0, 0, 0) | BSHL(0, 1, 2) | BSHL(0, 2, 4) | BSHL(0, 3, 6) | BSHL(1, 0, 1) | BSHL(1, 1, 3) | BSHL(1, 2, 5) | BSHL(1, 3, 7); case FLASH_ECCCP: return s->ecc.cp; case FLASH_ECCCNTR: return s->ecc.count & 0xff; case FLASH_FLASHCTL: nand_getpins(s->nand, &ryby); if (ryby) return s->ctl | FLASHCTL_RYBY; else return s->ctl; case FLASH_FLASHIO: return ecc_digest(&s->ecc, nand_getio(s->nand)); default: spitz_printf("Bad register offset " REG_FMT "\n", addr); } return 0; } static uint32_t sl_readl(void *opaque, target_phys_addr_t addr) { struct sl_nand_s *s = (struct sl_nand_s *) opaque; addr -= s->target_base; if (addr == FLASH_FLASHIO) return ecc_digest(&s->ecc, nand_getio(s->nand)) | (ecc_digest(&s->ecc, nand_getio(s->nand)) << 16); return sl_readb(opaque, addr); } static void sl_writeb(void *opaque, target_phys_addr_t addr, uint32_t value) { struct sl_nand_s *s = (struct sl_nand_s *) opaque; addr -= s->target_base; switch (addr) { case FLASH_ECCCLRR: /* Value is ignored. */ ecc_reset(&s->ecc); break; case FLASH_FLASHCTL: s->ctl = value & 0xff & ~FLASHCTL_RYBY; nand_setpins(s->nand, s->ctl & FLASHCTL_CLE, s->ctl & FLASHCTL_ALE, s->ctl & FLASHCTL_NCE, s->ctl & FLASHCTL_WP, 0); break; case FLASH_FLASHIO: nand_setio(s->nand, ecc_digest(&s->ecc, value & 0xff)); break; default: spitz_printf("Bad register offset " REG_FMT "\n", addr); } } static void sl_save(QEMUFile *f, void *opaque) { struct sl_nand_s *s = (struct sl_nand_s *) opaque; qemu_put_8s(f, &s->ctl); ecc_put(f, &s->ecc); } static int sl_load(QEMUFile *f, void *opaque, int version_id) { struct sl_nand_s *s = (struct sl_nand_s *) opaque; qemu_get_8s(f, &s->ctl); ecc_get(f, &s->ecc); return 0; } enum { FLASH_128M, FLASH_1024M, }; static void sl_flash_register(struct pxa2xx_state_s *cpu, int size) { int iomemtype; struct sl_nand_s *s; CPUReadMemoryFunc *sl_readfn[] = { sl_readb, sl_readb, sl_readl, }; CPUWriteMemoryFunc *sl_writefn[] = { sl_writeb, sl_writeb, sl_writeb, }; s = (struct sl_nand_s *) qemu_mallocz(sizeof(struct sl_nand_s)); s->target_base = FLASH_BASE; s->ctl = 0; if (size == FLASH_128M) s->nand = nand_init(NAND_MFR_SAMSUNG, 0x73); else if (size == FLASH_1024M) s->nand = nand_init(NAND_MFR_SAMSUNG, 0xf1); iomemtype = cpu_register_io_memory(0, sl_readfn, sl_writefn, s); cpu_register_physical_memory(s->target_base, 0x40, iomemtype); register_savevm("sl_flash", 0, 0, sl_save, sl_load, s); } /* Spitz Keyboard */ #define SPITZ_KEY_STROBE_NUM 11 #define SPITZ_KEY_SENSE_NUM 7 static const int spitz_gpio_key_sense[SPITZ_KEY_SENSE_NUM] = { 12, 17, 91, 34, 36, 38, 39 }; static const int spitz_gpio_key_strobe[SPITZ_KEY_STROBE_NUM] = { 88, 23, 24, 25, 26, 27, 52, 103, 107, 108, 114 }; /* Eighth additional row maps the special keys */ static int spitz_keymap[SPITZ_KEY_SENSE_NUM + 1][SPITZ_KEY_STROBE_NUM] = { { 0x1d, 0x02, 0x04, 0x06, 0x07, 0x08, 0x0a, 0x0b, 0x0e, 0x3f, 0x40 }, { -1 , 0x03, 0x05, 0x13, 0x15, 0x09, 0x17, 0x18, 0x19, 0x41, 0x42 }, { 0x0f, 0x10, 0x12, 0x14, 0x22, 0x16, 0x24, 0x25, -1 , -1 , -1 }, { 0x3c, 0x11, 0x1f, 0x21, 0x2f, 0x23, 0x32, 0x26, -1 , 0x36, -1 }, { 0x3b, 0x1e, 0x20, 0x2e, 0x30, 0x31, 0x34, -1 , 0x1c, 0x2a, -1 }, { 0x44, 0x2c, 0x2d, 0x0c, 0x39, 0x33, -1 , 0x48, -1 , -1 , 0x38 }, { 0x37, 0x3d, -1 , 0x45, 0x57, 0x58, 0x4b, 0x50, 0x4d, -1 , -1 }, { 0x52, 0x43, 0x01, 0x47, 0x49, -1 , -1 , -1 , -1 , -1 , -1 }, }; #define SPITZ_GPIO_AK_INT 13 /* Remote control */ #define SPITZ_GPIO_SYNC 16 /* Sync button */ #define SPITZ_GPIO_ON_KEY 95 /* Power button */ #define SPITZ_GPIO_SWA 97 /* Lid */ #define SPITZ_GPIO_SWB 96 /* Tablet mode */ /* The special buttons are mapped to unused keys */ static const int spitz_gpiomap[5] = { SPITZ_GPIO_AK_INT, SPITZ_GPIO_SYNC, SPITZ_GPIO_ON_KEY, SPITZ_GPIO_SWA, SPITZ_GPIO_SWB, }; static int spitz_gpio_invert[5] = { 0, 0, 0, 0, 0, }; struct spitz_keyboard_s { qemu_irq sense[SPITZ_KEY_SENSE_NUM]; qemu_irq *strobe; qemu_irq gpiomap[5]; int keymap[0x80]; uint16_t keyrow[SPITZ_KEY_SENSE_NUM]; uint16_t strobe_state; uint16_t sense_state; uint16_t pre_map[0x100]; uint16_t modifiers; uint16_t imodifiers; uint8_t fifo[16]; int fifopos, fifolen; QEMUTimer *kbdtimer; }; static void spitz_keyboard_sense_update(struct spitz_keyboard_s *s) { int i; uint16_t strobe, sense = 0; for (i = 0; i < SPITZ_KEY_SENSE_NUM; i ++) { strobe = s->keyrow[i] & s->strobe_state; if (strobe) { sense |= 1 << i; if (!(s->sense_state & (1 << i))) qemu_irq_raise(s->sense[i]); } else if (s->sense_state & (1 << i)) qemu_irq_lower(s->sense[i]); } s->sense_state = sense; } static void spitz_keyboard_strobe(void *opaque, int line, int level) { struct spitz_keyboard_s *s = (struct spitz_keyboard_s *) opaque; if (level) s->strobe_state |= 1 << line; else s->strobe_state &= ~(1 << line); spitz_keyboard_sense_update(s); } static void spitz_keyboard_keydown(struct spitz_keyboard_s *s, int keycode) { int spitz_keycode = s->keymap[keycode & 0x7f]; if (spitz_keycode == -1) return; /* Handle the additional keys */ if ((spitz_keycode >> 4) == SPITZ_KEY_SENSE_NUM) { qemu_set_irq(s->gpiomap[spitz_keycode & 0xf], (keycode < 0x80) ^ spitz_gpio_invert[spitz_keycode & 0xf]); return; } if (keycode & 0x80) s->keyrow[spitz_keycode >> 4] &= ~(1 << (spitz_keycode & 0xf)); else s->keyrow[spitz_keycode >> 4] |= 1 << (spitz_keycode & 0xf); spitz_keyboard_sense_update(s); } #define SHIFT (1 << 7) #define CTRL (1 << 8) #define FN (1 << 9) #define QUEUE_KEY(c) s->fifo[(s->fifopos + s->fifolen ++) & 0xf] = c static void spitz_keyboard_handler(struct spitz_keyboard_s *s, int keycode) { uint16_t code; int mapcode; switch (keycode) { case 0x2a: /* Left Shift */ s->modifiers |= 1; break; case 0xaa: s->modifiers &= ~1; break; case 0x36: /* Right Shift */ s->modifiers |= 2; break; case 0xb6: s->modifiers &= ~2; break; case 0x1d: /* Control */ s->modifiers |= 4; break; case 0x9d: s->modifiers &= ~4; break; case 0x38: /* Alt */ s->modifiers |= 8; break; case 0xb8: s->modifiers &= ~8; break; } code = s->pre_map[mapcode = ((s->modifiers & 3) ? (keycode | SHIFT) : (keycode & ~SHIFT))]; if (code != mapcode) { #if 0 if ((code & SHIFT) && !(s->modifiers & 1)) QUEUE_KEY(0x2a | (keycode & 0x80)); if ((code & CTRL ) && !(s->modifiers & 4)) QUEUE_KEY(0x1d | (keycode & 0x80)); if ((code & FN ) && !(s->modifiers & 8)) QUEUE_KEY(0x38 | (keycode & 0x80)); if ((code & FN ) && (s->modifiers & 1)) QUEUE_KEY(0x2a | (~keycode & 0x80)); if ((code & FN ) && (s->modifiers & 2)) QUEUE_KEY(0x36 | (~keycode & 0x80)); #else if (keycode & 0x80) { if ((s->imodifiers & 1 ) && !(s->modifiers & 1)) QUEUE_KEY(0x2a | 0x80); if ((s->imodifiers & 4 ) && !(s->modifiers & 4)) QUEUE_KEY(0x1d | 0x80); if ((s->imodifiers & 8 ) && !(s->modifiers & 8)) QUEUE_KEY(0x38 | 0x80); if ((s->imodifiers & 0x10) && (s->modifiers & 1)) QUEUE_KEY(0x2a); if ((s->imodifiers & 0x20) && (s->modifiers & 2)) QUEUE_KEY(0x36); s->imodifiers = 0; } else { if ((code & SHIFT) && !((s->modifiers | s->imodifiers) & 1)) { QUEUE_KEY(0x2a); s->imodifiers |= 1; } if ((code & CTRL ) && !((s->modifiers | s->imodifiers) & 4)) { QUEUE_KEY(0x1d); s->imodifiers |= 4; } if ((code & FN ) && !((s->modifiers | s->imodifiers) & 8)) { QUEUE_KEY(0x38); s->imodifiers |= 8; } if ((code & FN ) && (s->modifiers & 1) && !(s->imodifiers & 0x10)) { QUEUE_KEY(0x2a | 0x80); s->imodifiers |= 0x10; } if ((code & FN ) && (s->modifiers & 2) && !(s->imodifiers & 0x20)) { QUEUE_KEY(0x36 | 0x80); s->imodifiers |= 0x20; } } #endif } QUEUE_KEY((code & 0x7f) | (keycode & 0x80)); } static void spitz_keyboard_tick(void *opaque) { struct spitz_keyboard_s *s = (struct spitz_keyboard_s *) opaque; if (s->fifolen) { spitz_keyboard_keydown(s, s->fifo[s->fifopos ++]); s->fifolen --; if (s->fifopos >= 16) s->fifopos = 0; } qemu_mod_timer(s->kbdtimer, qemu_get_clock(vm_clock) + ticks_per_sec / 32); } static void spitz_keyboard_pre_map(struct spitz_keyboard_s *s) { int i; for (i = 0; i < 0x100; i ++) s->pre_map[i] = i; s->pre_map[0x02 | SHIFT ] = 0x02 | SHIFT; /* exclam */ s->pre_map[0x28 | SHIFT ] = 0x03 | SHIFT; /* quotedbl */ s->pre_map[0x04 | SHIFT ] = 0x04 | SHIFT; /* numbersign */ s->pre_map[0x05 | SHIFT ] = 0x05 | SHIFT; /* dollar */ s->pre_map[0x06 | SHIFT ] = 0x06 | SHIFT; /* percent */ s->pre_map[0x08 | SHIFT ] = 0x07 | SHIFT; /* ampersand */ s->pre_map[0x28 ] = 0x08 | SHIFT; /* apostrophe */ s->pre_map[0x0a | SHIFT ] = 0x09 | SHIFT; /* parenleft */ s->pre_map[0x0b | SHIFT ] = 0x0a | SHIFT; /* parenright */ s->pre_map[0x29 | SHIFT ] = 0x0b | SHIFT; /* asciitilde */ s->pre_map[0x03 | SHIFT ] = 0x0c | SHIFT; /* at */ s->pre_map[0xd3 ] = 0x0e | FN; /* Delete */ s->pre_map[0x3a ] = 0x0f | FN; /* Caps_Lock */ s->pre_map[0x07 | SHIFT ] = 0x11 | FN; /* asciicircum */ s->pre_map[0x0d ] = 0x12 | FN; /* equal */ s->pre_map[0x0d | SHIFT ] = 0x13 | FN; /* plus */ s->pre_map[0x1a ] = 0x14 | FN; /* bracketleft */ s->pre_map[0x1b ] = 0x15 | FN; /* bracketright */ s->pre_map[0x1a | SHIFT ] = 0x16 | FN; /* braceleft */ s->pre_map[0x1b | SHIFT ] = 0x17 | FN; /* braceright */ s->pre_map[0x27 ] = 0x22 | FN; /* semicolon */ s->pre_map[0x27 | SHIFT ] = 0x23 | FN; /* colon */ s->pre_map[0x09 | SHIFT ] = 0x24 | FN; /* asterisk */ s->pre_map[0x2b ] = 0x25 | FN; /* backslash */ s->pre_map[0x2b | SHIFT ] = 0x26 | FN; /* bar */ s->pre_map[0x0c | SHIFT ] = 0x30 | FN; /* underscore */ s->pre_map[0x33 | SHIFT ] = 0x33 | FN; /* less */ s->pre_map[0x35 ] = 0x33 | SHIFT; /* slash */ s->pre_map[0x34 | SHIFT ] = 0x34 | FN; /* greater */ s->pre_map[0x35 | SHIFT ] = 0x34 | SHIFT; /* question */ s->pre_map[0x49 ] = 0x48 | FN; /* Page_Up */ s->pre_map[0x51 ] = 0x50 | FN; /* Page_Down */ s->modifiers = 0; s->imodifiers = 0; s->fifopos = 0; s->fifolen = 0; s->kbdtimer = qemu_new_timer(vm_clock, spitz_keyboard_tick, s); spitz_keyboard_tick(s); } #undef SHIFT #undef CTRL #undef FN static void spitz_keyboard_save(QEMUFile *f, void *opaque) { struct spitz_keyboard_s *s = (struct spitz_keyboard_s *) opaque; int i; qemu_put_be16s(f, &s->sense_state); qemu_put_be16s(f, &s->strobe_state); for (i = 0; i < 5; i ++) qemu_put_byte(f, spitz_gpio_invert[i]); } static int spitz_keyboard_load(QEMUFile *f, void *opaque, int version_id) { struct spitz_keyboard_s *s = (struct spitz_keyboard_s *) opaque; int i; qemu_get_be16s(f, &s->sense_state); qemu_get_be16s(f, &s->strobe_state); for (i = 0; i < 5; i ++) spitz_gpio_invert[i] = qemu_get_byte(f); /* Release all pressed keys */ memset(s->keyrow, 0, sizeof(s->keyrow)); spitz_keyboard_sense_update(s); s->modifiers = 0; s->imodifiers = 0; s->fifopos = 0; s->fifolen = 0; return 0; } static void spitz_keyboard_register(struct pxa2xx_state_s *cpu) { int i, j; struct spitz_keyboard_s *s; s = (struct spitz_keyboard_s *) qemu_mallocz(sizeof(struct spitz_keyboard_s)); memset(s, 0, sizeof(struct spitz_keyboard_s)); for (i = 0; i < 0x80; i ++) s->keymap[i] = -1; for (i = 0; i < SPITZ_KEY_SENSE_NUM + 1; i ++) for (j = 0; j < SPITZ_KEY_STROBE_NUM; j ++) if (spitz_keymap[i][j] != -1) s->keymap[spitz_keymap[i][j]] = (i << 4) | j; for (i = 0; i < SPITZ_KEY_SENSE_NUM; i ++) s->sense[i] = pxa2xx_gpio_in_get(cpu->gpio)[spitz_gpio_key_sense[i]]; for (i = 0; i < 5; i ++) s->gpiomap[i] = pxa2xx_gpio_in_get(cpu->gpio)[spitz_gpiomap[i]]; s->strobe = qemu_allocate_irqs(spitz_keyboard_strobe, s, SPITZ_KEY_STROBE_NUM); for (i = 0; i < SPITZ_KEY_STROBE_NUM; i ++) pxa2xx_gpio_out_set(cpu->gpio, spitz_gpio_key_strobe[i], s->strobe[i]); spitz_keyboard_pre_map(s); qemu_add_kbd_event_handler((QEMUPutKBDEvent *) spitz_keyboard_handler, s); register_savevm("spitz_keyboard", 0, 0, spitz_keyboard_save, spitz_keyboard_load, s); } /* LCD backlight controller */ #define LCDTG_RESCTL 0x00 #define LCDTG_PHACTRL 0x01 #define LCDTG_DUTYCTRL 0x02 #define LCDTG_POWERREG0 0x03 #define LCDTG_POWERREG1 0x04 #define LCDTG_GPOR3 0x05 #define LCDTG_PICTRL 0x06 #define LCDTG_POLCTRL 0x07 static int bl_intensity, bl_power; static void spitz_bl_update(struct pxa2xx_state_s *s) { if (bl_power && bl_intensity) spitz_printf("LCD Backlight now at %i/63\n", bl_intensity); else spitz_printf("LCD Backlight now off\n"); } static inline void spitz_bl_bit5(void *opaque, int line, int level) { int prev = bl_intensity; if (level) bl_intensity &= ~0x20; else bl_intensity |= 0x20; if (bl_power && prev != bl_intensity) spitz_bl_update((struct pxa2xx_state_s *) opaque); } static inline void spitz_bl_power(void *opaque, int line, int level) { bl_power = !!level; spitz_bl_update((struct pxa2xx_state_s *) opaque); } static void spitz_lcdtg_dac_put(void *opaque, uint8_t cmd) { int addr, value; addr = cmd >> 5; value = cmd & 0x1f; switch (addr) { case LCDTG_RESCTL: if (value) spitz_printf("LCD in QVGA mode\n"); else spitz_printf("LCD in VGA mode\n"); break; case LCDTG_DUTYCTRL: bl_intensity &= ~0x1f; bl_intensity |= value; if (bl_power) spitz_bl_update((struct pxa2xx_state_s *) opaque); break; case LCDTG_POWERREG0: /* Set common voltage to M62332FP */ break; } } /* SSP devices */ #define CORGI_SSP_PORT 2 #define SPITZ_GPIO_LCDCON_CS 53 #define SPITZ_GPIO_ADS7846_CS 14 #define SPITZ_GPIO_MAX1111_CS 20 #define SPITZ_GPIO_TP_INT 11 static int lcd_en, ads_en, max_en; static struct max111x_s *max1111; static struct ads7846_state_s *ads7846; /* "Demux" the signal based on current chipselect */ static uint32_t corgi_ssp_read(void *opaque) { if (lcd_en) return 0; if (ads_en) return ads7846_read(ads7846); if (max_en) return max111x_read(max1111); return 0; } static void corgi_ssp_write(void *opaque, uint32_t value) { if (lcd_en) spitz_lcdtg_dac_put(opaque, value); if (ads_en) ads7846_write(ads7846, value); if (max_en) max111x_write(max1111, value); } static void corgi_ssp_gpio_cs(void *opaque, int line, int level) { switch (line) { case 0: lcd_en = !level; break; case 1: ads_en = !level; break; case 2: max_en = !level; break; } } #define MAX1111_BATT_VOLT 1 #define MAX1111_BATT_TEMP 2 #define MAX1111_ACIN_VOLT 3 #define SPITZ_BATTERY_TEMP 0xe0 /* About 2.9V */ #define SPITZ_BATTERY_VOLT 0xd0 /* About 4.0V */ #define SPITZ_CHARGEON_ACIN 0x80 /* About 5.0V */ static void spitz_adc_temp_on(void *opaque, int line, int level) { if (!max1111) return; if (level) max111x_set_input(max1111, MAX1111_BATT_TEMP, SPITZ_BATTERY_TEMP); else max111x_set_input(max1111, MAX1111_BATT_TEMP, 0); } static void spitz_ssp_save(QEMUFile *f, void *opaque) { qemu_put_be32(f, lcd_en); qemu_put_be32(f, ads_en); qemu_put_be32(f, max_en); qemu_put_be32(f, bl_intensity); qemu_put_be32(f, bl_power); } static int spitz_ssp_load(QEMUFile *f, void *opaque, int version_id) { lcd_en = qemu_get_be32(f); ads_en = qemu_get_be32(f); max_en = qemu_get_be32(f); bl_intensity = qemu_get_be32(f); bl_power = qemu_get_be32(f); return 0; } static void spitz_ssp_attach(struct pxa2xx_state_s *cpu) { qemu_irq *chipselects; lcd_en = ads_en = max_en = 0; ads7846 = ads7846_init(pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_TP_INT]); max1111 = max1111_init(0); max111x_set_input(max1111, MAX1111_BATT_VOLT, SPITZ_BATTERY_VOLT); max111x_set_input(max1111, MAX1111_BATT_TEMP, 0); max111x_set_input(max1111, MAX1111_ACIN_VOLT, SPITZ_CHARGEON_ACIN); pxa2xx_ssp_attach(cpu->ssp[CORGI_SSP_PORT - 1], corgi_ssp_read, corgi_ssp_write, cpu); chipselects = qemu_allocate_irqs(corgi_ssp_gpio_cs, cpu, 3); pxa2xx_gpio_out_set(cpu->gpio, SPITZ_GPIO_LCDCON_CS, chipselects[0]); pxa2xx_gpio_out_set(cpu->gpio, SPITZ_GPIO_ADS7846_CS, chipselects[1]); pxa2xx_gpio_out_set(cpu->gpio, SPITZ_GPIO_MAX1111_CS, chipselects[2]); bl_intensity = 0x20; bl_power = 0; register_savevm("spitz_ssp", 0, 0, spitz_ssp_save, spitz_ssp_load, cpu); } /* CF Microdrive */ static void spitz_microdrive_attach(struct pxa2xx_state_s *cpu) { struct pcmcia_card_s *md; int index; BlockDriverState *bs; index = drive_get_index(IF_IDE, 0, 0); if (index == -1) return; bs = drives_table[index].bdrv; if (bdrv_is_inserted(bs) && !bdrv_is_removable(bs)) { md = dscm1xxxx_init(bs); pxa2xx_pcmcia_attach(cpu->pcmcia[1], md); } } /* Wm8750 and Max7310 on I2C */ #define AKITA_MAX_ADDR 0x18 #define SPITZ_WM_ADDRL 0x1b #define SPITZ_WM_ADDRH 0x1a #define SPITZ_GPIO_WM 5 #ifdef HAS_AUDIO static void spitz_wm8750_addr(void *opaque, int line, int level) { i2c_slave *wm = (i2c_slave *) opaque; if (level) i2c_set_slave_address(wm, SPITZ_WM_ADDRH); else i2c_set_slave_address(wm, SPITZ_WM_ADDRL); } #endif static void spitz_i2c_setup(struct pxa2xx_state_s *cpu) { /* Attach the CPU on one end of our I2C bus. */ i2c_bus *bus = pxa2xx_i2c_bus(cpu->i2c[0]); #ifdef HAS_AUDIO AudioState *audio; i2c_slave *wm; audio = AUD_init(); if (!audio) return; /* Attach a WM8750 to the bus */ wm = wm8750_init(bus, audio); spitz_wm8750_addr(wm, 0, 0); pxa2xx_gpio_out_set(cpu->gpio, SPITZ_GPIO_WM, qemu_allocate_irqs(spitz_wm8750_addr, wm, 1)[0]); /* .. and to the sound interface. */ cpu->i2s->opaque = wm; cpu->i2s->codec_out = wm8750_dac_dat; cpu->i2s->codec_in = wm8750_adc_dat; wm8750_data_req_set(wm, cpu->i2s->data_req, cpu->i2s); #endif } static void spitz_akita_i2c_setup(struct pxa2xx_state_s *cpu) { /* Attach a Max7310 to Akita I2C bus. */ i2c_set_slave_address(max7310_init(pxa2xx_i2c_bus(cpu->i2c[0])), AKITA_MAX_ADDR); } /* Other peripherals */ static void spitz_out_switch(void *opaque, int line, int level) { switch (line) { case 0: spitz_printf("Charging %s.\n", level ? "off" : "on"); break; case 1: spitz_printf("Discharging %s.\n", level ? "on" : "off"); break; case 2: spitz_printf("Green LED %s.\n", level ? "on" : "off"); break; case 3: spitz_printf("Orange LED %s.\n", level ? "on" : "off"); break; case 4: spitz_bl_bit5(opaque, line, level); break; case 5: spitz_bl_power(opaque, line, level); break; case 6: spitz_adc_temp_on(opaque, line, level); break; } } #define SPITZ_SCP_LED_GREEN 1 #define SPITZ_SCP_JK_B 2 #define SPITZ_SCP_CHRG_ON 3 #define SPITZ_SCP_MUTE_L 4 #define SPITZ_SCP_MUTE_R 5 #define SPITZ_SCP_CF_POWER 6 #define SPITZ_SCP_LED_ORANGE 7 #define SPITZ_SCP_JK_A 8 #define SPITZ_SCP_ADC_TEMP_ON 9 #define SPITZ_SCP2_IR_ON 1 #define SPITZ_SCP2_AKIN_PULLUP 2 #define SPITZ_SCP2_BACKLIGHT_CONT 7 #define SPITZ_SCP2_BACKLIGHT_ON 8 #define SPITZ_SCP2_MIC_BIAS 9 static void spitz_scoop_gpio_setup(struct pxa2xx_state_s *cpu, struct scoop_info_s *scp0, struct scoop_info_s *scp1) { qemu_irq *outsignals = qemu_allocate_irqs(spitz_out_switch, cpu, 8); scoop_gpio_out_set(scp0, SPITZ_SCP_CHRG_ON, outsignals[0]); scoop_gpio_out_set(scp0, SPITZ_SCP_JK_B, outsignals[1]); scoop_gpio_out_set(scp0, SPITZ_SCP_LED_GREEN, outsignals[2]); scoop_gpio_out_set(scp0, SPITZ_SCP_LED_ORANGE, outsignals[3]); if (scp1) { scoop_gpio_out_set(scp1, SPITZ_SCP2_BACKLIGHT_CONT, outsignals[4]); scoop_gpio_out_set(scp1, SPITZ_SCP2_BACKLIGHT_ON, outsignals[5]); } scoop_gpio_out_set(scp0, SPITZ_SCP_ADC_TEMP_ON, outsignals[6]); } #define SPITZ_GPIO_HSYNC 22 #define SPITZ_GPIO_SD_DETECT 9 #define SPITZ_GPIO_SD_WP 81 #define SPITZ_GPIO_ON_RESET 89 #define SPITZ_GPIO_BAT_COVER 90 #define SPITZ_GPIO_CF1_IRQ 105 #define SPITZ_GPIO_CF1_CD 94 #define SPITZ_GPIO_CF2_IRQ 106 #define SPITZ_GPIO_CF2_CD 93 static int spitz_hsync; static void spitz_lcd_hsync_handler(void *opaque, int line, int level) { struct pxa2xx_state_s *cpu = (struct pxa2xx_state_s *) opaque; qemu_set_irq(pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_HSYNC], spitz_hsync); spitz_hsync ^= 1; } static void spitz_gpio_setup(struct pxa2xx_state_s *cpu, int slots) { qemu_irq lcd_hsync; /* * Bad hack: We toggle the LCD hsync GPIO on every GPIO status * read to satisfy broken guests that poll-wait for hsync. * Simulating a real hsync event would be less practical and * wouldn't guarantee that a guest ever exits the loop. */ spitz_hsync = 0; lcd_hsync = qemu_allocate_irqs(spitz_lcd_hsync_handler, cpu, 1)[0]; pxa2xx_gpio_read_notifier(cpu->gpio, lcd_hsync); pxa2xx_lcd_vsync_notifier(cpu->lcd, lcd_hsync); /* MMC/SD host */ pxa2xx_mmci_handlers(cpu->mmc, pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_SD_WP], pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_SD_DETECT]); /* Battery lock always closed */ qemu_irq_raise(pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_BAT_COVER]); /* Handle reset */ pxa2xx_gpio_out_set(cpu->gpio, SPITZ_GPIO_ON_RESET, cpu->reset); /* PCMCIA signals: card's IRQ and Card-Detect */ if (slots >= 1) pxa2xx_pcmcia_set_irq_cb(cpu->pcmcia[0], pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_CF1_IRQ], pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_CF1_CD]); if (slots >= 2) pxa2xx_pcmcia_set_irq_cb(cpu->pcmcia[1], pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_CF2_IRQ], pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_CF2_CD]); /* Initialise the screen rotation related signals */ spitz_gpio_invert[3] = 0; /* Always open */ if (graphic_rotate) { /* Tablet mode */ spitz_gpio_invert[4] = 0; } else { /* Portrait mode */ spitz_gpio_invert[4] = 1; } qemu_set_irq(pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_SWA], spitz_gpio_invert[3]); qemu_set_irq(pxa2xx_gpio_in_get(cpu->gpio)[SPITZ_GPIO_SWB], spitz_gpio_invert[4]); } /* Board init. */ enum spitz_model_e { spitz, akita, borzoi, terrier }; #define SPITZ_RAM 0x04000000 #define SPITZ_ROM 0x00800000 static struct arm_boot_info spitz_binfo = { .loader_start = PXA2XX_SDRAM_BASE, .ram_size = 0x04000000, }; static void spitz_common_init(ram_addr_t ram_size, int vga_ram_size, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model, enum spitz_model_e model, int arm_id) { struct pxa2xx_state_s *cpu; struct scoop_info_s *scp0, *scp1 = NULL; if (!cpu_model) cpu_model = (model == terrier) ? "pxa270-c5" : "pxa270-c0"; /* Setup CPU & memory */ if (ram_size < SPITZ_RAM + SPITZ_ROM + PXA2XX_INTERNAL_SIZE) { fprintf(stderr, "This platform requires %i bytes of memory\n", SPITZ_RAM + SPITZ_ROM + PXA2XX_INTERNAL_SIZE); exit(1); } cpu = pxa270_init(spitz_binfo.ram_size, ds, cpu_model); sl_flash_register(cpu, (model == spitz) ? FLASH_128M : FLASH_1024M); cpu_register_physical_memory(0, SPITZ_ROM, qemu_ram_alloc(SPITZ_ROM) | IO_MEM_ROM); /* Setup peripherals */ spitz_keyboard_register(cpu); spitz_ssp_attach(cpu); scp0 = scoop_init(cpu, 0, 0x10800000); if (model != akita) { scp1 = scoop_init(cpu, 1, 0x08800040); } spitz_scoop_gpio_setup(cpu, scp0, scp1); spitz_gpio_setup(cpu, (model == akita) ? 1 : 2); spitz_i2c_setup(cpu); if (model == akita) spitz_akita_i2c_setup(cpu); if (model == terrier) /* A 6.0 GB microdrive is permanently sitting in CF slot 1. */ spitz_microdrive_attach(cpu); else if (model != akita) /* A 4.0 GB microdrive is permanently sitting in CF slot 1. */ spitz_microdrive_attach(cpu); /* Setup initial (reset) machine state */ cpu->env->regs[15] = spitz_binfo.loader_start; spitz_binfo.kernel_filename = kernel_filename; spitz_binfo.kernel_cmdline = kernel_cmdline; spitz_binfo.initrd_filename = initrd_filename; spitz_binfo.board_id = arm_id; arm_load_kernel(cpu->env, &spitz_binfo); sl_bootparam_write(SL_PXA_PARAM_BASE - PXA2XX_SDRAM_BASE); } static void spitz_init(ram_addr_t ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, spitz, 0x2c9); } static void borzoi_init(ram_addr_t ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, borzoi, 0x33f); } static void akita_init(ram_addr_t ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, akita, 0x2e8); } static void terrier_init(ram_addr_t ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { spitz_common_init(ram_size, vga_ram_size, ds, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, terrier, 0x33f); } QEMUMachine akitapda_machine = { "akita", "Akita PDA (PXA270)", akita_init, SPITZ_RAM + SPITZ_ROM + PXA2XX_INTERNAL_SIZE + RAMSIZE_FIXED, }; QEMUMachine spitzpda_machine = { "spitz", "Spitz PDA (PXA270)", spitz_init, SPITZ_RAM + SPITZ_ROM + PXA2XX_INTERNAL_SIZE + RAMSIZE_FIXED, }; QEMUMachine borzoipda_machine = { "borzoi", "Borzoi PDA (PXA270)", borzoi_init, SPITZ_RAM + SPITZ_ROM + PXA2XX_INTERNAL_SIZE + RAMSIZE_FIXED, }; QEMUMachine terrierpda_machine = { "terrier", "Terrier PDA (PXA270)", terrier_init, SPITZ_RAM + SPITZ_ROM + PXA2XX_INTERNAL_SIZE + RAMSIZE_FIXED, };