mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-26 21:10:42 +00:00
8269c01417
Since the only user, Arm MTE, always requires allocation, merge the get and alloc functions to always produce a non-null result. Also assume that the user has already checked page validity. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
581 lines
16 KiB
C
581 lines
16 KiB
C
/*
|
|
* User emulator execution
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "hw/core/tcg-cpu-ops.h"
|
|
#include "disas/disas.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg/tcg.h"
|
|
#include "qemu/bitops.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/translate-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/atomic128.h"
|
|
#include "trace/trace-root.h"
|
|
#include "tcg/tcg-ldst.h"
|
|
#include "internal.h"
|
|
|
|
__thread uintptr_t helper_retaddr;
|
|
|
|
//#define DEBUG_SIGNAL
|
|
|
|
/*
|
|
* Adjust the pc to pass to cpu_restore_state; return the memop type.
|
|
*/
|
|
MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
|
|
{
|
|
switch (helper_retaddr) {
|
|
default:
|
|
/*
|
|
* Fault during host memory operation within a helper function.
|
|
* The helper's host return address, saved here, gives us a
|
|
* pointer into the generated code that will unwind to the
|
|
* correct guest pc.
|
|
*/
|
|
*pc = helper_retaddr;
|
|
break;
|
|
|
|
case 0:
|
|
/*
|
|
* Fault during host memory operation within generated code.
|
|
* (Or, a unrelated bug within qemu, but we can't tell from here).
|
|
*
|
|
* We take the host pc from the signal frame. However, we cannot
|
|
* use that value directly. Within cpu_restore_state_from_tb, we
|
|
* assume PC comes from GETPC(), as used by the helper functions,
|
|
* so we adjust the address by -GETPC_ADJ to form an address that
|
|
* is within the call insn, so that the address does not accidentally
|
|
* match the beginning of the next guest insn. However, when the
|
|
* pc comes from the signal frame it points to the actual faulting
|
|
* host memory insn and not the return from a call insn.
|
|
*
|
|
* Therefore, adjust to compensate for what will be done later
|
|
* by cpu_restore_state_from_tb.
|
|
*/
|
|
*pc += GETPC_ADJ;
|
|
break;
|
|
|
|
case 1:
|
|
/*
|
|
* Fault during host read for translation, or loosely, "execution".
|
|
*
|
|
* The guest pc is already pointing to the start of the TB for which
|
|
* code is being generated. If the guest translator manages the
|
|
* page crossings correctly, this is exactly the correct address
|
|
* (and if the translator doesn't handle page boundaries correctly
|
|
* there's little we can do about that here). Therefore, do not
|
|
* trigger the unwinder.
|
|
*/
|
|
*pc = 0;
|
|
return MMU_INST_FETCH;
|
|
}
|
|
|
|
return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
}
|
|
|
|
/**
|
|
* handle_sigsegv_accerr_write:
|
|
* @cpu: the cpu context
|
|
* @old_set: the sigset_t from the signal ucontext_t
|
|
* @host_pc: the host pc, adjusted for the signal
|
|
* @guest_addr: the guest address of the fault
|
|
*
|
|
* Return true if the write fault has been handled, and should be re-tried.
|
|
*
|
|
* Note that it is important that we don't call page_unprotect() unless
|
|
* this is really a "write to nonwritable page" fault, because
|
|
* page_unprotect() assumes that if it is called for an access to
|
|
* a page that's writable this means we had two threads racing and
|
|
* another thread got there first and already made the page writable;
|
|
* so we will retry the access. If we were to call page_unprotect()
|
|
* for some other kind of fault that should really be passed to the
|
|
* guest, we'd end up in an infinite loop of retrying the faulting access.
|
|
*/
|
|
bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
|
|
uintptr_t host_pc, abi_ptr guest_addr)
|
|
{
|
|
switch (page_unprotect(guest_addr, host_pc)) {
|
|
case 0:
|
|
/*
|
|
* Fault not caused by a page marked unwritable to protect
|
|
* cached translations, must be the guest binary's problem.
|
|
*/
|
|
return false;
|
|
case 1:
|
|
/*
|
|
* Fault caused by protection of cached translation; TBs
|
|
* invalidated, so resume execution.
|
|
*/
|
|
return true;
|
|
case 2:
|
|
/*
|
|
* Fault caused by protection of cached translation, and the
|
|
* currently executing TB was modified and must be exited immediately.
|
|
*/
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
cpu_loop_exit_noexc(cpu);
|
|
/* NORETURN */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static int probe_access_internal(CPUArchState *env, target_ulong addr,
|
|
int fault_size, MMUAccessType access_type,
|
|
bool nonfault, uintptr_t ra)
|
|
{
|
|
int acc_flag;
|
|
bool maperr;
|
|
|
|
switch (access_type) {
|
|
case MMU_DATA_STORE:
|
|
acc_flag = PAGE_WRITE_ORG;
|
|
break;
|
|
case MMU_DATA_LOAD:
|
|
acc_flag = PAGE_READ;
|
|
break;
|
|
case MMU_INST_FETCH:
|
|
acc_flag = PAGE_EXEC;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (guest_addr_valid_untagged(addr)) {
|
|
int page_flags = page_get_flags(addr);
|
|
if (page_flags & acc_flag) {
|
|
return 0; /* success */
|
|
}
|
|
maperr = !(page_flags & PAGE_VALID);
|
|
} else {
|
|
maperr = true;
|
|
}
|
|
|
|
if (nonfault) {
|
|
return TLB_INVALID_MASK;
|
|
}
|
|
|
|
cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
|
|
}
|
|
|
|
int probe_access_flags(CPUArchState *env, target_ulong addr,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool nonfault, void **phost, uintptr_t ra)
|
|
{
|
|
int flags;
|
|
|
|
flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
|
|
*phost = flags ? NULL : g2h(env_cpu(env), addr);
|
|
return flags;
|
|
}
|
|
|
|
void *probe_access(CPUArchState *env, target_ulong addr, int size,
|
|
MMUAccessType access_type, int mmu_idx, uintptr_t ra)
|
|
{
|
|
int flags;
|
|
|
|
g_assert(-(addr | TARGET_PAGE_MASK) >= size);
|
|
flags = probe_access_internal(env, addr, size, access_type, false, ra);
|
|
g_assert(flags == 0);
|
|
|
|
return size ? g2h(env_cpu(env), addr) : NULL;
|
|
}
|
|
|
|
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
|
|
void **hostp)
|
|
{
|
|
int flags;
|
|
|
|
flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
|
|
g_assert(flags == 0);
|
|
|
|
if (hostp) {
|
|
*hostp = g2h_untagged(addr);
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
void page_reset_target_data(target_ulong start, target_ulong end)
|
|
{
|
|
#ifdef TARGET_PAGE_DATA_SIZE
|
|
target_ulong addr, len;
|
|
|
|
/*
|
|
* This function should never be called with addresses outside the
|
|
* guest address space. If this assert fires, it probably indicates
|
|
* a missing call to h2g_valid.
|
|
*/
|
|
assert(end - 1 <= GUEST_ADDR_MAX);
|
|
assert(start < end);
|
|
assert_memory_lock();
|
|
|
|
start = start & TARGET_PAGE_MASK;
|
|
end = TARGET_PAGE_ALIGN(end);
|
|
|
|
for (addr = start, len = end - start;
|
|
len != 0;
|
|
len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
|
|
PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
|
|
|
|
g_free(p->target_data);
|
|
p->target_data = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef TARGET_PAGE_DATA_SIZE
|
|
void *page_get_target_data(target_ulong address)
|
|
{
|
|
PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
|
|
void *ret = p->target_data;
|
|
|
|
if (!ret) {
|
|
ret = g_malloc0(TARGET_PAGE_DATA_SIZE);
|
|
p->target_data = ret;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* The softmmu versions of these helpers are in cputlb.c. */
|
|
|
|
/*
|
|
* Verify that we have passed the correct MemOp to the correct function.
|
|
*
|
|
* We could present one function to target code, and dispatch based on
|
|
* the MemOp, but so far we have worked hard to avoid an indirect function
|
|
* call along the memory path.
|
|
*/
|
|
static void validate_memop(MemOpIdx oi, MemOp expected)
|
|
{
|
|
#ifdef CONFIG_DEBUG_TCG
|
|
MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
|
|
assert(have == expected);
|
|
#endif
|
|
}
|
|
|
|
void helper_unaligned_ld(CPUArchState *env, target_ulong addr)
|
|
{
|
|
cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC());
|
|
}
|
|
|
|
void helper_unaligned_st(CPUArchState *env, target_ulong addr)
|
|
{
|
|
cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC());
|
|
}
|
|
|
|
static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr,
|
|
MemOpIdx oi, uintptr_t ra, MMUAccessType type)
|
|
{
|
|
MemOp mop = get_memop(oi);
|
|
int a_bits = get_alignment_bits(mop);
|
|
void *ret;
|
|
|
|
/* Enforce guest required alignment. */
|
|
if (unlikely(addr & ((1 << a_bits) - 1))) {
|
|
cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
|
|
}
|
|
|
|
ret = g2h(env_cpu(env), addr);
|
|
set_helper_retaddr(ra);
|
|
return ret;
|
|
}
|
|
|
|
uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
uint8_t ret;
|
|
|
|
validate_memop(oi, MO_UB);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
|
|
ret = ldub_p(haddr);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
|
|
return ret;
|
|
}
|
|
|
|
uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
uint16_t ret;
|
|
|
|
validate_memop(oi, MO_BEUW);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
|
|
ret = lduw_be_p(haddr);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
|
|
return ret;
|
|
}
|
|
|
|
uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
uint32_t ret;
|
|
|
|
validate_memop(oi, MO_BEUL);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
|
|
ret = ldl_be_p(haddr);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
|
|
return ret;
|
|
}
|
|
|
|
uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
uint64_t ret;
|
|
|
|
validate_memop(oi, MO_BEUQ);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
|
|
ret = ldq_be_p(haddr);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
|
|
return ret;
|
|
}
|
|
|
|
uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
uint16_t ret;
|
|
|
|
validate_memop(oi, MO_LEUW);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
|
|
ret = lduw_le_p(haddr);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
|
|
return ret;
|
|
}
|
|
|
|
uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
uint32_t ret;
|
|
|
|
validate_memop(oi, MO_LEUL);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
|
|
ret = ldl_le_p(haddr);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
|
|
return ret;
|
|
}
|
|
|
|
uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
uint64_t ret;
|
|
|
|
validate_memop(oi, MO_LEUQ);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
|
|
ret = ldq_le_p(haddr);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
|
|
return ret;
|
|
}
|
|
|
|
void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
|
|
validate_memop(oi, MO_UB);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
|
|
stb_p(haddr, val);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
|
|
}
|
|
|
|
void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
|
|
validate_memop(oi, MO_BEUW);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
|
|
stw_be_p(haddr, val);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
|
|
}
|
|
|
|
void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
|
|
validate_memop(oi, MO_BEUL);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
|
|
stl_be_p(haddr, val);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
|
|
}
|
|
|
|
void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
|
|
validate_memop(oi, MO_BEUQ);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
|
|
stq_be_p(haddr, val);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
|
|
}
|
|
|
|
void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
|
|
validate_memop(oi, MO_LEUW);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
|
|
stw_le_p(haddr, val);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
|
|
}
|
|
|
|
void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
|
|
validate_memop(oi, MO_LEUL);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
|
|
stl_le_p(haddr, val);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
|
|
}
|
|
|
|
void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
|
|
MemOpIdx oi, uintptr_t ra)
|
|
{
|
|
void *haddr;
|
|
|
|
validate_memop(oi, MO_LEUQ);
|
|
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
|
|
stq_le_p(haddr, val);
|
|
clear_helper_retaddr();
|
|
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
|
|
}
|
|
|
|
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
|
|
{
|
|
uint32_t ret;
|
|
|
|
set_helper_retaddr(1);
|
|
ret = ldub_p(g2h_untagged(ptr));
|
|
clear_helper_retaddr();
|
|
return ret;
|
|
}
|
|
|
|
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
|
|
{
|
|
uint32_t ret;
|
|
|
|
set_helper_retaddr(1);
|
|
ret = lduw_p(g2h_untagged(ptr));
|
|
clear_helper_retaddr();
|
|
return ret;
|
|
}
|
|
|
|
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
|
|
{
|
|
uint32_t ret;
|
|
|
|
set_helper_retaddr(1);
|
|
ret = ldl_p(g2h_untagged(ptr));
|
|
clear_helper_retaddr();
|
|
return ret;
|
|
}
|
|
|
|
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
|
|
{
|
|
uint64_t ret;
|
|
|
|
set_helper_retaddr(1);
|
|
ret = ldq_p(g2h_untagged(ptr));
|
|
clear_helper_retaddr();
|
|
return ret;
|
|
}
|
|
|
|
#include "ldst_common.c.inc"
|
|
|
|
/*
|
|
* Do not allow unaligned operations to proceed. Return the host address.
|
|
*
|
|
* @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
|
|
*/
|
|
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
|
|
MemOpIdx oi, int size, int prot,
|
|
uintptr_t retaddr)
|
|
{
|
|
MemOp mop = get_memop(oi);
|
|
int a_bits = get_alignment_bits(mop);
|
|
void *ret;
|
|
|
|
/* Enforce guest required alignment. */
|
|
if (unlikely(addr & ((1 << a_bits) - 1))) {
|
|
MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE;
|
|
cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr);
|
|
}
|
|
|
|
/* Enforce qemu required alignment. */
|
|
if (unlikely(addr & (size - 1))) {
|
|
cpu_loop_exit_atomic(env_cpu(env), retaddr);
|
|
}
|
|
|
|
ret = g2h(env_cpu(env), addr);
|
|
set_helper_retaddr(retaddr);
|
|
return ret;
|
|
}
|
|
|
|
#include "atomic_common.c.inc"
|
|
|
|
/*
|
|
* First set of functions passes in OI and RETADDR.
|
|
* This makes them callable from other helpers.
|
|
*/
|
|
|
|
#define ATOMIC_NAME(X) \
|
|
glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
|
|
#define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
#if HAVE_ATOMIC128 || HAVE_CMPXCHG128
|
|
#define DATA_SIZE 16
|
|
#include "atomic_template.h"
|
|
#endif
|