xemu/hw/pci/pcie_doe.c
Huai-Cheng Kuo 5fb52f6cc8 hw/pci: PCIe Data Object Exchange emulation
Emulation of PCIe Data Object Exchange (DOE)
PCIE Base Specification r6.0 6.3 Data Object Exchange

Supports multiple DOE PCIe Extended Capabilities for a single PCIe
device. For each capability, a static array of DOEProtocol should be passed
to pcie_doe_init(). The protocols in that array will be registered under
the DOE capability structure. For each protocol, vendor ID, type, and
corresponding callback function (handle_request()) should be implemented.
This callback function represents how the DOE request for corresponding
protocol will be handled.

pcie_doe_{read/write}_config() must be appended to corresponding PCI
device's config_read/write() handler to enable DOE access. In
pcie_doe_read_config(), false will be returned if pci_config_read()
offset is not within DOE capability range. In pcie_doe_write_config(),
the function will have no affect if the address is not within the related
DOE PCIE extended capability.

Signed-off-by: Huai-Cheng Kuo <hchkuo@avery-design.com.tw>
Signed-off-by: Chris Browy <cbrowy@avery-design.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20221014151045.24781-2-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-11-07 13:12:19 -05:00

368 lines
10 KiB
C

/*
* PCIe Data Object Exchange
*
* Copyright (C) 2021 Avery Design Systems, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qemu/range.h"
#include "hw/pci/pci.h"
#include "hw/pci/pcie.h"
#include "hw/pci/pcie_doe.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#define DWORD_BYTE 4
typedef struct DoeDiscoveryReq {
DOEHeader header;
uint8_t index;
uint8_t reserved[3];
} QEMU_PACKED DoeDiscoveryReq;
typedef struct DoeDiscoveryRsp {
DOEHeader header;
uint16_t vendor_id;
uint8_t data_obj_type;
uint8_t next_index;
} QEMU_PACKED DoeDiscoveryRsp;
static bool pcie_doe_discovery(DOECap *doe_cap)
{
DoeDiscoveryReq *req = pcie_doe_get_write_mbox_ptr(doe_cap);
DoeDiscoveryRsp rsp;
uint8_t index = req->index;
DOEProtocol *prot;
/* Discard request if length does not match DoeDiscoveryReq */
if (pcie_doe_get_obj_len(req) <
DIV_ROUND_UP(sizeof(DoeDiscoveryReq), DWORD_BYTE)) {
return false;
}
rsp.header = (DOEHeader) {
.vendor_id = PCI_VENDOR_ID_PCI_SIG,
.data_obj_type = PCI_SIG_DOE_DISCOVERY,
.length = DIV_ROUND_UP(sizeof(DoeDiscoveryRsp), DWORD_BYTE),
};
/* Point to the requested protocol, index 0 must be Discovery */
if (index == 0) {
rsp.vendor_id = PCI_VENDOR_ID_PCI_SIG;
rsp.data_obj_type = PCI_SIG_DOE_DISCOVERY;
} else {
if (index < doe_cap->protocol_num) {
prot = &doe_cap->protocols[index - 1];
rsp.vendor_id = prot->vendor_id;
rsp.data_obj_type = prot->data_obj_type;
} else {
rsp.vendor_id = 0xFFFF;
rsp.data_obj_type = 0xFF;
}
}
if (index + 1 == doe_cap->protocol_num) {
rsp.next_index = 0;
} else {
rsp.next_index = index + 1;
}
pcie_doe_set_rsp(doe_cap, &rsp);
return true;
}
static void pcie_doe_reset_mbox(DOECap *st)
{
st->read_mbox_idx = 0;
st->read_mbox_len = 0;
st->write_mbox_len = 0;
memset(st->read_mbox, 0, PCI_DOE_DW_SIZE_MAX * DWORD_BYTE);
memset(st->write_mbox, 0, PCI_DOE_DW_SIZE_MAX * DWORD_BYTE);
}
void pcie_doe_init(PCIDevice *dev, DOECap *doe_cap, uint16_t offset,
DOEProtocol *protocols, bool intr, uint16_t vec)
{
pcie_add_capability(dev, PCI_EXT_CAP_ID_DOE, 0x1, offset,
PCI_DOE_SIZEOF);
doe_cap->pdev = dev;
doe_cap->offset = offset;
if (intr && (msi_present(dev) || msix_present(dev))) {
doe_cap->cap.intr = intr;
doe_cap->cap.vec = vec;
}
doe_cap->write_mbox = g_malloc0(PCI_DOE_DW_SIZE_MAX * DWORD_BYTE);
doe_cap->read_mbox = g_malloc0(PCI_DOE_DW_SIZE_MAX * DWORD_BYTE);
pcie_doe_reset_mbox(doe_cap);
doe_cap->protocols = protocols;
for (; protocols->vendor_id; protocols++) {
doe_cap->protocol_num++;
}
assert(doe_cap->protocol_num < PCI_DOE_PROTOCOL_NUM_MAX);
/* Increment to allow for the discovery protocol */
doe_cap->protocol_num++;
}
void pcie_doe_fini(DOECap *doe_cap)
{
g_free(doe_cap->read_mbox);
g_free(doe_cap->write_mbox);
g_free(doe_cap);
}
uint32_t pcie_doe_build_protocol(DOEProtocol *p)
{
return DATA_OBJ_BUILD_HEADER1(p->vendor_id, p->data_obj_type);
}
void *pcie_doe_get_write_mbox_ptr(DOECap *doe_cap)
{
return doe_cap->write_mbox;
}
/*
* Copy the response to read mailbox buffer
* This might be called in self-defined handle_request() if a DOE response is
* required in the corresponding protocol
*/
void pcie_doe_set_rsp(DOECap *doe_cap, void *rsp)
{
uint32_t len = pcie_doe_get_obj_len(rsp);
memcpy(doe_cap->read_mbox + doe_cap->read_mbox_len, rsp, len * DWORD_BYTE);
doe_cap->read_mbox_len += len;
}
uint32_t pcie_doe_get_obj_len(void *obj)
{
uint32_t len;
if (!obj) {
return 0;
}
/* Only lower 18 bits are valid */
len = DATA_OBJ_LEN_MASK(((DOEHeader *)obj)->length);
/* PCIe r6.0 Table 6.29: a value of 00000h indicates 2^18 DW */
return (len) ? len : PCI_DOE_DW_SIZE_MAX;
}
static void pcie_doe_irq_assert(DOECap *doe_cap)
{
PCIDevice *dev = doe_cap->pdev;
if (doe_cap->cap.intr && doe_cap->ctrl.intr) {
if (doe_cap->status.intr) {
return;
}
doe_cap->status.intr = 1;
if (msix_enabled(dev)) {
msix_notify(dev, doe_cap->cap.vec);
} else if (msi_enabled(dev)) {
msi_notify(dev, doe_cap->cap.vec);
}
}
}
static void pcie_doe_set_ready(DOECap *doe_cap, bool rdy)
{
doe_cap->status.ready = rdy;
if (rdy) {
pcie_doe_irq_assert(doe_cap);
}
}
static void pcie_doe_set_error(DOECap *doe_cap, bool err)
{
doe_cap->status.error = err;
if (err) {
pcie_doe_irq_assert(doe_cap);
}
}
/*
* Check incoming request in write_mbox for protocol format
*/
static void pcie_doe_prepare_rsp(DOECap *doe_cap)
{
bool success = false;
int p;
bool (*handle_request)(DOECap *) = NULL;
if (doe_cap->status.error) {
return;
}
if (doe_cap->write_mbox[0] ==
DATA_OBJ_BUILD_HEADER1(PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_DISCOVERY)) {
handle_request = pcie_doe_discovery;
} else {
for (p = 0; p < doe_cap->protocol_num - 1; p++) {
if (doe_cap->write_mbox[0] ==
pcie_doe_build_protocol(&doe_cap->protocols[p])) {
handle_request = doe_cap->protocols[p].handle_request;
break;
}
}
}
/*
* PCIe r6 DOE 6.30.1:
* If the number of DW transferred does not match the
* indicated Length for a data object, then the
* data object must be silently discarded.
*/
if (handle_request && (doe_cap->write_mbox_len ==
pcie_doe_get_obj_len(pcie_doe_get_write_mbox_ptr(doe_cap)))) {
success = handle_request(doe_cap);
}
if (success) {
pcie_doe_set_ready(doe_cap, 1);
} else {
pcie_doe_reset_mbox(doe_cap);
}
}
/*
* Read from DOE config space.
* Return false if the address not within DOE_CAP range.
*/
bool pcie_doe_read_config(DOECap *doe_cap, uint32_t addr, int size,
uint32_t *buf)
{
uint32_t shift;
uint16_t doe_offset = doe_cap->offset;
if (!range_covers_byte(doe_offset + PCI_EXP_DOE_CAP,
PCI_DOE_SIZEOF - 4, addr)) {
return false;
}
addr -= doe_offset;
*buf = 0;
if (range_covers_byte(PCI_EXP_DOE_CAP, DWORD_BYTE, addr)) {
*buf = FIELD_DP32(*buf, PCI_DOE_CAP_REG, INTR_SUPP,
doe_cap->cap.intr);
*buf = FIELD_DP32(*buf, PCI_DOE_CAP_REG, DOE_INTR_MSG_NUM,
doe_cap->cap.vec);
} else if (range_covers_byte(PCI_EXP_DOE_CTRL, DWORD_BYTE, addr)) {
/* Must return ABORT=0 and GO=0 */
*buf = FIELD_DP32(*buf, PCI_DOE_CAP_CONTROL, DOE_INTR_EN,
doe_cap->ctrl.intr);
} else if (range_covers_byte(PCI_EXP_DOE_STATUS, DWORD_BYTE, addr)) {
*buf = FIELD_DP32(*buf, PCI_DOE_CAP_STATUS, DOE_BUSY,
doe_cap->status.busy);
*buf = FIELD_DP32(*buf, PCI_DOE_CAP_STATUS, DOE_INTR_STATUS,
doe_cap->status.intr);
*buf = FIELD_DP32(*buf, PCI_DOE_CAP_STATUS, DOE_ERROR,
doe_cap->status.error);
*buf = FIELD_DP32(*buf, PCI_DOE_CAP_STATUS, DATA_OBJ_RDY,
doe_cap->status.ready);
/* Mailbox should be DW accessed */
} else if (addr == PCI_EXP_DOE_RD_DATA_MBOX && size == DWORD_BYTE) {
if (doe_cap->status.ready && !doe_cap->status.error) {
*buf = doe_cap->read_mbox[doe_cap->read_mbox_idx];
}
}
/* Process Alignment */
shift = addr % DWORD_BYTE;
*buf = extract32(*buf, shift * 8, size * 8);
return true;
}
/*
* Write to DOE config space.
* Return if the address not within DOE_CAP range or receives an abort
*/
void pcie_doe_write_config(DOECap *doe_cap,
uint32_t addr, uint32_t val, int size)
{
uint16_t doe_offset = doe_cap->offset;
uint32_t shift;
if (!range_covers_byte(doe_offset + PCI_EXP_DOE_CAP,
PCI_DOE_SIZEOF - 4, addr)) {
return;
}
/* Process Alignment */
shift = addr % DWORD_BYTE;
addr -= (doe_offset + shift);
val = deposit32(val, shift * 8, size * 8, val);
switch (addr) {
case PCI_EXP_DOE_CTRL:
if (FIELD_EX32(val, PCI_DOE_CAP_CONTROL, DOE_ABORT)) {
pcie_doe_set_ready(doe_cap, 0);
pcie_doe_set_error(doe_cap, 0);
pcie_doe_reset_mbox(doe_cap);
return;
}
if (FIELD_EX32(val, PCI_DOE_CAP_CONTROL, DOE_GO)) {
pcie_doe_prepare_rsp(doe_cap);
}
if (FIELD_EX32(val, PCI_DOE_CAP_CONTROL, DOE_INTR_EN)) {
doe_cap->ctrl.intr = 1;
/* Clear interrupt bit located within the first byte */
} else if (shift == 0) {
doe_cap->ctrl.intr = 0;
}
break;
case PCI_EXP_DOE_STATUS:
if (FIELD_EX32(val, PCI_DOE_CAP_STATUS, DOE_INTR_STATUS)) {
doe_cap->status.intr = 0;
}
break;
case PCI_EXP_DOE_RD_DATA_MBOX:
/* Mailbox should be DW accessed */
if (size != DWORD_BYTE) {
return;
}
doe_cap->read_mbox_idx++;
if (doe_cap->read_mbox_idx == doe_cap->read_mbox_len) {
pcie_doe_reset_mbox(doe_cap);
pcie_doe_set_ready(doe_cap, 0);
} else if (doe_cap->read_mbox_idx > doe_cap->read_mbox_len) {
/* Underflow */
pcie_doe_set_error(doe_cap, 1);
}
break;
case PCI_EXP_DOE_WR_DATA_MBOX:
/* Mailbox should be DW accessed */
if (size != DWORD_BYTE) {
return;
}
doe_cap->write_mbox[doe_cap->write_mbox_len] = val;
doe_cap->write_mbox_len++;
break;
case PCI_EXP_DOE_CAP:
/* fallthrough */
default:
break;
}
}