xemu/hw/xbox/nvnet.c
2023-10-18 01:33:40 -07:00

1006 lines
30 KiB
C

/*
* QEMU nForce Ethernet Controller implementation
*
* Copyright (c) 2013 espes
* Copyright (c) 2015-2021 Matt Borgerson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "hw/hw.h"
#include "hw/i386/pc.h"
#include "hw/pci/pci.h"
#include "hw/qdev-properties.h"
#include "net/net.h"
#include "qemu/bswap.h"
#include "qemu/iov.h"
#include "migration/vmstate.h"
#include "nvnet_regs.h"
#define IOPORT_SIZE 0x8
#define MMIO_SIZE 0x400
static const uint8_t bcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
// #define DEBUG
#ifdef DEBUG
# define NVNET_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
# define NVNET_DUMP_PACKETS_TO_SCREEN
#else
# define NVNET_DPRINTF(format, ...) do { } while (0)
#endif
static NetClientInfo net_nvnet_info;
static Property nvnet_properties[];
/*******************************************************************************
* Primary State Structure
******************************************************************************/
typedef struct NvNetState {
/*< private >*/
PCIDevice parent_obj;
/*< public >*/
NICState *nic;
NICConf conf;
MemoryRegion mmio, io;
uint8_t regs[MMIO_SIZE];
uint32_t phy_regs[6];
uint8_t tx_ring_index;
uint8_t tx_ring_size;
uint8_t rx_ring_index;
uint8_t rx_ring_size;
uint8_t tx_dma_buf[TX_ALLOC_BUFSIZE];
uint32_t tx_dma_buf_offset;
uint8_t rx_dma_buf[RX_ALLOC_BUFSIZE];
FILE *packet_dump_file;
char *packet_dump_path;
} NvNetState;
#pragma pack(1)
struct RingDesc {
uint32_t packet_buffer;
uint16_t length;
uint16_t flags;
};
#pragma pack()
/*******************************************************************************
* Helper Macros
******************************************************************************/
#define NVNET_DEVICE(obj) \
OBJECT_CHECK(NvNetState, (obj), "nvnet")
/*******************************************************************************
* Prototypes
******************************************************************************/
/* Init */
static void nvnet_realize(PCIDevice *dev, Error **errp);
static void nvnet_uninit(PCIDevice *dev);
static void nvnet_class_init(ObjectClass *klass, void *data);
static void nvnet_cleanup(NetClientState *nc);
static void nvnet_reset(void *opaque);
static void qdev_nvnet_reset(DeviceState *dev);
static void nvnet_register(void);
/* MMIO / IO / Phy / Device Register Access */
static uint64_t nvnet_mmio_read(void *opaque,
hwaddr addr, unsigned int size);
static void nvnet_mmio_write(void *opaque,
hwaddr addr, uint64_t val, unsigned int size);
static uint32_t nvnet_get_reg(NvNetState *s,
hwaddr addr, unsigned int size);
static void nvnet_set_reg(NvNetState *s,
hwaddr addr, uint32_t val, unsigned int size);
static uint64_t nvnet_io_read(void *opaque,
hwaddr addr, unsigned int size);
static void nvnet_io_write(void *opaque,
hwaddr addr, uint64_t val, unsigned int size);
static int nvnet_mii_rw(NvNetState *s,
uint64_t val);
/* Link State */
static void nvnet_link_down(NvNetState *s);
static void nvnet_link_up(NvNetState *s);
static void nvnet_set_link_status(NetClientState *nc);
/* Interrupts */
static void nvnet_update_irq(NvNetState *s);
/* Packet Tx / Rx */
static void nvnet_send_packet(NvNetState *s,
const uint8_t *buf, int size);
static ssize_t nvnet_dma_packet_to_guest(NvNetState *s,
const uint8_t *buf, size_t size);
static ssize_t nvnet_dma_packet_from_guest(NvNetState *s);
static bool nvnet_can_receive(NetClientState *nc);
static ssize_t nvnet_receive(NetClientState *nc,
const uint8_t *buf, size_t size);
static ssize_t nvnet_receive_iov(NetClientState *nc,
const struct iovec *iov, int iovcnt);
/* Utility Functions */
static void nvnet_hex_dump(NvNetState *s, const uint8_t *buf, int size);
static const char *nvnet_get_reg_name(hwaddr addr);
static const char *nvnet_get_mii_reg_name(uint8_t reg);
#ifdef DEBUG
static void nvnet_dump_ring_descriptors(NvNetState *s);
#endif
/*******************************************************************************
* IRQ
******************************************************************************/
/*
* Update IRQ status
*/
static void nvnet_update_irq(NvNetState *s)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t irq_mask = nvnet_get_reg(s, NvRegIrqMask, 4);
uint32_t irq_status = nvnet_get_reg(s, NvRegIrqStatus, 4);
if (irq_mask & irq_status) {
NVNET_DPRINTF("Asserting IRQ\n");
pci_irq_assert(d);
} else {
pci_irq_deassert(d);
}
}
/*******************************************************************************
* Register Control
******************************************************************************/
/*
* Read backing store for a device register.
*/
static uint32_t nvnet_get_reg(NvNetState *s, hwaddr addr, unsigned int size)
{
assert(addr < MMIO_SIZE);
switch (size) {
case 4:
assert((addr & 3) == 0); /* Unaligned register access. */
return ((uint32_t *)s->regs)[addr >> 2];
case 2:
assert((addr & 1) == 0); /* Unaligned register access. */
return ((uint16_t *)s->regs)[addr >> 1];
case 1:
return s->regs[addr];
default:
assert(0); /* Unsupported register access. */
return 0;
}
}
/*
* Write backing store for a device register.
*/
static void nvnet_set_reg(NvNetState *s,
hwaddr addr, uint32_t val, unsigned int size)
{
assert(addr < MMIO_SIZE);
switch (size) {
case 4:
assert((addr & 3) == 0); /* Unaligned register access. */
((uint32_t *)s->regs)[addr >> 2] = val;
break;
case 2:
assert((addr & 1) == 0); /* Unaligned register access. */
((uint16_t *)s->regs)[addr >> 1] = (uint16_t)val;
break;
case 1:
s->regs[addr] = (uint8_t)val;
break;
default:
assert(0); /* Unsupported register access. */
}
}
/*******************************************************************************
* PHY Control
******************************************************************************/
/*
* Read from PHY.
*/
static int nvnet_mii_rw(NvNetState *s, uint64_t val)
{
uint32_t mii_ctl;
int write, retval, phy_addr, reg;
retval = 0;
mii_ctl = nvnet_get_reg(s, NvRegMIIControl, 4);
phy_addr = (mii_ctl >> NVREG_MIICTL_ADDRSHIFT) & 0x1f;
reg = mii_ctl & ((1 << NVREG_MIICTL_ADDRSHIFT) - 1);
write = mii_ctl & NVREG_MIICTL_WRITE;
if (phy_addr != 1) {
retval = -1;
goto out;
}
if (write) {
goto out;
}
switch (reg) {
case MII_BMSR:
/* Phy initialization code waits for BIT2 to be set.. If not set,
* software may report controller as not running */
retval = BMSR_ANEGCOMPLETE | BMSR_BIT2;
break;
case MII_ADVERTISE:
/* Fall through... */
case MII_LPA:
retval = LPA_10HALF | LPA_10FULL;
retval |= LPA_100HALF | LPA_100FULL | LPA_100BASE4;
break;
default:
break;
}
out:
if (write) {
trace_nvnet_mii_write(phy_addr, reg, nvnet_get_mii_reg_name(reg), val);
} else {
trace_nvnet_mii_read(phy_addr, reg, nvnet_get_mii_reg_name(reg),
retval);
}
return retval;
}
/*******************************************************************************
* MMIO Read / Write
******************************************************************************/
/*
* Handler for guest reads from MMIO ranges owned by this device.
*/
static uint64_t nvnet_mmio_read(void *opaque, hwaddr addr, unsigned int size)
{
NvNetState *s;
uint64_t retval;
s = NVNET_DEVICE(opaque);
switch (addr) {
case NvRegMIIData:
assert(size == 4);
retval = nvnet_mii_rw(s, MII_READ);
break;
case NvRegMIIControl:
retval = nvnet_get_reg(s, addr, size);
retval &= ~NVREG_MIICTL_INUSE;
break;
case NvRegMIIStatus:
retval = 0;
break;
default:
retval = nvnet_get_reg(s, addr, size);
break;
}
trace_nvnet_reg_read(addr, nvnet_get_reg_name(addr & ~3), size, retval);
return retval;
}
/*
* Handler for guest writes to MMIO ranges owned by this device.
*/
static void nvnet_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int size)
{
NvNetState *s = NVNET_DEVICE(opaque);
uint32_t temp;
trace_nvnet_reg_write(addr, nvnet_get_reg_name(addr & ~3), size, val);
switch (addr) {
case NvRegRingSizes:
nvnet_set_reg(s, addr, val, size);
s->rx_ring_size = ((val >> NVREG_RINGSZ_RXSHIFT) & 0xffff) + 1;
s->tx_ring_size = ((val >> NVREG_RINGSZ_TXSHIFT) & 0xffff) + 1;
break;
case NvRegMIIData:
nvnet_mii_rw(s, val);
break;
case NvRegTxRxControl:
if (val == NVREG_TXRXCTL_KICK) {
NVNET_DPRINTF("NvRegTxRxControl = NVREG_TXRXCTL_KICK!\n");
#ifdef DEBUG
nvnet_dump_ring_descriptors(s);
#endif
nvnet_dma_packet_from_guest(s);
}
if (val & NVREG_TXRXCTL_BIT2) {
nvnet_set_reg(s, NvRegTxRxControl, NVREG_TXRXCTL_IDLE, 4);
break;
}
if (val & NVREG_TXRXCTL_RESET) {
s->tx_ring_index = 0;
s->rx_ring_index = 0;
s->tx_dma_buf_offset = 0;
}
if (val & NVREG_TXRXCTL_BIT1) {
// FIXME
nvnet_set_reg(s, NvRegIrqStatus, 0, 4);
break;
} else if (val == 0) {
temp = nvnet_get_reg(s, NvRegUnknownSetupReg3, 4);
if (temp == NVREG_UNKSETUP3_VAL1) {
/* forcedeth waits for this bit to be set... */
nvnet_set_reg(s, NvRegUnknownSetupReg5,
NVREG_UNKSETUP5_BIT31, 4);
break;
}
}
nvnet_set_reg(s, NvRegTxRxControl, val, size);
break;
case NvRegIrqMask:
nvnet_set_reg(s, addr, val, size);
nvnet_update_irq(s);
break;
case NvRegIrqStatus:
nvnet_set_reg(s, addr, nvnet_get_reg(s, addr, size) & ~val, size);
nvnet_update_irq(s);
break;
default:
nvnet_set_reg(s, addr, val, size);
break;
}
}
static const MemoryRegionOps nvnet_mmio_ops = {
.read = nvnet_mmio_read,
.write = nvnet_mmio_write,
};
/*******************************************************************************
* Packet TX / RX
******************************************************************************/
static void nvnet_send_packet(NvNetState *s, const uint8_t *buf, int size)
{
NetClientState *nc = qemu_get_queue(s->nic);
NVNET_DPRINTF("nvnet: Sending packet!\n");
nvnet_hex_dump(s, buf, size);
qemu_send_packet(nc, buf, size);
}
static bool nvnet_can_receive(NetClientState *nc)
{
NVNET_DPRINTF("nvnet_can_receive called\n");
return 1;
}
static ssize_t nvnet_receive(NetClientState *nc,
const uint8_t *buf, size_t size)
{
const struct iovec iov = {
.iov_base = (uint8_t *)buf,
.iov_len = size
};
NVNET_DPRINTF("nvnet_receive called\n");
return nvnet_receive_iov(nc, &iov, 1);
}
static bool nvnet_is_packet_oversized(size_t size)
{
return size > RX_ALLOC_BUFSIZE;
}
static bool receive_filter(NvNetState *s, const uint8_t *buf, int size)
{
if (size < 6) {
return false;
}
uint32_t rctl = nvnet_get_reg(s, NvRegPacketFilterFlags, 4);
int isbcast = !memcmp(buf, bcast, sizeof bcast);
/* Broadcast */
if (isbcast) {
/* FIXME: bcast filtering */
trace_nvnet_rx_filter_bcast_match();
return true;
}
if (!(rctl & NVREG_PFF_MYADDR)) {
/* FIXME: Confirm PFF_MYADDR filters mcast */
return true;
}
/* Multicast */
uint32_t addr[2];
addr[0] = cpu_to_le32(nvnet_get_reg(s, NvRegMulticastAddrA, 4));
addr[1] = cpu_to_le32(nvnet_get_reg(s, NvRegMulticastAddrB, 4));
if (memcmp(addr, bcast, sizeof bcast)) {
uint32_t dest_addr[2];
memcpy(dest_addr, buf, 6);
dest_addr[0] &= cpu_to_le32(nvnet_get_reg(s, NvRegMulticastMaskA, 4));
dest_addr[1] &= cpu_to_le32(nvnet_get_reg(s, NvRegMulticastMaskB, 4));
if (!memcmp(dest_addr, addr, 6)) {
trace_nvnet_rx_filter_mcast_match(MAC_ARG(dest_addr));
return true;
} else {
trace_nvnet_rx_filter_mcast_mismatch(MAC_ARG(dest_addr));
}
}
/* Unicast */
addr[0] = cpu_to_le32(nvnet_get_reg(s, NvRegMacAddrA, 4));
addr[1] = cpu_to_le32(nvnet_get_reg(s, NvRegMacAddrB, 4));
if (!memcmp(buf, addr, 6)) {
trace_nvnet_rx_filter_ucast_match(MAC_ARG(buf));
return true;
} else {
trace_nvnet_rx_filter_ucast_mismatch(MAC_ARG(buf));
}
return false;
}
static ssize_t nvnet_receive_iov(NetClientState *nc,
const struct iovec *iov, int iovcnt)
{
NvNetState *s = qemu_get_nic_opaque(nc);
size_t size = iov_size(iov, iovcnt);
NVNET_DPRINTF("nvnet: Packet received!\n");
if (nvnet_is_packet_oversized(size)) {
/* Drop */
NVNET_DPRINTF("%s packet too large!\n", __func__);
trace_nvnet_rx_oversized(size);
return size;
}
iov_to_buf(iov, iovcnt, 0, s->rx_dma_buf, size);
if (!receive_filter(s, s->rx_dma_buf, size)) {
trace_nvnet_rx_filter_dropped();
return size;
}
#ifdef DEBUG
nvnet_hex_dump(s, s->rx_dma_buf, size);
#endif
return nvnet_dma_packet_to_guest(s, s->rx_dma_buf, size);
}
static ssize_t nvnet_dma_packet_to_guest(NvNetState *s,
const uint8_t *buf, size_t size)
{
PCIDevice *d = PCI_DEVICE(s);
struct RingDesc desc;
int i;
bool did_receive = false;
nvnet_set_reg(s, NvRegTxRxControl,
nvnet_get_reg(s, NvRegTxRxControl, 4) & ~NVREG_TXRXCTL_IDLE,
4);
for (i = 0; i < s->rx_ring_size; i++) {
/* Read current ring descriptor */
s->rx_ring_index %= s->rx_ring_size;
dma_addr_t rx_ring_addr = nvnet_get_reg(s, NvRegRxRingPhysAddr, 4);
rx_ring_addr += s->rx_ring_index * sizeof(desc);
pci_dma_read(d, rx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("RX: Looking at ring descriptor %d (0x%" HWADDR_PRIx "): ",
s->rx_ring_index, rx_ring_addr);
NVNET_DPRINTF("Buffer: 0x%x, ", desc.packet_buffer);
NVNET_DPRINTF("Length: 0x%x, ", desc.length);
NVNET_DPRINTF("Flags: 0x%x\n", desc.flags);
if (!(desc.flags & NV_RX_AVAIL)) {
break;
}
assert((desc.length+1) >= size); // FIXME
s->rx_ring_index += 1;
/* Transfer packet from device to memory */
NVNET_DPRINTF("Transferring packet, size 0x%zx, to memory at 0x%x\n",
size, desc.packet_buffer);
pci_dma_write(d, desc.packet_buffer, buf, size);
/* Update descriptor indicating the packet is waiting */
desc.length = size;
desc.flags = NV_RX_BIT4 | NV_RX_DESCRIPTORVALID;
pci_dma_write(d, rx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("Updated ring descriptor: ");
NVNET_DPRINTF("Length: 0x%x, ", desc.length);
NVNET_DPRINTF("Flags: 0x%x\n", desc.flags);
/* Trigger interrupt */
NVNET_DPRINTF("Triggering interrupt\n");
uint32_t irq_status = nvnet_get_reg(s, NvRegIrqStatus, 4);
nvnet_set_reg(s, NvRegIrqStatus, irq_status | NVREG_IRQSTAT_BIT1, 4);
nvnet_update_irq(s);
did_receive = true;
break;
}
nvnet_set_reg(s, NvRegTxRxControl,
nvnet_get_reg(s, NvRegTxRxControl, 4) | NVREG_TXRXCTL_IDLE,
4);
if (did_receive) {
return size;
} else {
/* Could not find free buffer, or packet too large. */
NVNET_DPRINTF("Could not find free buffer!\n");
return -1;
}
}
static ssize_t nvnet_dma_packet_from_guest(NvNetState *s)
{
PCIDevice *d = PCI_DEVICE(s);
struct RingDesc desc;
bool is_last_packet;
bool packet_sent = false;
int i;
nvnet_set_reg(s, NvRegTxRxControl,
nvnet_get_reg(s, NvRegTxRxControl, 4) & ~NVREG_TXRXCTL_IDLE,
4);
for (i = 0; i < s->tx_ring_size; i++) {
/* Read ring descriptor */
s->tx_ring_index %= s->tx_ring_size;
dma_addr_t tx_ring_addr = nvnet_get_reg(s, NvRegTxRingPhysAddr, 4);
tx_ring_addr += s->tx_ring_index * sizeof(desc);
pci_dma_read(d, tx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("TX: Looking at ring desc %d (%" HWADDR_PRIx "): ",
s->tx_ring_index, tx_ring_addr);
NVNET_DPRINTF("Buffer: 0x%x, ", desc.packet_buffer);
NVNET_DPRINTF("Length: 0x%x, ", desc.length);
NVNET_DPRINTF("Flags: 0x%x\n", desc.flags);
if (!(desc.flags & NV_TX_VALID)) {
break;
}
s->tx_ring_index += 1;
/* Transfer packet from guest memory */
assert((s->tx_dma_buf_offset + desc.length + 1) <= sizeof(s->tx_dma_buf));
pci_dma_read(d, desc.packet_buffer,
&s->tx_dma_buf[s->tx_dma_buf_offset],
desc.length + 1);
s->tx_dma_buf_offset += desc.length + 1;
/* Update descriptor */
is_last_packet = desc.flags & NV_TX_LASTPACKET;
if (is_last_packet) {
NVNET_DPRINTF("Sending packet...\n");
nvnet_send_packet(s, s->tx_dma_buf, s->tx_dma_buf_offset);
s->tx_dma_buf_offset = 0;
packet_sent = true;
}
desc.flags &= ~(NV_TX_VALID | NV_TX_RETRYERROR | NV_TX_DEFERRED |
NV_TX_CARRIERLOST | NV_TX_LATECOLLISION | NV_TX_UNDERFLOW |
NV_TX_ERROR);
desc.length = desc.length + 5;
pci_dma_write(d, tx_ring_addr, &desc, sizeof(desc));
if (is_last_packet) {
// FIXME
break;
}
}
/* Trigger interrupt */
if (packet_sent) {
NVNET_DPRINTF("Triggering interrupt\n");
uint32_t irq_status = nvnet_get_reg(s, NvRegIrqStatus, 4);
nvnet_set_reg(s, NvRegIrqStatus, irq_status | NVREG_IRQSTAT_BIT4, 4);
nvnet_update_irq(s);
}
nvnet_set_reg(s, NvRegTxRxControl,
nvnet_get_reg(s, NvRegTxRxControl, 4) | NVREG_TXRXCTL_IDLE,
4);
return 0;
}
/*******************************************************************************
* Link Status Control
******************************************************************************/
static void nvnet_link_down(NvNetState *s)
{
NVNET_DPRINTF("nvnet_link_down called\n");
}
static void nvnet_link_up(NvNetState *s)
{
NVNET_DPRINTF("nvnet_link_up called\n");
}
static void nvnet_set_link_status(NetClientState *nc)
{
NvNetState *s = qemu_get_nic_opaque(nc);
if (nc->link_down) {
nvnet_link_down(s);
} else {
nvnet_link_up(s);
}
}
/*******************************************************************************
* IO Read / Write
******************************************************************************/
static uint64_t nvnet_io_read(void *opaque, hwaddr addr, unsigned int size)
{
uint64_t r = 0;
trace_nvnet_io_read(addr, size, r);
return r;
}
static void nvnet_io_write(void *opaque,
hwaddr addr, uint64_t val, unsigned int size)
{
trace_nvnet_io_write(addr, size, val);
}
static const MemoryRegionOps nvnet_io_ops = {
.read = nvnet_io_read,
.write = nvnet_io_write,
};
/*******************************************************************************
* Init
******************************************************************************/
static void nvnet_realize(PCIDevice *pci_dev, Error **errp)
{
DeviceState *dev = DEVICE(pci_dev);
NvNetState *s = NVNET_DEVICE(pci_dev);
PCIDevice *d = PCI_DEVICE(s);
pci_dev->config[PCI_INTERRUPT_PIN] = 0x01;
s->packet_dump_file = NULL;
if (s->packet_dump_path && *s->packet_dump_path != '\x00') {
s->packet_dump_file = fopen(s->packet_dump_path, "wb");
if (!s->packet_dump_file) {
fprintf(stderr, "Failed to open %s for writing!\n",
s->packet_dump_path);
exit(1);
}
}
memset(s->regs, 0, sizeof(s->regs));
s->rx_ring_index = 0;
s->rx_ring_size = 0;
s->tx_ring_index = 0;
s->tx_ring_size = 0;
memory_region_init_io(&s->mmio, OBJECT(dev), &nvnet_mmio_ops, s,
"nvnet-mmio", MMIO_SIZE);
pci_register_bar(d, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
memory_region_init_io(&s->io, OBJECT(dev), &nvnet_io_ops, s,
"nvnet-io", IOPORT_SIZE);
pci_register_bar(d, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_nvnet_info, &s->conf,
object_get_typename(OBJECT(s)), dev->id, s);
assert(s->nic);
}
static void nvnet_uninit(PCIDevice *dev)
{
NvNetState *s = NVNET_DEVICE(dev);
if (s->packet_dump_file) {
fclose(s->packet_dump_file);
}
// memory_region_destroy(&s->mmio);
// memory_region_destroy(&s->io);
qemu_del_nic(s->nic);
}
void nvnet_cleanup(NetClientState *nc)
{
}
static void nvnet_reset(void *opaque)
{
NvNetState *s = opaque;
if (qemu_get_queue(s->nic)->link_down) {
nvnet_link_down(s);
}
memset(&s->regs, 0, sizeof(s->regs));
memset(&s->phy_regs, 0, sizeof(s->phy_regs));
s->tx_ring_index = 0;
s->tx_ring_size = 0;
s->rx_ring_index = 0;
s->rx_ring_size = 0;
memset(&s->tx_dma_buf, 0, sizeof(s->tx_dma_buf));
s->tx_dma_buf_offset = 0;
memset(&s->rx_dma_buf, 0, sizeof(s->rx_dma_buf));
}
static void qdev_nvnet_reset(DeviceState *dev)
{
NvNetState *s = NVNET_DEVICE(dev);
nvnet_reset(s);
}
/*******************************************************************************
* Utility Functions
******************************************************************************/
static void hex_dump(FILE *f, const uint8_t *buf, int size)
{
int len, i, j, c;
for (i = 0; i < size; i += 16) {
len = size - i;
if (len > 16) {
len = 16;
}
fprintf(f, "%08x ", i);
for (j = 0; j < 16; j++) {
if (j < len) {
fprintf(f, " %02x", buf[i + j]);
} else {
fprintf(f, " ");
}
}
fprintf(f, " ");
for (j = 0; j < len; j++) {
c = buf[i + j];
if (c < ' ' || c > '~') {
c = '.';
}
fprintf(f, "%c", c);
}
fprintf(f, "\n");
}
}
static void nvnet_hex_dump(NvNetState *s, const uint8_t *buf, int size)
{
#ifdef NVNET_DUMP_PACKETS_TO_SCREEN
hex_dump(stdout, buf, size);
#endif
if (s->packet_dump_file) {
hex_dump(s->packet_dump_file, buf, size);
}
}
/*
* Return register name given the offset of the device register.
*/
static const char *nvnet_get_reg_name(hwaddr addr)
{
switch (addr) {
case NvRegIrqStatus: return "NvRegIrqStatus";
case NvRegIrqMask: return "NvRegIrqMask";
case NvRegUnknownSetupReg6: return "NvRegUnknownSetupReg6";
case NvRegPollingInterval: return "NvRegPollingInterval";
case NvRegMisc1: return "NvRegMisc1";
case NvRegTransmitterControl: return "NvRegTransmitterControl";
case NvRegTransmitterStatus: return "NvRegTransmitterStatus";
case NvRegPacketFilterFlags: return "NvRegPacketFilterFlags";
case NvRegOffloadConfig: return "NvRegOffloadConfig";
case NvRegReceiverControl: return "NvRegReceiverControl";
case NvRegReceiverStatus: return "NvRegReceiverStatus";
case NvRegRandomSeed: return "NvRegRandomSeed";
case NvRegUnknownSetupReg1: return "NvRegUnknownSetupReg1";
case NvRegUnknownSetupReg2: return "NvRegUnknownSetupReg2";
case NvRegMacAddrA: return "NvRegMacAddrA";
case NvRegMacAddrB: return "NvRegMacAddrB";
case NvRegMulticastAddrA: return "NvRegMulticastAddrA";
case NvRegMulticastAddrB: return "NvRegMulticastAddrB";
case NvRegMulticastMaskA: return "NvRegMulticastMaskA";
case NvRegMulticastMaskB: return "NvRegMulticastMaskB";
case NvRegTxRingPhysAddr: return "NvRegTxRingPhysAddr";
case NvRegRxRingPhysAddr: return "NvRegRxRingPhysAddr";
case NvRegRingSizes: return "NvRegRingSizes";
case NvRegUnknownTransmitterReg: return "NvRegUnknownTransmitterReg";
case NvRegLinkSpeed: return "NvRegLinkSpeed";
case NvRegUnknownSetupReg5: return "NvRegUnknownSetupReg5";
case NvRegUnknownSetupReg3: return "NvRegUnknownSetupReg3";
case NvRegUnknownSetupReg8: return "NvRegUnknownSetupReg8";
case NvRegUnknownSetupReg7: return "NvRegUnknownSetupReg7";
case NvRegTxRxControl: return "NvRegTxRxControl";
case NvRegMIIStatus: return "NvRegMIIStatus";
case NvRegUnknownSetupReg4: return "NvRegUnknownSetupReg4";
case NvRegAdapterControl: return "NvRegAdapterControl";
case NvRegMIISpeed: return "NvRegMIISpeed";
case NvRegMIIControl: return "NvRegMIIControl";
case NvRegMIIData: return "NvRegMIIData";
case NvRegWakeUpFlags: return "NvRegWakeUpFlags";
case NvRegPatternCRC: return "NvRegPatternCRC";
case NvRegPatternMask: return "NvRegPatternMask";
case NvRegPowerCap: return "NvRegPowerCap";
case NvRegPowerState: return "NvRegPowerState";
default: return "Unknown";
}
}
/*
* Get PHY register name.
*/
static const char *nvnet_get_mii_reg_name(uint8_t reg)
{
switch (reg) {
case MII_PHYSID1: return "MII_PHYSID1";
case MII_PHYSID2: return "MII_PHYSID2";
case MII_BMCR: return "MII_BMCR";
case MII_BMSR: return "MII_BMSR";
case MII_ADVERTISE: return "MII_ADVERTISE";
case MII_LPA: return "MII_LPA";
default: return "Unknown";
}
}
#ifdef DEBUG
static void nvnet_dump_ring_descriptors(NvNetState *s)
{
struct RingDesc desc;
PCIDevice *d = PCI_DEVICE(s);
NVNET_DPRINTF("------------------------------------------------\n");
for (int i = 0; i < s->tx_ring_size; i++) {
/* Read ring descriptor */
dma_addr_t tx_ring_addr = nvnet_get_reg(s, NvRegTxRingPhysAddr, 4);
tx_ring_addr += i * sizeof(desc);
pci_dma_read(d, tx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("TX: Dumping ring desc %d (%" HWADDR_PRIx "): ",
i, tx_ring_addr);
NVNET_DPRINTF("Buffer: 0x%x, ", desc.packet_buffer);
NVNET_DPRINTF("Length: 0x%x, ", desc.length);
NVNET_DPRINTF("Flags: 0x%x\n", desc.flags);
}
NVNET_DPRINTF("------------------------------------------------\n");
for (int i = 0; i < s->rx_ring_size; i++) {
/* Read ring descriptor */
dma_addr_t rx_ring_addr = nvnet_get_reg(s, NvRegRxRingPhysAddr, 4);
rx_ring_addr += i * sizeof(desc);
pci_dma_read(d, rx_ring_addr, &desc, sizeof(desc));
NVNET_DPRINTF("RX: Dumping ring desc %d (%" HWADDR_PRIx "): ",
i, rx_ring_addr);
NVNET_DPRINTF("Buffer: 0x%x, ", desc.packet_buffer);
NVNET_DPRINTF("Length: 0x%x, ", desc.length);
NVNET_DPRINTF("Flags: 0x%x\n", desc.flags);
}
NVNET_DPRINTF("------------------------------------------------\n");
}
#endif
/*******************************************************************************
* Properties
******************************************************************************/
static const VMStateDescription vmstate_nvnet = {
.name = "nvnet",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, NvNetState),
VMSTATE_UINT8_ARRAY(regs, NvNetState, MMIO_SIZE),
VMSTATE_UINT32_ARRAY(phy_regs, NvNetState, 6),
VMSTATE_UINT8(tx_ring_index, NvNetState),
VMSTATE_UINT8(tx_ring_size, NvNetState),
VMSTATE_UINT8(rx_ring_index, NvNetState),
VMSTATE_UINT8(rx_ring_size, NvNetState),
VMSTATE_END_OF_LIST()
},
};
static void nvnet_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->vendor_id = PCI_VENDOR_ID_NVIDIA;
k->device_id = PCI_DEVICE_ID_NVIDIA_NVENET_1;
k->revision = 177;
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
k->realize = nvnet_realize;
k->exit = nvnet_uninit;
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->desc = "nForce Ethernet Controller";
dc->reset = qdev_nvnet_reset;
dc->vmsd = &vmstate_nvnet;
device_class_set_props(dc, nvnet_properties);
}
static Property nvnet_properties[] = {
DEFINE_NIC_PROPERTIES(NvNetState, conf),
DEFINE_PROP_STRING("dump", NvNetState, packet_dump_path),
DEFINE_PROP_END_OF_LIST(),
};
static NetClientInfo net_nvnet_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = nvnet_can_receive,
.receive = nvnet_receive,
.receive_iov = nvnet_receive_iov,
.cleanup = nvnet_cleanup,
.link_status_changed = nvnet_set_link_status,
};
static const TypeInfo nvnet_info = {
.name = "nvnet",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(NvNetState),
.class_init = nvnet_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
},
};
static void nvnet_register(void)
{
type_register_static(&nvnet_info);
}
type_init(nvnet_register);