xemu/util/sha1.c

138 lines
3.7 KiB
C

/*
* QEMU SHA1 Implementation
*
* Copyright (c) 2020 Mike Davis
* Copyright (c) 2024 Ryan Wendland
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/bswap.h"
#include "sha1.h"
static uint32_t sha1_rotate(uint32_t bits, uint32_t val)
{
return (val << bits) | (val >> (32 - bits));
}
void sha1_fill(SHA1Context *ctx, uint32_t a, uint32_t b, uint32_t c,
uint32_t d, uint32_t e)
{
ctx->intermediate[0] = a;
ctx->intermediate[1] = b;
ctx->intermediate[2] = c;
ctx->intermediate[3] = d;
ctx->intermediate[4] = e;
}
static void sha1_process(SHA1Context *ctx)
{
const uint32_t k[] = { 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 };
uint32_t w[80];
uint32_t a = ctx->intermediate[0];
uint32_t b = ctx->intermediate[1];
uint32_t c = ctx->intermediate[2];
uint32_t d = ctx->intermediate[3];
uint32_t e = ctx->intermediate[4];
for (int i = 0; i < 16; i++) {
*(uint32_t *)&w[i] = cpu_to_be32(((uint32_t *)ctx->msg_blk)[i]);
}
for (int i = 16; i < 80; i++) {
w[i] = sha1_rotate(1, w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]);
}
for (int i = 0; i < 80; i++) {
uint32_t temp = sha1_rotate(5, a) + w[i] + e;
switch (i / 20) {
case 0:
temp += k[0] + ((b & c) | ((~b) & d));
break;
case 1:
temp += k[1] + (b ^ c ^ d);
break;
case 2:
temp += k[2] + ((b & c) | (b & d) | (c & d));
break;
case 3:
temp += k[3] + (b ^ c ^ d);
break;
}
e = d;
d = c;
c = sha1_rotate(30, b);
b = a;
a = temp;
}
ctx->intermediate[0] += a;
ctx->intermediate[1] += b;
ctx->intermediate[2] += c;
ctx->intermediate[3] += d;
ctx->intermediate[4] += e;
ctx->msg_blk_index = 0;
}
static void sha1_pad(SHA1Context *ctx)
{
ctx->msg_blk[ctx->msg_blk_index++] = 0x80;
if (ctx->msg_blk_index > 56) {
while (ctx->msg_blk_index < 64) {
ctx->msg_blk[ctx->msg_blk_index++] = 0;
}
sha1_process(ctx);
}
while (ctx->msg_blk_index < 56) {
ctx->msg_blk[ctx->msg_blk_index++] = 0;
}
*(uint32_t *)&ctx->msg_blk[56] = 0;
*(uint32_t *)&ctx->msg_blk[60] = cpu_to_be32(ctx->length);
sha1_process(ctx);
}
void sha1_input(SHA1Context *ctx, uint8_t *data, size_t len)
{
ctx->length += len << 3;
for (int i = 0; i < len; i++) {
ctx->msg_blk[ctx->msg_blk_index++] = data[i];
if (ctx->msg_blk_index == 64) {
sha1_process(ctx);
}
}
}
void sha1_result(SHA1Context *ctx, uint8_t *data)
{
if (!ctx->computed) {
sha1_pad(ctx);
ctx->length = 0;
ctx->computed = true;
}
for (int i = 0; i < 20; ++i) {
data[i] = ctx->intermediate[i >> 2] >> 8 * (3 - (i & 3));
}
}
void sha1_reset(SHA1Context *ctx)
{
sha1_fill(ctx, 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0);
ctx->msg_blk_index = 0;
ctx->computed = false;
ctx->length = 0;
}