xemu/hw/ppce500_spin.c
Alexander Graf 5c145dacac PPC: E500: Add PV spinning code
CPUs that are not the boot CPU need to run in spinning code to check if they
should run off to execute and if so where to jump to. This usually happens
by leaving secondary CPUs looping and checking if some variable in memory
changed.

In an environment like Qemu however we can be more clever. We can just export
the spin table the primary CPU modifies as MMIO region that would event based
wake up the respective secondary CPUs. That saves us quite some cycles while
the secondary CPUs are not up yet.

So this patch adds a PV device that simply exports the spinning table into the
guest and thus allows the primary CPU to wake up secondary ones.

Signed-off-by: Alexander Graf <agraf@suse.de>

---

v1 -> v2:

  - change into MMIO scheme
  - map the secondary NIP instead of 0 1:1
  - only map 64MB for TLB, same as u-boot
  - prepare code for 64-bit spinnings

v2 -> v3:

  - remove r6
  - set MAS2_M
  - map EA 0
  - use second TLB1 entry

v3 -> v4:

  - change to memoryops

v4 -> v5:

  - fix endianness bugs

v5 -> v6:

  - add header
2011-10-06 09:47:52 +02:00

216 lines
5.3 KiB
C

/*
* QEMU PowerPC e500v2 ePAPR spinning code
*
* Copyright (C) 2011 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Alexander Graf, <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
* This code is not really a device, but models an interface that usually
* firmware takes care of. It's used when QEMU plays the role of firmware.
*
* Specification:
*
* https://www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.1.pdf
*
*/
#include "hw.h"
#include "sysemu.h"
#include "sysbus.h"
#include "kvm.h"
#define MAX_CPUS 32
typedef struct spin_info {
uint64_t addr;
uint64_t r3;
uint32_t resv;
uint32_t pir;
uint64_t reserved;
} __attribute__ ((packed)) SpinInfo;
typedef struct spin_state {
SysBusDevice busdev;
MemoryRegion iomem;
SpinInfo spin[MAX_CPUS];
} SpinState;
typedef struct spin_kick {
CPUState *env;
SpinInfo *spin;
} SpinKick;
static void spin_reset(void *opaque)
{
SpinState *s = opaque;
int i;
for (i = 0; i < MAX_CPUS; i++) {
SpinInfo *info = &s->spin[i];
info->pir = i;
info->r3 = i;
info->addr = 1;
}
}
/* Create -kernel TLB entries for BookE, linearly spanning 256MB. */
static inline target_phys_addr_t booke206_page_size_to_tlb(uint64_t size)
{
return (ffs(size >> 10) - 1) >> 1;
}
static void mmubooke_create_initial_mapping(CPUState *env,
target_ulong va,
target_phys_addr_t pa,
target_phys_addr_t len)
{
ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 1);
target_phys_addr_t size;
size = (booke206_page_size_to_tlb(len) << MAS1_TSIZE_SHIFT);
tlb->mas1 = MAS1_VALID | size;
tlb->mas2 = (va & TARGET_PAGE_MASK) | MAS2_M;
tlb->mas7_3 = pa & TARGET_PAGE_MASK;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
}
static void spin_kick(void *data)
{
SpinKick *kick = data;
CPUState *env = kick->env;
SpinInfo *curspin = kick->spin;
target_phys_addr_t map_size = 64 * 1024 * 1024;
target_phys_addr_t map_start;
cpu_synchronize_state(env);
stl_p(&curspin->pir, env->spr[SPR_PIR]);
env->nip = ldq_p(&curspin->addr) & (map_size - 1);
env->gpr[3] = ldq_p(&curspin->r3);
env->gpr[4] = 0;
env->gpr[5] = 0;
env->gpr[6] = 0;
env->gpr[7] = map_size;
env->gpr[8] = 0;
env->gpr[9] = 0;
map_start = ldq_p(&curspin->addr) & ~(map_size - 1);
mmubooke_create_initial_mapping(env, 0, map_start, map_size);
env->halted = 0;
env->exception_index = -1;
qemu_cpu_kick(env);
}
static void spin_write(void *opaque, target_phys_addr_t addr, uint64_t value,
unsigned len)
{
SpinState *s = opaque;
int env_idx = addr / sizeof(SpinInfo);
CPUState *env;
SpinInfo *curspin = &s->spin[env_idx];
uint8_t *curspin_p = (uint8_t*)curspin;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->cpu_index == env_idx) {
break;
}
}
if (!env) {
/* Unknown CPU */
return;
}
if (!env->cpu_index) {
/* primary CPU doesn't spin */
return;
}
curspin_p = &curspin_p[addr % sizeof(SpinInfo)];
switch (len) {
case 1:
stb_p(curspin_p, value);
break;
case 2:
stw_p(curspin_p, value);
break;
case 4:
stl_p(curspin_p, value);
break;
}
if (!(ldq_p(&curspin->addr) & 1)) {
/* run CPU */
SpinKick kick = {
.env = env,
.spin = curspin,
};
run_on_cpu(env, spin_kick, &kick);
}
}
static uint64_t spin_read(void *opaque, target_phys_addr_t addr, unsigned len)
{
SpinState *s = opaque;
uint8_t *spin_p = &((uint8_t*)s->spin)[addr];
switch (len) {
case 1:
return ldub_p(spin_p);
case 2:
return lduw_p(spin_p);
case 4:
return ldl_p(spin_p);
default:
assert(0);
}
}
const MemoryRegionOps spin_rw_ops = {
.read = spin_read,
.write = spin_write,
.endianness = DEVICE_BIG_ENDIAN,
};
static int ppce500_spin_initfn(SysBusDevice *dev)
{
SpinState *s;
s = FROM_SYSBUS(SpinState, sysbus_from_qdev(dev));
memory_region_init_io(&s->iomem, &spin_rw_ops, s, "e500 spin pv device",
sizeof(SpinInfo) * MAX_CPUS);
sysbus_init_mmio_region(dev, &s->iomem);
qemu_register_reset(spin_reset, s);
return 0;
}
static SysBusDeviceInfo ppce500_spin_info = {
.init = ppce500_spin_initfn,
.qdev.name = "e500-spin",
.qdev.size = sizeof(SpinState),
};
static void ppce500_spin_register(void)
{
sysbus_register_withprop(&ppce500_spin_info);
}
device_init(ppce500_spin_register);