xemu/hw/char/escc.c
Markus Armbruster 977c736f80 qapi: Mechanically convert FOO_lookup[...] to FOO_str(...)
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <1503564371-26090-14-git-send-email-armbru@redhat.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
2017-09-04 13:09:13 +02:00

1069 lines
30 KiB
C

/*
* QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/sysbus.h"
#include "hw/char/escc.h"
#include "chardev/char-fe.h"
#include "chardev/char-serial.h"
#include "ui/console.h"
#include "ui/input.h"
#include "trace.h"
/*
* Chipset docs:
* "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
* http://www.zilog.com/docs/serial/scc_escc_um.pdf
*
* On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
* (Slave I/O), also produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
* mouse and keyboard ports don't implement all functions and they are
* only asynchronous. There is no DMA.
*
* Z85C30 is also used on PowerMacs. There are some small differences
* between Sparc version (sunzilog) and PowerMac (pmac):
* Offset between control and data registers
* There is some kind of lockup bug, but we can ignore it
* CTS is inverted
* DMA on pmac using DBDMA chip
* pmac can do IRDA and faster rates, sunzilog can only do 38400
* pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
*/
/*
* Modifications:
* 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
* serial mouse queue.
* Implemented serial mouse protocol.
*
* 2010-May-23 Artyom Tarasenko: Reworked IUS logic
*/
typedef enum {
chn_a, chn_b,
} ChnID;
#define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
typedef enum {
ser, kbd, mouse,
} ChnType;
#define SERIO_QUEUE_SIZE 256
typedef struct {
uint8_t data[SERIO_QUEUE_SIZE];
int rptr, wptr, count;
} SERIOQueue;
#define SERIAL_REGS 16
typedef struct ChannelState {
qemu_irq irq;
uint32_t rxint, txint, rxint_under_svc, txint_under_svc;
struct ChannelState *otherchn;
uint32_t reg;
uint8_t wregs[SERIAL_REGS], rregs[SERIAL_REGS];
SERIOQueue queue;
CharBackend chr;
int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
int disabled;
int clock;
uint32_t vmstate_dummy;
ChnID chn; // this channel, A (base+4) or B (base+0)
ChnType type;
uint8_t rx, tx;
QemuInputHandlerState *hs;
} ChannelState;
#define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
typedef struct ESCCState {
SysBusDevice parent_obj;
struct ChannelState chn[2];
uint32_t it_shift;
MemoryRegion mmio;
uint32_t disabled;
uint32_t frequency;
} ESCCState;
#define SERIAL_CTRL 0
#define SERIAL_DATA 1
#define W_CMD 0
#define CMD_PTR_MASK 0x07
#define CMD_CMD_MASK 0x38
#define CMD_HI 0x08
#define CMD_CLR_TXINT 0x28
#define CMD_CLR_IUS 0x38
#define W_INTR 1
#define INTR_INTALL 0x01
#define INTR_TXINT 0x02
#define INTR_RXMODEMSK 0x18
#define INTR_RXINT1ST 0x08
#define INTR_RXINTALL 0x10
#define W_IVEC 2
#define W_RXCTRL 3
#define RXCTRL_RXEN 0x01
#define W_TXCTRL1 4
#define TXCTRL1_PAREN 0x01
#define TXCTRL1_PAREV 0x02
#define TXCTRL1_1STOP 0x04
#define TXCTRL1_1HSTOP 0x08
#define TXCTRL1_2STOP 0x0c
#define TXCTRL1_STPMSK 0x0c
#define TXCTRL1_CLK1X 0x00
#define TXCTRL1_CLK16X 0x40
#define TXCTRL1_CLK32X 0x80
#define TXCTRL1_CLK64X 0xc0
#define TXCTRL1_CLKMSK 0xc0
#define W_TXCTRL2 5
#define TXCTRL2_TXEN 0x08
#define TXCTRL2_BITMSK 0x60
#define TXCTRL2_5BITS 0x00
#define TXCTRL2_7BITS 0x20
#define TXCTRL2_6BITS 0x40
#define TXCTRL2_8BITS 0x60
#define W_SYNC1 6
#define W_SYNC2 7
#define W_TXBUF 8
#define W_MINTR 9
#define MINTR_STATUSHI 0x10
#define MINTR_RST_MASK 0xc0
#define MINTR_RST_B 0x40
#define MINTR_RST_A 0x80
#define MINTR_RST_ALL 0xc0
#define W_MISC1 10
#define W_CLOCK 11
#define CLOCK_TRXC 0x08
#define W_BRGLO 12
#define W_BRGHI 13
#define W_MISC2 14
#define MISC2_PLLDIS 0x30
#define W_EXTINT 15
#define EXTINT_DCD 0x08
#define EXTINT_SYNCINT 0x10
#define EXTINT_CTSINT 0x20
#define EXTINT_TXUNDRN 0x40
#define EXTINT_BRKINT 0x80
#define R_STATUS 0
#define STATUS_RXAV 0x01
#define STATUS_ZERO 0x02
#define STATUS_TXEMPTY 0x04
#define STATUS_DCD 0x08
#define STATUS_SYNC 0x10
#define STATUS_CTS 0x20
#define STATUS_TXUNDRN 0x40
#define STATUS_BRK 0x80
#define R_SPEC 1
#define SPEC_ALLSENT 0x01
#define SPEC_BITS8 0x06
#define R_IVEC 2
#define IVEC_TXINTB 0x00
#define IVEC_LONOINT 0x06
#define IVEC_LORXINTA 0x0c
#define IVEC_LORXINTB 0x04
#define IVEC_LOTXINTA 0x08
#define IVEC_HINOINT 0x60
#define IVEC_HIRXINTA 0x30
#define IVEC_HIRXINTB 0x20
#define IVEC_HITXINTA 0x10
#define R_INTR 3
#define INTR_EXTINTB 0x01
#define INTR_TXINTB 0x02
#define INTR_RXINTB 0x04
#define INTR_EXTINTA 0x08
#define INTR_TXINTA 0x10
#define INTR_RXINTA 0x20
#define R_IPEN 4
#define R_TXCTRL1 5
#define R_TXCTRL2 6
#define R_BC 7
#define R_RXBUF 8
#define R_RXCTRL 9
#define R_MISC 10
#define R_MISC1 11
#define R_BRGLO 12
#define R_BRGHI 13
#define R_MISC1I 14
#define R_EXTINT 15
static void handle_kbd_command(ChannelState *s, int val);
static int serial_can_receive(void *opaque);
static void serial_receive_byte(ChannelState *s, int ch);
static void clear_queue(void *opaque)
{
ChannelState *s = opaque;
SERIOQueue *q = &s->queue;
q->rptr = q->wptr = q->count = 0;
}
static void put_queue(void *opaque, int b)
{
ChannelState *s = opaque;
SERIOQueue *q = &s->queue;
trace_escc_put_queue(CHN_C(s), b);
if (q->count >= SERIO_QUEUE_SIZE)
return;
q->data[q->wptr] = b;
if (++q->wptr == SERIO_QUEUE_SIZE)
q->wptr = 0;
q->count++;
serial_receive_byte(s, 0);
}
static uint32_t get_queue(void *opaque)
{
ChannelState *s = opaque;
SERIOQueue *q = &s->queue;
int val;
if (q->count == 0) {
return 0;
} else {
val = q->data[q->rptr];
if (++q->rptr == SERIO_QUEUE_SIZE)
q->rptr = 0;
q->count--;
}
trace_escc_get_queue(CHN_C(s), val);
if (q->count > 0)
serial_receive_byte(s, 0);
return val;
}
static int escc_update_irq_chn(ChannelState *s)
{
if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
// tx ints enabled, pending
((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
s->rxint == 1) || // rx ints enabled, pending
((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
(s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
return 1;
}
return 0;
}
static void escc_update_irq(ChannelState *s)
{
int irq;
irq = escc_update_irq_chn(s);
irq |= escc_update_irq_chn(s->otherchn);
trace_escc_update_irq(irq);
qemu_set_irq(s->irq, irq);
}
static void escc_reset_chn(ChannelState *s)
{
int i;
s->reg = 0;
for (i = 0; i < SERIAL_REGS; i++) {
s->rregs[i] = 0;
s->wregs[i] = 0;
}
s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
s->wregs[W_MINTR] = MINTR_RST_ALL;
s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
if (s->disabled)
s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
STATUS_CTS | STATUS_TXUNDRN;
else
s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
s->rx = s->tx = 0;
s->rxint = s->txint = 0;
s->rxint_under_svc = s->txint_under_svc = 0;
s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
clear_queue(s);
}
static void escc_reset(DeviceState *d)
{
ESCCState *s = ESCC(d);
escc_reset_chn(&s->chn[0]);
escc_reset_chn(&s->chn[1]);
}
static inline void set_rxint(ChannelState *s)
{
s->rxint = 1;
/* XXX: missing daisy chainnig: chn_b rx should have a lower priority
than chn_a rx/tx/special_condition service*/
s->rxint_under_svc = 1;
if (s->chn == chn_a) {
s->rregs[R_INTR] |= INTR_RXINTA;
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
else
s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
} else {
s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->rregs[R_IVEC] = IVEC_HIRXINTB;
else
s->rregs[R_IVEC] = IVEC_LORXINTB;
}
escc_update_irq(s);
}
static inline void set_txint(ChannelState *s)
{
s->txint = 1;
if (!s->rxint_under_svc) {
s->txint_under_svc = 1;
if (s->chn == chn_a) {
if (s->wregs[W_INTR] & INTR_TXINT) {
s->rregs[R_INTR] |= INTR_TXINTA;
}
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
else
s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
} else {
s->rregs[R_IVEC] = IVEC_TXINTB;
if (s->wregs[W_INTR] & INTR_TXINT) {
s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
}
}
escc_update_irq(s);
}
}
static inline void clr_rxint(ChannelState *s)
{
s->rxint = 0;
s->rxint_under_svc = 0;
if (s->chn == chn_a) {
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
else
s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
s->rregs[R_INTR] &= ~INTR_RXINTA;
} else {
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->rregs[R_IVEC] = IVEC_HINOINT;
else
s->rregs[R_IVEC] = IVEC_LONOINT;
s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
}
if (s->txint)
set_txint(s);
escc_update_irq(s);
}
static inline void clr_txint(ChannelState *s)
{
s->txint = 0;
s->txint_under_svc = 0;
if (s->chn == chn_a) {
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
else
s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
s->rregs[R_INTR] &= ~INTR_TXINTA;
} else {
s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
if (s->wregs[W_MINTR] & MINTR_STATUSHI)
s->rregs[R_IVEC] = IVEC_HINOINT;
else
s->rregs[R_IVEC] = IVEC_LONOINT;
s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
}
if (s->rxint)
set_rxint(s);
escc_update_irq(s);
}
static void escc_update_parameters(ChannelState *s)
{
int speed, parity, data_bits, stop_bits;
QEMUSerialSetParams ssp;
if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != ser)
return;
if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
parity = 'E';
else
parity = 'O';
} else {
parity = 'N';
}
if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
stop_bits = 2;
else
stop_bits = 1;
switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
case TXCTRL2_5BITS:
data_bits = 5;
break;
case TXCTRL2_7BITS:
data_bits = 7;
break;
case TXCTRL2_6BITS:
data_bits = 6;
break;
default:
case TXCTRL2_8BITS:
data_bits = 8;
break;
}
speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
case TXCTRL1_CLK1X:
break;
case TXCTRL1_CLK16X:
speed /= 16;
break;
case TXCTRL1_CLK32X:
speed /= 32;
break;
default:
case TXCTRL1_CLK64X:
speed /= 64;
break;
}
ssp.speed = speed;
ssp.parity = parity;
ssp.data_bits = data_bits;
ssp.stop_bits = stop_bits;
trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}
static void escc_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
ESCCState *serial = opaque;
ChannelState *s;
uint32_t saddr;
int newreg, channel;
val &= 0xff;
saddr = (addr >> serial->it_shift) & 1;
channel = (addr >> (serial->it_shift + 1)) & 1;
s = &serial->chn[channel];
switch (saddr) {
case SERIAL_CTRL:
trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
newreg = 0;
switch (s->reg) {
case W_CMD:
newreg = val & CMD_PTR_MASK;
val &= CMD_CMD_MASK;
switch (val) {
case CMD_HI:
newreg |= CMD_HI;
break;
case CMD_CLR_TXINT:
clr_txint(s);
break;
case CMD_CLR_IUS:
if (s->rxint_under_svc) {
s->rxint_under_svc = 0;
if (s->txint) {
set_txint(s);
}
} else if (s->txint_under_svc) {
s->txint_under_svc = 0;
}
escc_update_irq(s);
break;
default:
break;
}
break;
case W_INTR ... W_RXCTRL:
case W_SYNC1 ... W_TXBUF:
case W_MISC1 ... W_CLOCK:
case W_MISC2 ... W_EXTINT:
s->wregs[s->reg] = val;
break;
case W_TXCTRL1:
case W_TXCTRL2:
s->wregs[s->reg] = val;
escc_update_parameters(s);
break;
case W_BRGLO:
case W_BRGHI:
s->wregs[s->reg] = val;
s->rregs[s->reg] = val;
escc_update_parameters(s);
break;
case W_MINTR:
switch (val & MINTR_RST_MASK) {
case 0:
default:
break;
case MINTR_RST_B:
escc_reset_chn(&serial->chn[0]);
return;
case MINTR_RST_A:
escc_reset_chn(&serial->chn[1]);
return;
case MINTR_RST_ALL:
escc_reset(DEVICE(serial));
return;
}
break;
default:
break;
}
if (s->reg == 0)
s->reg = newreg;
else
s->reg = 0;
break;
case SERIAL_DATA:
trace_escc_mem_writeb_data(CHN_C(s), val);
s->tx = val;
if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
if (qemu_chr_fe_backend_connected(&s->chr)) {
/* XXX this blocks entire thread. Rewrite to use
* qemu_chr_fe_write and background I/O callbacks */
qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
} else if (s->type == kbd && !s->disabled) {
handle_kbd_command(s, val);
}
}
s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
set_txint(s);
break;
default:
break;
}
}
static uint64_t escc_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
ESCCState *serial = opaque;
ChannelState *s;
uint32_t saddr;
uint32_t ret;
int channel;
saddr = (addr >> serial->it_shift) & 1;
channel = (addr >> (serial->it_shift + 1)) & 1;
s = &serial->chn[channel];
switch (saddr) {
case SERIAL_CTRL:
trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
ret = s->rregs[s->reg];
s->reg = 0;
return ret;
case SERIAL_DATA:
s->rregs[R_STATUS] &= ~STATUS_RXAV;
clr_rxint(s);
if (s->type == kbd || s->type == mouse)
ret = get_queue(s);
else
ret = s->rx;
trace_escc_mem_readb_data(CHN_C(s), ret);
qemu_chr_fe_accept_input(&s->chr);
return ret;
default:
break;
}
return 0;
}
static const MemoryRegionOps escc_mem_ops = {
.read = escc_mem_read,
.write = escc_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static int serial_can_receive(void *opaque)
{
ChannelState *s = opaque;
int ret;
if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
|| ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
// char already available
ret = 0;
else
ret = 1;
return ret;
}
static void serial_receive_byte(ChannelState *s, int ch)
{
trace_escc_serial_receive_byte(CHN_C(s), ch);
s->rregs[R_STATUS] |= STATUS_RXAV;
s->rx = ch;
set_rxint(s);
}
static void serial_receive_break(ChannelState *s)
{
s->rregs[R_STATUS] |= STATUS_BRK;
escc_update_irq(s);
}
static void serial_receive1(void *opaque, const uint8_t *buf, int size)
{
ChannelState *s = opaque;
serial_receive_byte(s, buf[0]);
}
static void serial_event(void *opaque, int event)
{
ChannelState *s = opaque;
if (event == CHR_EVENT_BREAK)
serial_receive_break(s);
}
static const VMStateDescription vmstate_escc_chn = {
.name ="escc_chn",
.version_id = 2,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(vmstate_dummy, ChannelState),
VMSTATE_UINT32(reg, ChannelState),
VMSTATE_UINT32(rxint, ChannelState),
VMSTATE_UINT32(txint, ChannelState),
VMSTATE_UINT32(rxint_under_svc, ChannelState),
VMSTATE_UINT32(txint_under_svc, ChannelState),
VMSTATE_UINT8(rx, ChannelState),
VMSTATE_UINT8(tx, ChannelState),
VMSTATE_BUFFER(wregs, ChannelState),
VMSTATE_BUFFER(rregs, ChannelState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_escc = {
.name ="escc",
.version_id = 2,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
ChannelState),
VMSTATE_END_OF_LIST()
}
};
MemoryRegion *escc_init(hwaddr base, qemu_irq irqA, qemu_irq irqB,
Chardev *chrA, Chardev *chrB,
int clock, int it_shift)
{
DeviceState *dev;
SysBusDevice *s;
ESCCState *d;
dev = qdev_create(NULL, TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", 0);
qdev_prop_set_uint32(dev, "frequency", clock);
qdev_prop_set_uint32(dev, "it_shift", it_shift);
qdev_prop_set_chr(dev, "chrB", chrB);
qdev_prop_set_chr(dev, "chrA", chrA);
qdev_prop_set_uint32(dev, "chnBtype", ser);
qdev_prop_set_uint32(dev, "chnAtype", ser);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irqB);
sysbus_connect_irq(s, 1, irqA);
if (base) {
sysbus_mmio_map(s, 0, base);
}
d = ESCC(s);
return &d->mmio;
}
static const uint8_t qcode_to_keycode[Q_KEY_CODE__MAX] = {
[Q_KEY_CODE_SHIFT] = 99,
[Q_KEY_CODE_SHIFT_R] = 110,
[Q_KEY_CODE_ALT] = 19,
[Q_KEY_CODE_ALT_R] = 13,
[Q_KEY_CODE_CTRL] = 76,
[Q_KEY_CODE_CTRL_R] = 76,
[Q_KEY_CODE_ESC] = 29,
[Q_KEY_CODE_1] = 30,
[Q_KEY_CODE_2] = 31,
[Q_KEY_CODE_3] = 32,
[Q_KEY_CODE_4] = 33,
[Q_KEY_CODE_5] = 34,
[Q_KEY_CODE_6] = 35,
[Q_KEY_CODE_7] = 36,
[Q_KEY_CODE_8] = 37,
[Q_KEY_CODE_9] = 38,
[Q_KEY_CODE_0] = 39,
[Q_KEY_CODE_MINUS] = 40,
[Q_KEY_CODE_EQUAL] = 41,
[Q_KEY_CODE_BACKSPACE] = 43,
[Q_KEY_CODE_TAB] = 53,
[Q_KEY_CODE_Q] = 54,
[Q_KEY_CODE_W] = 55,
[Q_KEY_CODE_E] = 56,
[Q_KEY_CODE_R] = 57,
[Q_KEY_CODE_T] = 58,
[Q_KEY_CODE_Y] = 59,
[Q_KEY_CODE_U] = 60,
[Q_KEY_CODE_I] = 61,
[Q_KEY_CODE_O] = 62,
[Q_KEY_CODE_P] = 63,
[Q_KEY_CODE_BRACKET_LEFT] = 64,
[Q_KEY_CODE_BRACKET_RIGHT] = 65,
[Q_KEY_CODE_RET] = 89,
[Q_KEY_CODE_A] = 77,
[Q_KEY_CODE_S] = 78,
[Q_KEY_CODE_D] = 79,
[Q_KEY_CODE_F] = 80,
[Q_KEY_CODE_G] = 81,
[Q_KEY_CODE_H] = 82,
[Q_KEY_CODE_J] = 83,
[Q_KEY_CODE_K] = 84,
[Q_KEY_CODE_L] = 85,
[Q_KEY_CODE_SEMICOLON] = 86,
[Q_KEY_CODE_APOSTROPHE] = 87,
[Q_KEY_CODE_GRAVE_ACCENT] = 42,
[Q_KEY_CODE_BACKSLASH] = 88,
[Q_KEY_CODE_Z] = 100,
[Q_KEY_CODE_X] = 101,
[Q_KEY_CODE_C] = 102,
[Q_KEY_CODE_V] = 103,
[Q_KEY_CODE_B] = 104,
[Q_KEY_CODE_N] = 105,
[Q_KEY_CODE_M] = 106,
[Q_KEY_CODE_COMMA] = 107,
[Q_KEY_CODE_DOT] = 108,
[Q_KEY_CODE_SLASH] = 109,
[Q_KEY_CODE_ASTERISK] = 47,
[Q_KEY_CODE_SPC] = 121,
[Q_KEY_CODE_CAPS_LOCK] = 119,
[Q_KEY_CODE_F1] = 5,
[Q_KEY_CODE_F2] = 6,
[Q_KEY_CODE_F3] = 8,
[Q_KEY_CODE_F4] = 10,
[Q_KEY_CODE_F5] = 12,
[Q_KEY_CODE_F6] = 14,
[Q_KEY_CODE_F7] = 16,
[Q_KEY_CODE_F8] = 17,
[Q_KEY_CODE_F9] = 18,
[Q_KEY_CODE_F10] = 7,
[Q_KEY_CODE_NUM_LOCK] = 98,
[Q_KEY_CODE_SCROLL_LOCK] = 23,
[Q_KEY_CODE_KP_DIVIDE] = 46,
[Q_KEY_CODE_KP_MULTIPLY] = 47,
[Q_KEY_CODE_KP_SUBTRACT] = 71,
[Q_KEY_CODE_KP_ADD] = 125,
[Q_KEY_CODE_KP_ENTER] = 90,
[Q_KEY_CODE_KP_DECIMAL] = 50,
[Q_KEY_CODE_KP_0] = 94,
[Q_KEY_CODE_KP_1] = 112,
[Q_KEY_CODE_KP_2] = 113,
[Q_KEY_CODE_KP_3] = 114,
[Q_KEY_CODE_KP_4] = 91,
[Q_KEY_CODE_KP_5] = 92,
[Q_KEY_CODE_KP_6] = 93,
[Q_KEY_CODE_KP_7] = 68,
[Q_KEY_CODE_KP_8] = 69,
[Q_KEY_CODE_KP_9] = 70,
[Q_KEY_CODE_LESS] = 124,
[Q_KEY_CODE_F11] = 9,
[Q_KEY_CODE_F12] = 11,
[Q_KEY_CODE_HOME] = 52,
[Q_KEY_CODE_PGUP] = 96,
[Q_KEY_CODE_PGDN] = 123,
[Q_KEY_CODE_END] = 74,
[Q_KEY_CODE_LEFT] = 24,
[Q_KEY_CODE_UP] = 20,
[Q_KEY_CODE_DOWN] = 27,
[Q_KEY_CODE_RIGHT] = 28,
[Q_KEY_CODE_INSERT] = 44,
[Q_KEY_CODE_DELETE] = 66,
[Q_KEY_CODE_STOP] = 1,
[Q_KEY_CODE_AGAIN] = 3,
[Q_KEY_CODE_PROPS] = 25,
[Q_KEY_CODE_UNDO] = 26,
[Q_KEY_CODE_FRONT] = 49,
[Q_KEY_CODE_COPY] = 51,
[Q_KEY_CODE_OPEN] = 72,
[Q_KEY_CODE_PASTE] = 73,
[Q_KEY_CODE_FIND] = 95,
[Q_KEY_CODE_CUT] = 97,
[Q_KEY_CODE_LF] = 111,
[Q_KEY_CODE_HELP] = 118,
[Q_KEY_CODE_META_L] = 120,
[Q_KEY_CODE_META_R] = 122,
[Q_KEY_CODE_COMPOSE] = 67,
[Q_KEY_CODE_PRINT] = 22,
[Q_KEY_CODE_SYSRQ] = 21,
};
static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
InputEvent *evt)
{
ChannelState *s = (ChannelState *)dev;
int qcode, keycode;
InputKeyEvent *key;
assert(evt->type == INPUT_EVENT_KIND_KEY);
key = evt->u.key.data;
qcode = qemu_input_key_value_to_qcode(key->key);
trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
key->down);
if (qcode == Q_KEY_CODE_CAPS_LOCK) {
if (key->down) {
s->caps_lock_mode ^= 1;
if (s->caps_lock_mode == 2) {
return; /* Drop second press */
}
} else {
s->caps_lock_mode ^= 2;
if (s->caps_lock_mode == 3) {
return; /* Drop first release */
}
}
}
if (qcode == Q_KEY_CODE_NUM_LOCK) {
if (key->down) {
s->num_lock_mode ^= 1;
if (s->num_lock_mode == 2) {
return; /* Drop second press */
}
} else {
s->num_lock_mode ^= 2;
if (s->num_lock_mode == 3) {
return; /* Drop first release */
}
}
}
keycode = qcode_to_keycode[qcode];
if (!key->down) {
keycode |= 0x80;
}
trace_escc_sunkbd_event_out(keycode);
put_queue(s, keycode);
}
static QemuInputHandler sunkbd_handler = {
.name = "sun keyboard",
.mask = INPUT_EVENT_MASK_KEY,
.event = sunkbd_handle_event,
};
static void handle_kbd_command(ChannelState *s, int val)
{
trace_escc_kbd_command(val);
if (s->led_mode) { // Ignore led byte
s->led_mode = 0;
return;
}
switch (val) {
case 1: // Reset, return type code
clear_queue(s);
put_queue(s, 0xff);
put_queue(s, 4); // Type 4
put_queue(s, 0x7f);
break;
case 0xe: // Set leds
s->led_mode = 1;
break;
case 7: // Query layout
case 0xf:
clear_queue(s);
put_queue(s, 0xfe);
put_queue(s, 0x21); /* en-us layout */
break;
default:
break;
}
}
static void sunmouse_event(void *opaque,
int dx, int dy, int dz, int buttons_state)
{
ChannelState *s = opaque;
int ch;
trace_escc_sunmouse_event(dx, dy, buttons_state);
ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
if (buttons_state & MOUSE_EVENT_LBUTTON)
ch ^= 0x4;
if (buttons_state & MOUSE_EVENT_MBUTTON)
ch ^= 0x2;
if (buttons_state & MOUSE_EVENT_RBUTTON)
ch ^= 0x1;
put_queue(s, ch);
ch = dx;
if (ch > 127)
ch = 127;
else if (ch < -127)
ch = -127;
put_queue(s, ch & 0xff);
ch = -dy;
if (ch > 127)
ch = 127;
else if (ch < -127)
ch = -127;
put_queue(s, ch & 0xff);
// MSC protocol specify two extra motion bytes
put_queue(s, 0);
put_queue(s, 0);
}
void slavio_serial_ms_kbd_init(hwaddr base, qemu_irq irq,
int disabled, int clock, int it_shift)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", disabled);
qdev_prop_set_uint32(dev, "frequency", clock);
qdev_prop_set_uint32(dev, "it_shift", it_shift);
qdev_prop_set_chr(dev, "chrB", NULL);
qdev_prop_set_chr(dev, "chrA", NULL);
qdev_prop_set_uint32(dev, "chnBtype", mouse);
qdev_prop_set_uint32(dev, "chnAtype", kbd);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irq);
sysbus_connect_irq(s, 1, irq);
sysbus_mmio_map(s, 0, base);
}
static void escc_init1(Object *obj)
{
ESCCState *s = ESCC(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
unsigned int i;
for (i = 0; i < 2; i++) {
sysbus_init_irq(dev, &s->chn[i].irq);
s->chn[i].chn = 1 - i;
}
s->chn[0].otherchn = &s->chn[1];
s->chn[1].otherchn = &s->chn[0];
sysbus_init_mmio(dev, &s->mmio);
}
static void escc_realize(DeviceState *dev, Error **errp)
{
ESCCState *s = ESCC(dev);
unsigned int i;
s->chn[0].disabled = s->disabled;
s->chn[1].disabled = s->disabled;
memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
ESCC_SIZE << s->it_shift);
for (i = 0; i < 2; i++) {
if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
s->chn[i].clock = s->frequency / 2;
qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
serial_receive1, serial_event, NULL,
&s->chn[i], NULL, true);
}
}
if (s->chn[0].type == mouse) {
qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
"QEMU Sun Mouse");
}
if (s->chn[1].type == kbd) {
s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
&sunkbd_handler);
}
}
static Property escc_properties[] = {
DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0),
DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0),
DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0),
DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0),
DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0),
DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
DEFINE_PROP_END_OF_LIST(),
};
static void escc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = escc_reset;
dc->realize = escc_realize;
dc->vmsd = &vmstate_escc;
dc->props = escc_properties;
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
}
static const TypeInfo escc_info = {
.name = TYPE_ESCC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ESCCState),
.instance_init = escc_init1,
.class_init = escc_class_init,
};
static void escc_register_types(void)
{
type_register_static(&escc_info);
}
type_init(escc_register_types)