xemu/softmmu_header.h
j_mayer 6ebbf39000 Replace is_user variable with mmu_idx in softmmu core,
allowing support of more than 2 mmu access modes.
Add backward compatibility is_user variable in targets code when needed.
Implement per target cpu_mmu_index function, avoiding duplicated code
  and #ifdef TARGET_xxx in softmmu core functions.
Implement per target mmu modes definitions. As an example, add PowerPC
  hypervisor mode definition and Alpha executive and kernel modes definitions.
Optimize PowerPC case, precomputing mmu_idx when MSR register changes
  and using the same definition in code translation code.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3384 c046a42c-6fe2-441c-8c8c-71466251a162
2007-10-14 07:07:08 +00:00

353 lines
9.8 KiB
C

/*
* Software MMU support
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#if DATA_SIZE == 8
#define SUFFIX q
#define USUFFIX q
#define DATA_TYPE uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define USUFFIX l
#define DATA_TYPE uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define USUFFIX uw
#define DATA_TYPE uint16_t
#define DATA_STYPE int16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define USUFFIX ub
#define DATA_TYPE uint8_t
#define DATA_STYPE int8_t
#else
#error unsupported data size
#endif
#if ACCESS_TYPE < (NB_MMU_MODES)
#define CPU_MMU_INDEX ACCESS_TYPE
#define MMUSUFFIX _mmu
#elif ACCESS_TYPE == (NB_MMU_MODES)
#define CPU_MMU_INDEX (cpu_mmu_index(env))
#define MMUSUFFIX _mmu
#elif ACCESS_TYPE == (NB_MMU_MODES + 1)
#define CPU_MMU_INDEX (cpu_mmu_index(env))
#define MMUSUFFIX _cmmu
#else
#error invalid ACCESS_TYPE
#endif
#if DATA_SIZE == 8
#define RES_TYPE uint64_t
#else
#define RES_TYPE int
#endif
#if ACCESS_TYPE == (NB_MMU_MODES + 1)
#define ADDR_READ addr_code
#else
#define ADDR_READ addr_read
#endif
DATA_TYPE REGPARM(1) glue(glue(__ld, SUFFIX), MMUSUFFIX)(target_ulong addr,
int mmu_idx);
void REGPARM(2) glue(glue(__st, SUFFIX), MMUSUFFIX)(target_ulong addr, DATA_TYPE v, int mmu_idx);
#if (DATA_SIZE <= 4) && (TARGET_LONG_BITS == 32) && defined(__i386__) && \
(ACCESS_TYPE < NB_MMU_MODES) && defined(ASM_SOFTMMU)
#define CPU_TLB_ENTRY_BITS 4
static inline RES_TYPE glue(glue(ld, USUFFIX), MEMSUFFIX)(target_ulong ptr)
{
int res;
asm volatile ("movl %1, %%edx\n"
"movl %1, %%eax\n"
"shrl %3, %%edx\n"
"andl %4, %%eax\n"
"andl %2, %%edx\n"
"leal %5(%%edx, %%ebp), %%edx\n"
"cmpl (%%edx), %%eax\n"
"movl %1, %%eax\n"
"je 1f\n"
"pushl %6\n"
"call %7\n"
"popl %%edx\n"
"movl %%eax, %0\n"
"jmp 2f\n"
"1:\n"
"addl 12(%%edx), %%eax\n"
#if DATA_SIZE == 1
"movzbl (%%eax), %0\n"
#elif DATA_SIZE == 2
"movzwl (%%eax), %0\n"
#elif DATA_SIZE == 4
"movl (%%eax), %0\n"
#else
#error unsupported size
#endif
"2:\n"
: "=r" (res)
: "r" (ptr),
"i" ((CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS),
"i" (TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS),
"i" (TARGET_PAGE_MASK | (DATA_SIZE - 1)),
"m" (*(uint32_t *)offsetof(CPUState, tlb_table[CPU_MMU_INDEX][0].addr_read)),
"i" (CPU_MMU_INDEX),
"m" (*(uint8_t *)&glue(glue(__ld, SUFFIX), MMUSUFFIX))
: "%eax", "%ecx", "%edx", "memory", "cc");
return res;
}
#if DATA_SIZE <= 2
static inline int glue(glue(lds, SUFFIX), MEMSUFFIX)(target_ulong ptr)
{
int res;
asm volatile ("movl %1, %%edx\n"
"movl %1, %%eax\n"
"shrl %3, %%edx\n"
"andl %4, %%eax\n"
"andl %2, %%edx\n"
"leal %5(%%edx, %%ebp), %%edx\n"
"cmpl (%%edx), %%eax\n"
"movl %1, %%eax\n"
"je 1f\n"
"pushl %6\n"
"call %7\n"
"popl %%edx\n"
#if DATA_SIZE == 1
"movsbl %%al, %0\n"
#elif DATA_SIZE == 2
"movswl %%ax, %0\n"
#else
#error unsupported size
#endif
"jmp 2f\n"
"1:\n"
"addl 12(%%edx), %%eax\n"
#if DATA_SIZE == 1
"movsbl (%%eax), %0\n"
#elif DATA_SIZE == 2
"movswl (%%eax), %0\n"
#else
#error unsupported size
#endif
"2:\n"
: "=r" (res)
: "r" (ptr),
"i" ((CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS),
"i" (TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS),
"i" (TARGET_PAGE_MASK | (DATA_SIZE - 1)),
"m" (*(uint32_t *)offsetof(CPUState, tlb_table[CPU_MMU_INDEX][0].addr_read)),
"i" (CPU_MMU_INDEX),
"m" (*(uint8_t *)&glue(glue(__ld, SUFFIX), MMUSUFFIX))
: "%eax", "%ecx", "%edx", "memory", "cc");
return res;
}
#endif
static inline void glue(glue(st, SUFFIX), MEMSUFFIX)(target_ulong ptr, RES_TYPE v)
{
asm volatile ("movl %0, %%edx\n"
"movl %0, %%eax\n"
"shrl %3, %%edx\n"
"andl %4, %%eax\n"
"andl %2, %%edx\n"
"leal %5(%%edx, %%ebp), %%edx\n"
"cmpl (%%edx), %%eax\n"
"movl %0, %%eax\n"
"je 1f\n"
#if DATA_SIZE == 1
"movzbl %b1, %%edx\n"
#elif DATA_SIZE == 2
"movzwl %w1, %%edx\n"
#elif DATA_SIZE == 4
"movl %1, %%edx\n"
#else
#error unsupported size
#endif
"pushl %6\n"
"call %7\n"
"popl %%eax\n"
"jmp 2f\n"
"1:\n"
"addl 8(%%edx), %%eax\n"
#if DATA_SIZE == 1
"movb %b1, (%%eax)\n"
#elif DATA_SIZE == 2
"movw %w1, (%%eax)\n"
#elif DATA_SIZE == 4
"movl %1, (%%eax)\n"
#else
#error unsupported size
#endif
"2:\n"
:
: "r" (ptr),
/* NOTE: 'q' would be needed as constraint, but we could not use it
with T1 ! */
"r" (v),
"i" ((CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS),
"i" (TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS),
"i" (TARGET_PAGE_MASK | (DATA_SIZE - 1)),
"m" (*(uint32_t *)offsetof(CPUState, tlb_table[CPU_MMU_INDEX][0].addr_write)),
"i" (CPU_MMU_INDEX),
"m" (*(uint8_t *)&glue(glue(__st, SUFFIX), MMUSUFFIX))
: "%eax", "%ecx", "%edx", "memory", "cc");
}
#else
/* generic load/store macros */
static inline RES_TYPE glue(glue(ld, USUFFIX), MEMSUFFIX)(target_ulong ptr)
{
int index;
RES_TYPE res;
target_ulong addr;
unsigned long physaddr;
int mmu_idx;
addr = ptr;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = CPU_MMU_INDEX;
if (__builtin_expect(env->tlb_table[mmu_idx][index].ADDR_READ !=
(addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))), 0)) {
res = glue(glue(__ld, SUFFIX), MMUSUFFIX)(addr, mmu_idx);
} else {
physaddr = addr + env->tlb_table[mmu_idx][index].addend;
res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)physaddr);
}
return res;
}
#if DATA_SIZE <= 2
static inline int glue(glue(lds, SUFFIX), MEMSUFFIX)(target_ulong ptr)
{
int res, index;
target_ulong addr;
unsigned long physaddr;
int mmu_idx;
addr = ptr;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = CPU_MMU_INDEX;
if (__builtin_expect(env->tlb_table[mmu_idx][index].ADDR_READ !=
(addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))), 0)) {
res = (DATA_STYPE)glue(glue(__ld, SUFFIX), MMUSUFFIX)(addr, mmu_idx);
} else {
physaddr = addr + env->tlb_table[mmu_idx][index].addend;
res = glue(glue(lds, SUFFIX), _raw)((uint8_t *)physaddr);
}
return res;
}
#endif
#if ACCESS_TYPE != (NB_MMU_MODES + 1)
/* generic store macro */
static inline void glue(glue(st, SUFFIX), MEMSUFFIX)(target_ulong ptr, RES_TYPE v)
{
int index;
target_ulong addr;
unsigned long physaddr;
int mmu_idx;
addr = ptr;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = CPU_MMU_INDEX;
if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_write !=
(addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))), 0)) {
glue(glue(__st, SUFFIX), MMUSUFFIX)(addr, v, mmu_idx);
} else {
physaddr = addr + env->tlb_table[mmu_idx][index].addend;
glue(glue(st, SUFFIX), _raw)((uint8_t *)physaddr, v);
}
}
#endif /* ACCESS_TYPE != (NB_MMU_MODES + 1) */
#endif /* !asm */
#if ACCESS_TYPE != (NB_MMU_MODES + 1)
#if DATA_SIZE == 8
static inline float64 glue(ldfq, MEMSUFFIX)(target_ulong ptr)
{
union {
float64 d;
uint64_t i;
} u;
u.i = glue(ldq, MEMSUFFIX)(ptr);
return u.d;
}
static inline void glue(stfq, MEMSUFFIX)(target_ulong ptr, float64 v)
{
union {
float64 d;
uint64_t i;
} u;
u.d = v;
glue(stq, MEMSUFFIX)(ptr, u.i);
}
#endif /* DATA_SIZE == 8 */
#if DATA_SIZE == 4
static inline float32 glue(ldfl, MEMSUFFIX)(target_ulong ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = glue(ldl, MEMSUFFIX)(ptr);
return u.f;
}
static inline void glue(stfl, MEMSUFFIX)(target_ulong ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
glue(stl, MEMSUFFIX)(ptr, u.i);
}
#endif /* DATA_SIZE == 4 */
#endif /* ACCESS_TYPE != (NB_MMU_MODES + 1) */
#undef RES_TYPE
#undef DATA_TYPE
#undef DATA_STYPE
#undef SUFFIX
#undef USUFFIX
#undef DATA_SIZE
#undef CPU_MMU_INDEX
#undef MMUSUFFIX
#undef ADDR_READ