xemu/hw/ppc_prep.c
Jan Kiszka 7d932dfdc5 hpet/rtc: Rework RTC IRQ replacement by HPET
Allow the intercept the RTC IRQ for the HPET legacy mode. Then push
routing to IRQ8 completely into the HPET. This allows to turn
hpet_in_legacy_mode() into a private function. Furthermore, this stops
the RTC from clearing IRQ8 even if the HPET is in control.

This patch comes with a side effect: The RTC timers will no longer be
stoppend when there is no IRQ consumer, possibly causing a minor
performance degration. But as the guest may want to redirect the RTC to
the SCI in that mode, it should normally disable unused IRQ source
anyway.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-06-13 15:33:00 +03:00

804 lines
22 KiB
C

/*
* QEMU PPC PREP hardware System Emulator
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "nvram.h"
#include "pc.h"
#include "fdc.h"
#include "net.h"
#include "sysemu.h"
#include "isa.h"
#include "pci.h"
#include "prep_pci.h"
#include "usb-ohci.h"
#include "ppc.h"
#include "boards.h"
#include "qemu-log.h"
#include "ide.h"
#include "loader.h"
#include "mc146818rtc.h"
//#define HARD_DEBUG_PPC_IO
//#define DEBUG_PPC_IO
/* SMP is not enabled, for now */
#define MAX_CPUS 1
#define MAX_IDE_BUS 2
#define BIOS_SIZE (1024 * 1024)
#define BIOS_FILENAME "ppc_rom.bin"
#define KERNEL_LOAD_ADDR 0x01000000
#define INITRD_LOAD_ADDR 0x01800000
#if defined (HARD_DEBUG_PPC_IO) && !defined (DEBUG_PPC_IO)
#define DEBUG_PPC_IO
#endif
#if defined (HARD_DEBUG_PPC_IO)
#define PPC_IO_DPRINTF(fmt, ...) \
do { \
if (qemu_loglevel_mask(CPU_LOG_IOPORT)) { \
qemu_log("%s: " fmt, __func__ , ## __VA_ARGS__); \
} else { \
printf("%s : " fmt, __func__ , ## __VA_ARGS__); \
} \
} while (0)
#elif defined (DEBUG_PPC_IO)
#define PPC_IO_DPRINTF(fmt, ...) \
qemu_log_mask(CPU_LOG_IOPORT, fmt, ## __VA_ARGS__)
#else
#define PPC_IO_DPRINTF(fmt, ...) do { } while (0)
#endif
/* Constants for devices init */
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 13, 13 };
#define NE2000_NB_MAX 6
static uint32_t ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 };
static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
//static PITState *pit;
/* ISA IO ports bridge */
#define PPC_IO_BASE 0x80000000
#if 0
/* Speaker port 0x61 */
static int speaker_data_on;
static int dummy_refresh_clock;
#endif
static void speaker_ioport_write (void *opaque, uint32_t addr, uint32_t val)
{
#if 0
speaker_data_on = (val >> 1) & 1;
pit_set_gate(pit, 2, val & 1);
#endif
}
static uint32_t speaker_ioport_read (void *opaque, uint32_t addr)
{
#if 0
int out;
out = pit_get_out(pit, 2, qemu_get_clock(vm_clock));
dummy_refresh_clock ^= 1;
return (speaker_data_on << 1) | pit_get_gate(pit, 2) | (out << 5) |
(dummy_refresh_clock << 4);
#endif
return 0;
}
/* PCI intack register */
/* Read-only register (?) */
static void _PPC_intack_write (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#if 0
printf("%s: 0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", __func__, addr,
value);
#endif
}
static inline uint32_t _PPC_intack_read(target_phys_addr_t addr)
{
uint32_t retval = 0;
if ((addr & 0xf) == 0)
retval = pic_intack_read(isa_pic);
#if 0
printf("%s: 0x" TARGET_FMT_plx " <= %08" PRIx32 "\n", __func__, addr,
retval);
#endif
return retval;
}
static uint32_t PPC_intack_readb (void *opaque, target_phys_addr_t addr)
{
return _PPC_intack_read(addr);
}
static uint32_t PPC_intack_readw (void *opaque, target_phys_addr_t addr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return bswap16(_PPC_intack_read(addr));
#else
return _PPC_intack_read(addr);
#endif
}
static uint32_t PPC_intack_readl (void *opaque, target_phys_addr_t addr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return bswap32(_PPC_intack_read(addr));
#else
return _PPC_intack_read(addr);
#endif
}
static CPUWriteMemoryFunc * const PPC_intack_write[] = {
&_PPC_intack_write,
&_PPC_intack_write,
&_PPC_intack_write,
};
static CPUReadMemoryFunc * const PPC_intack_read[] = {
&PPC_intack_readb,
&PPC_intack_readw,
&PPC_intack_readl,
};
/* PowerPC control and status registers */
#if 0 // Not used
static struct {
/* IDs */
uint32_t veni_devi;
uint32_t revi;
/* Control and status */
uint32_t gcsr;
uint32_t xcfr;
uint32_t ct32;
uint32_t mcsr;
/* General purpose registers */
uint32_t gprg[6];
/* Exceptions */
uint32_t feen;
uint32_t fest;
uint32_t fema;
uint32_t fecl;
uint32_t eeen;
uint32_t eest;
uint32_t eecl;
uint32_t eeint;
uint32_t eemck0;
uint32_t eemck1;
/* Error diagnostic */
} XCSR;
static void PPC_XCSR_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
printf("%s: 0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", __func__, addr,
value);
}
static void PPC_XCSR_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap16(value);
#endif
printf("%s: 0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", __func__, addr,
value);
}
static void PPC_XCSR_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
printf("%s: 0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", __func__, addr,
value);
}
static uint32_t PPC_XCSR_readb (void *opaque, target_phys_addr_t addr)
{
uint32_t retval = 0;
printf("%s: 0x" TARGET_FMT_plx " <= %08" PRIx32 "\n", __func__, addr,
retval);
return retval;
}
static uint32_t PPC_XCSR_readw (void *opaque, target_phys_addr_t addr)
{
uint32_t retval = 0;
printf("%s: 0x" TARGET_FMT_plx " <= %08" PRIx32 "\n", __func__, addr,
retval);
#ifdef TARGET_WORDS_BIGENDIAN
retval = bswap16(retval);
#endif
return retval;
}
static uint32_t PPC_XCSR_readl (void *opaque, target_phys_addr_t addr)
{
uint32_t retval = 0;
printf("%s: 0x" TARGET_FMT_plx " <= %08" PRIx32 "\n", __func__, addr,
retval);
#ifdef TARGET_WORDS_BIGENDIAN
retval = bswap32(retval);
#endif
return retval;
}
static CPUWriteMemoryFunc * const PPC_XCSR_write[] = {
&PPC_XCSR_writeb,
&PPC_XCSR_writew,
&PPC_XCSR_writel,
};
static CPUReadMemoryFunc * const PPC_XCSR_read[] = {
&PPC_XCSR_readb,
&PPC_XCSR_readw,
&PPC_XCSR_readl,
};
#endif
/* Fake super-io ports for PREP platform (Intel 82378ZB) */
typedef struct sysctrl_t {
qemu_irq reset_irq;
M48t59State *nvram;
uint8_t state;
uint8_t syscontrol;
uint8_t fake_io[2];
int contiguous_map;
int endian;
} sysctrl_t;
enum {
STATE_HARDFILE = 0x01,
};
static sysctrl_t *sysctrl;
static void PREP_io_write (void *opaque, uint32_t addr, uint32_t val)
{
sysctrl_t *sysctrl = opaque;
PPC_IO_DPRINTF("0x%08" PRIx32 " => 0x%02" PRIx32 "\n", addr - PPC_IO_BASE,
val);
sysctrl->fake_io[addr - 0x0398] = val;
}
static uint32_t PREP_io_read (void *opaque, uint32_t addr)
{
sysctrl_t *sysctrl = opaque;
PPC_IO_DPRINTF("0x%08" PRIx32 " <= 0x%02" PRIx32 "\n", addr - PPC_IO_BASE,
sysctrl->fake_io[addr - 0x0398]);
return sysctrl->fake_io[addr - 0x0398];
}
static void PREP_io_800_writeb (void *opaque, uint32_t addr, uint32_t val)
{
sysctrl_t *sysctrl = opaque;
PPC_IO_DPRINTF("0x%08" PRIx32 " => 0x%02" PRIx32 "\n",
addr - PPC_IO_BASE, val);
switch (addr) {
case 0x0092:
/* Special port 92 */
/* Check soft reset asked */
if (val & 0x01) {
qemu_irq_raise(sysctrl->reset_irq);
} else {
qemu_irq_lower(sysctrl->reset_irq);
}
/* Check LE mode */
if (val & 0x02) {
sysctrl->endian = 1;
} else {
sysctrl->endian = 0;
}
break;
case 0x0800:
/* Motorola CPU configuration register : read-only */
break;
case 0x0802:
/* Motorola base module feature register : read-only */
break;
case 0x0803:
/* Motorola base module status register : read-only */
break;
case 0x0808:
/* Hardfile light register */
if (val & 1)
sysctrl->state |= STATE_HARDFILE;
else
sysctrl->state &= ~STATE_HARDFILE;
break;
case 0x0810:
/* Password protect 1 register */
if (sysctrl->nvram != NULL)
m48t59_toggle_lock(sysctrl->nvram, 1);
break;
case 0x0812:
/* Password protect 2 register */
if (sysctrl->nvram != NULL)
m48t59_toggle_lock(sysctrl->nvram, 2);
break;
case 0x0814:
/* L2 invalidate register */
// tlb_flush(first_cpu, 1);
break;
case 0x081C:
/* system control register */
sysctrl->syscontrol = val & 0x0F;
break;
case 0x0850:
/* I/O map type register */
sysctrl->contiguous_map = val & 0x01;
break;
default:
printf("ERROR: unaffected IO port write: %04" PRIx32
" => %02" PRIx32"\n", addr, val);
break;
}
}
static uint32_t PREP_io_800_readb (void *opaque, uint32_t addr)
{
sysctrl_t *sysctrl = opaque;
uint32_t retval = 0xFF;
switch (addr) {
case 0x0092:
/* Special port 92 */
retval = 0x00;
break;
case 0x0800:
/* Motorola CPU configuration register */
retval = 0xEF; /* MPC750 */
break;
case 0x0802:
/* Motorola Base module feature register */
retval = 0xAD; /* No ESCC, PMC slot neither ethernet */
break;
case 0x0803:
/* Motorola base module status register */
retval = 0xE0; /* Standard MPC750 */
break;
case 0x080C:
/* Equipment present register:
* no L2 cache
* no upgrade processor
* no cards in PCI slots
* SCSI fuse is bad
*/
retval = 0x3C;
break;
case 0x0810:
/* Motorola base module extended feature register */
retval = 0x39; /* No USB, CF and PCI bridge. NVRAM present */
break;
case 0x0814:
/* L2 invalidate: don't care */
break;
case 0x0818:
/* Keylock */
retval = 0x00;
break;
case 0x081C:
/* system control register
* 7 - 6 / 1 - 0: L2 cache enable
*/
retval = sysctrl->syscontrol;
break;
case 0x0823:
/* */
retval = 0x03; /* no L2 cache */
break;
case 0x0850:
/* I/O map type register */
retval = sysctrl->contiguous_map;
break;
default:
printf("ERROR: unaffected IO port: %04" PRIx32 " read\n", addr);
break;
}
PPC_IO_DPRINTF("0x%08" PRIx32 " <= 0x%02" PRIx32 "\n",
addr - PPC_IO_BASE, retval);
return retval;
}
static inline target_phys_addr_t prep_IO_address(sysctrl_t *sysctrl,
target_phys_addr_t addr)
{
if (sysctrl->contiguous_map == 0) {
/* 64 KB contiguous space for IOs */
addr &= 0xFFFF;
} else {
/* 8 MB non-contiguous space for IOs */
addr = (addr & 0x1F) | ((addr & 0x007FFF000) >> 7);
}
return addr;
}
static void PPC_prep_io_writeb (void *opaque, target_phys_addr_t addr,
uint32_t value)
{
sysctrl_t *sysctrl = opaque;
addr = prep_IO_address(sysctrl, addr);
cpu_outb(addr, value);
}
static uint32_t PPC_prep_io_readb (void *opaque, target_phys_addr_t addr)
{
sysctrl_t *sysctrl = opaque;
uint32_t ret;
addr = prep_IO_address(sysctrl, addr);
ret = cpu_inb(addr);
return ret;
}
static void PPC_prep_io_writew (void *opaque, target_phys_addr_t addr,
uint32_t value)
{
sysctrl_t *sysctrl = opaque;
addr = prep_IO_address(sysctrl, addr);
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap16(value);
#endif
PPC_IO_DPRINTF("0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", addr, value);
cpu_outw(addr, value);
}
static uint32_t PPC_prep_io_readw (void *opaque, target_phys_addr_t addr)
{
sysctrl_t *sysctrl = opaque;
uint32_t ret;
addr = prep_IO_address(sysctrl, addr);
ret = cpu_inw(addr);
#ifdef TARGET_WORDS_BIGENDIAN
ret = bswap16(ret);
#endif
PPC_IO_DPRINTF("0x" TARGET_FMT_plx " <= 0x%08" PRIx32 "\n", addr, ret);
return ret;
}
static void PPC_prep_io_writel (void *opaque, target_phys_addr_t addr,
uint32_t value)
{
sysctrl_t *sysctrl = opaque;
addr = prep_IO_address(sysctrl, addr);
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
PPC_IO_DPRINTF("0x" TARGET_FMT_plx " => 0x%08" PRIx32 "\n", addr, value);
cpu_outl(addr, value);
}
static uint32_t PPC_prep_io_readl (void *opaque, target_phys_addr_t addr)
{
sysctrl_t *sysctrl = opaque;
uint32_t ret;
addr = prep_IO_address(sysctrl, addr);
ret = cpu_inl(addr);
#ifdef TARGET_WORDS_BIGENDIAN
ret = bswap32(ret);
#endif
PPC_IO_DPRINTF("0x" TARGET_FMT_plx " <= 0x%08" PRIx32 "\n", addr, ret);
return ret;
}
static CPUWriteMemoryFunc * const PPC_prep_io_write[] = {
&PPC_prep_io_writeb,
&PPC_prep_io_writew,
&PPC_prep_io_writel,
};
static CPUReadMemoryFunc * const PPC_prep_io_read[] = {
&PPC_prep_io_readb,
&PPC_prep_io_readw,
&PPC_prep_io_readl,
};
#define NVRAM_SIZE 0x2000
static void cpu_request_exit(void *opaque, int irq, int level)
{
CPUState *env = cpu_single_env;
if (env && level) {
cpu_exit(env);
}
}
/* PowerPC PREP hardware initialisation */
static void ppc_prep_init (ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
CPUState *env = NULL, *envs[MAX_CPUS];
char *filename;
nvram_t nvram;
M48t59State *m48t59;
int PPC_io_memory;
int linux_boot, i, nb_nics1, bios_size;
ram_addr_t ram_offset, bios_offset;
uint32_t kernel_base, kernel_size, initrd_base, initrd_size;
PCIBus *pci_bus;
qemu_irq *i8259;
qemu_irq *cpu_exit_irq;
int ppc_boot_device;
DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
DriveInfo *fd[MAX_FD];
sysctrl = qemu_mallocz(sizeof(sysctrl_t));
linux_boot = (kernel_filename != NULL);
/* init CPUs */
if (cpu_model == NULL)
cpu_model = "602";
for (i = 0; i < smp_cpus; i++) {
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find PowerPC CPU definition\n");
exit(1);
}
if (env->flags & POWERPC_FLAG_RTC_CLK) {
/* POWER / PowerPC 601 RTC clock frequency is 7.8125 MHz */
cpu_ppc_tb_init(env, 7812500UL);
} else {
/* Set time-base frequency to 100 Mhz */
cpu_ppc_tb_init(env, 100UL * 1000UL * 1000UL);
}
qemu_register_reset((QEMUResetHandler*)&cpu_reset, env);
envs[i] = env;
}
/* allocate RAM */
ram_offset = qemu_ram_alloc(ram_size);
cpu_register_physical_memory(0, ram_size, ram_offset);
/* allocate and load BIOS */
bios_offset = qemu_ram_alloc(BIOS_SIZE);
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size > 0 && bios_size <= BIOS_SIZE) {
target_phys_addr_t bios_addr;
bios_size = (bios_size + 0xfff) & ~0xfff;
bios_addr = (uint32_t)(-bios_size);
cpu_register_physical_memory(bios_addr, bios_size,
bios_offset | IO_MEM_ROM);
bios_size = load_image_targphys(filename, bios_addr, bios_size);
}
if (bios_size < 0 || bios_size > BIOS_SIZE) {
hw_error("qemu: could not load PPC PREP bios '%s'\n", bios_name);
}
if (filename) {
qemu_free(filename);
}
if (env->nip < 0xFFF80000 && bios_size < 0x00100000) {
hw_error("PowerPC 601 / 620 / 970 need a 1MB BIOS\n");
}
if (linux_boot) {
kernel_base = KERNEL_LOAD_ADDR;
/* now we can load the kernel */
kernel_size = load_image_targphys(kernel_filename, kernel_base,
ram_size - kernel_base);
if (kernel_size < 0) {
hw_error("qemu: could not load kernel '%s'\n", kernel_filename);
exit(1);
}
/* load initrd */
if (initrd_filename) {
initrd_base = INITRD_LOAD_ADDR;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
hw_error("qemu: could not load initial ram disk '%s'\n",
initrd_filename);
}
} else {
initrd_base = 0;
initrd_size = 0;
}
ppc_boot_device = 'm';
} else {
kernel_base = 0;
kernel_size = 0;
initrd_base = 0;
initrd_size = 0;
ppc_boot_device = '\0';
/* For now, OHW cannot boot from the network. */
for (i = 0; boot_device[i] != '\0'; i++) {
if (boot_device[i] >= 'a' && boot_device[i] <= 'f') {
ppc_boot_device = boot_device[i];
break;
}
}
if (ppc_boot_device == '\0') {
fprintf(stderr, "No valid boot device for Mac99 machine\n");
exit(1);
}
}
isa_mem_base = 0xc0000000;
if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) {
hw_error("Only 6xx bus is supported on PREP machine\n");
}
i8259 = i8259_init(first_cpu->irq_inputs[PPC6xx_INPUT_INT]);
pci_bus = pci_prep_init(i8259);
/* Hmm, prep has no pci-isa bridge ??? */
isa_bus_new(NULL);
isa_bus_irqs(i8259);
// pci_bus = i440fx_init();
/* Register 8 MB of ISA IO space (needed for non-contiguous map) */
PPC_io_memory = cpu_register_io_memory(PPC_prep_io_read,
PPC_prep_io_write, sysctrl);
cpu_register_physical_memory(0x80000000, 0x00800000, PPC_io_memory);
/* init basic PC hardware */
pci_vga_init(pci_bus, 0, 0);
// openpic = openpic_init(0x00000000, 0xF0000000, 1);
// pit = pit_init(0x40, i8259[0]);
rtc_init(2000, NULL);
if (serial_hds[0])
serial_isa_init(0, serial_hds[0]);
nb_nics1 = nb_nics;
if (nb_nics1 > NE2000_NB_MAX)
nb_nics1 = NE2000_NB_MAX;
for(i = 0; i < nb_nics1; i++) {
if (nd_table[i].model == NULL) {
nd_table[i].model = qemu_strdup("ne2k_isa");
}
if (strcmp(nd_table[i].model, "ne2k_isa") == 0) {
isa_ne2000_init(ne2000_io[i], ne2000_irq[i], &nd_table[i]);
} else {
pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);
}
}
if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
fprintf(stderr, "qemu: too many IDE bus\n");
exit(1);
}
for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
}
for(i = 0; i < MAX_IDE_BUS; i++) {
isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
hd[2 * i],
hd[2 * i + 1]);
}
isa_create_simple("i8042");
cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
DMA_init(1, cpu_exit_irq);
// SB16_init();
for(i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
}
fdctrl_init_isa(fd);
/* Register speaker port */
register_ioport_read(0x61, 1, 1, speaker_ioport_read, NULL);
register_ioport_write(0x61, 1, 1, speaker_ioport_write, NULL);
/* Register fake IO ports for PREP */
sysctrl->reset_irq = first_cpu->irq_inputs[PPC6xx_INPUT_HRESET];
register_ioport_read(0x398, 2, 1, &PREP_io_read, sysctrl);
register_ioport_write(0x398, 2, 1, &PREP_io_write, sysctrl);
/* System control ports */
register_ioport_read(0x0092, 0x01, 1, &PREP_io_800_readb, sysctrl);
register_ioport_write(0x0092, 0x01, 1, &PREP_io_800_writeb, sysctrl);
register_ioport_read(0x0800, 0x52, 1, &PREP_io_800_readb, sysctrl);
register_ioport_write(0x0800, 0x52, 1, &PREP_io_800_writeb, sysctrl);
/* PCI intack location */
PPC_io_memory = cpu_register_io_memory(PPC_intack_read,
PPC_intack_write, NULL);
cpu_register_physical_memory(0xBFFFFFF0, 0x4, PPC_io_memory);
/* PowerPC control and status register group */
#if 0
PPC_io_memory = cpu_register_io_memory(PPC_XCSR_read, PPC_XCSR_write,
NULL);
cpu_register_physical_memory(0xFEFF0000, 0x1000, PPC_io_memory);
#endif
if (usb_enabled) {
usb_ohci_init_pci(pci_bus, -1);
}
m48t59 = m48t59_init(i8259[8], 0, 0x0074, NVRAM_SIZE, 59);
if (m48t59 == NULL)
return;
sysctrl->nvram = m48t59;
/* Initialise NVRAM */
nvram.opaque = m48t59;
nvram.read_fn = &m48t59_read;
nvram.write_fn = &m48t59_write;
PPC_NVRAM_set_params(&nvram, NVRAM_SIZE, "PREP", ram_size, ppc_boot_device,
kernel_base, kernel_size,
kernel_cmdline,
initrd_base, initrd_size,
/* XXX: need an option to load a NVRAM image */
0,
graphic_width, graphic_height, graphic_depth);
/* Special port to get debug messages from Open-Firmware */
register_ioport_write(0x0F00, 4, 1, &PPC_debug_write, NULL);
}
static QEMUMachine prep_machine = {
.name = "prep",
.desc = "PowerPC PREP platform",
.init = ppc_prep_init,
.max_cpus = MAX_CPUS,
};
static void prep_machine_init(void)
{
qemu_register_machine(&prep_machine);
}
machine_init(prep_machine_init);