xemu/target/ppc/fpu_helper.c
Mark Cave-Ayland c9f4e4d8b6 target/ppc: improve VSX_FMADD with new GEN_VSX_HELPER_VSX_MADD macro
Introduce a new GEN_VSX_HELPER_VSX_MADD macro for the generator function which
enables the source and destination registers to be decoded at translation time.

This enables the determination of a or m form to be made at translation time so
that a single helper function can now be used for both variants.

Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190616123751.781-16-mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-07-02 09:43:58 +10:00

3422 lines
137 KiB
C

/*
* PowerPC floating point and SPE emulation helpers for QEMU.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "internal.h"
#include "fpu/softfloat.h"
static inline float128 float128_snan_to_qnan(float128 x)
{
float128 r;
r.high = x.high | 0x0000800000000000;
r.low = x.low;
return r;
}
#define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
#define float32_snan_to_qnan(x) ((x) | 0x00400000)
#define float16_snan_to_qnan(x) ((x) | 0x0200)
static inline bool fp_exceptions_enabled(CPUPPCState *env)
{
#ifdef CONFIG_USER_ONLY
return true;
#else
return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
#endif
}
/*****************************************************************************/
/* Floating point operations helpers */
/*
* This is the non-arithmatic conversion that happens e.g. on loads.
* In the Power ISA pseudocode, this is called DOUBLE.
*/
uint64_t helper_todouble(uint32_t arg)
{
uint32_t abs_arg = arg & 0x7fffffff;
uint64_t ret;
if (likely(abs_arg >= 0x00800000)) {
/* Normalized operand, or Inf, or NaN. */
ret = (uint64_t)extract32(arg, 30, 2) << 62;
ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
ret |= (uint64_t)extract32(arg, 0, 30) << 29;
} else {
/* Zero or Denormalized operand. */
ret = (uint64_t)extract32(arg, 31, 1) << 63;
if (unlikely(abs_arg != 0)) {
/* Denormalized operand. */
int shift = clz32(abs_arg) - 9;
int exp = -126 - shift + 1023;
ret |= (uint64_t)exp << 52;
ret |= abs_arg << (shift + 29);
}
}
return ret;
}
/*
* This is the non-arithmatic conversion that happens e.g. on stores.
* In the Power ISA pseudocode, this is called SINGLE.
*/
uint32_t helper_tosingle(uint64_t arg)
{
int exp = extract64(arg, 52, 11);
uint32_t ret;
if (likely(exp > 896)) {
/* No denormalization required (includes Inf, NaN). */
ret = extract64(arg, 62, 2) << 30;
ret |= extract64(arg, 29, 30);
} else {
/*
* Zero or Denormal result. If the exponent is in bounds for
* a single-precision denormal result, extract the proper
* bits. If the input is not zero, and the exponent is out of
* bounds, then the result is undefined; this underflows to
* zero.
*/
ret = extract64(arg, 63, 1) << 31;
if (unlikely(exp >= 874)) {
/* Denormal result. */
ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
}
}
return ret;
}
static inline int ppc_float32_get_unbiased_exp(float32 f)
{
return ((f >> 23) & 0xFF) - 127;
}
static inline int ppc_float64_get_unbiased_exp(float64 f)
{
return ((f >> 52) & 0x7FF) - 1023;
}
/* Classify a floating-point number. */
enum {
is_normal = 1,
is_zero = 2,
is_denormal = 4,
is_inf = 8,
is_qnan = 16,
is_snan = 32,
is_neg = 64,
};
#define COMPUTE_CLASS(tp) \
static int tp##_classify(tp arg) \
{ \
int ret = tp##_is_neg(arg) * is_neg; \
if (unlikely(tp##_is_any_nan(arg))) { \
float_status dummy = { }; /* snan_bit_is_one = 0 */ \
ret |= (tp##_is_signaling_nan(arg, &dummy) \
? is_snan : is_qnan); \
} else if (unlikely(tp##_is_infinity(arg))) { \
ret |= is_inf; \
} else if (tp##_is_zero(arg)) { \
ret |= is_zero; \
} else if (tp##_is_zero_or_denormal(arg)) { \
ret |= is_denormal; \
} else { \
ret |= is_normal; \
} \
return ret; \
}
COMPUTE_CLASS(float16)
COMPUTE_CLASS(float32)
COMPUTE_CLASS(float64)
COMPUTE_CLASS(float128)
static void set_fprf_from_class(CPUPPCState *env, int class)
{
static const uint8_t fprf[6][2] = {
{ 0x04, 0x08 }, /* normalized */
{ 0x02, 0x12 }, /* zero */
{ 0x14, 0x18 }, /* denormalized */
{ 0x05, 0x09 }, /* infinity */
{ 0x11, 0x11 }, /* qnan */
{ 0x00, 0x00 }, /* snan -- flags are undefined */
};
bool isneg = class & is_neg;
env->fpscr &= ~(0x1F << FPSCR_FPRF);
env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
}
#define COMPUTE_FPRF(tp) \
void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
{ \
set_fprf_from_class(env, tp##_classify(arg)); \
}
COMPUTE_FPRF(float16)
COMPUTE_FPRF(float32)
COMPUTE_FPRF(float64)
COMPUTE_FPRF(float128)
/* Floating-point invalid operations exception */
static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
{
/* Update the floating-point invalid operation summary */
env->fpscr |= 1 << FPSCR_VX;
/* Update the floating-point exception summary */
env->fpscr |= FP_FX;
if (fpscr_ve != 0) {
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
if (fp_exceptions_enabled(env)) {
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_FP | op, retaddr);
}
}
}
static void finish_invalid_op_arith(CPUPPCState *env, int op,
bool set_fpcc, uintptr_t retaddr)
{
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
if (fpscr_ve == 0) {
if (set_fpcc) {
env->fpscr &= ~(0xF << FPSCR_FPCC);
env->fpscr |= 0x11 << FPSCR_FPCC;
}
}
finish_invalid_op_excp(env, op, retaddr);
}
/* Signalling NaN */
static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
{
env->fpscr |= 1 << FPSCR_VXSNAN;
finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
}
/* Magnitude subtraction of infinities */
static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
uintptr_t retaddr)
{
env->fpscr |= 1 << FPSCR_VXISI;
finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
}
/* Division of infinity by infinity */
static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
uintptr_t retaddr)
{
env->fpscr |= 1 << FPSCR_VXIDI;
finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
}
/* Division of zero by zero */
static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
uintptr_t retaddr)
{
env->fpscr |= 1 << FPSCR_VXZDZ;
finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
}
/* Multiplication of zero by infinity */
static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
uintptr_t retaddr)
{
env->fpscr |= 1 << FPSCR_VXIMZ;
finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
}
/* Square root of a negative number */
static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
uintptr_t retaddr)
{
env->fpscr |= 1 << FPSCR_VXSQRT;
finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
}
/* Ordered comparison of NaN */
static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
uintptr_t retaddr)
{
env->fpscr |= 1 << FPSCR_VXVC;
if (set_fpcc) {
env->fpscr &= ~(0xF << FPSCR_FPCC);
env->fpscr |= 0x11 << FPSCR_FPCC;
}
/* Update the floating-point invalid operation summary */
env->fpscr |= 1 << FPSCR_VX;
/* Update the floating-point exception summary */
env->fpscr |= FP_FX;
/* We must update the target FPR before raising the exception */
if (fpscr_ve != 0) {
CPUState *cs = env_cpu(env);
cs->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* Exception is differed */
}
}
/* Invalid conversion */
static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
uintptr_t retaddr)
{
env->fpscr |= 1 << FPSCR_VXCVI;
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
if (fpscr_ve == 0) {
if (set_fpcc) {
env->fpscr &= ~(0xF << FPSCR_FPCC);
env->fpscr |= 0x11 << FPSCR_FPCC;
}
}
finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
}
static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
{
env->fpscr |= 1 << FPSCR_ZX;
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
/* Update the floating-point exception summary */
env->fpscr |= FP_FX;
if (fpscr_ze != 0) {
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
if (fp_exceptions_enabled(env)) {
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
raddr);
}
}
}
static inline void float_overflow_excp(CPUPPCState *env)
{
CPUState *cs = env_cpu(env);
env->fpscr |= 1 << FPSCR_OX;
/* Update the floating-point exception summary */
env->fpscr |= FP_FX;
if (fpscr_oe != 0) {
/* XXX: should adjust the result */
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* We must update the target FPR before raising the exception */
cs->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
} else {
env->fpscr |= 1 << FPSCR_XX;
env->fpscr |= 1 << FPSCR_FI;
}
}
static inline void float_underflow_excp(CPUPPCState *env)
{
CPUState *cs = env_cpu(env);
env->fpscr |= 1 << FPSCR_UX;
/* Update the floating-point exception summary */
env->fpscr |= FP_FX;
if (fpscr_ue != 0) {
/* XXX: should adjust the result */
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* We must update the target FPR before raising the exception */
cs->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
}
}
static inline void float_inexact_excp(CPUPPCState *env)
{
CPUState *cs = env_cpu(env);
env->fpscr |= 1 << FPSCR_FI;
env->fpscr |= 1 << FPSCR_XX;
/* Update the floating-point exception summary */
env->fpscr |= FP_FX;
if (fpscr_xe != 0) {
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* We must update the target FPR before raising the exception */
cs->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
}
}
static inline void fpscr_set_rounding_mode(CPUPPCState *env)
{
int rnd_type;
/* Set rounding mode */
switch (fpscr_rn) {
case 0:
/* Best approximation (round to nearest) */
rnd_type = float_round_nearest_even;
break;
case 1:
/* Smaller magnitude (round toward zero) */
rnd_type = float_round_to_zero;
break;
case 2:
/* Round toward +infinite */
rnd_type = float_round_up;
break;
default:
case 3:
/* Round toward -infinite */
rnd_type = float_round_down;
break;
}
set_float_rounding_mode(rnd_type, &env->fp_status);
}
void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
{
int prev;
prev = (env->fpscr >> bit) & 1;
env->fpscr &= ~(1 << bit);
if (prev == 1) {
switch (bit) {
case FPSCR_RN1:
case FPSCR_RN:
fpscr_set_rounding_mode(env);
break;
case FPSCR_VXSNAN:
case FPSCR_VXISI:
case FPSCR_VXIDI:
case FPSCR_VXZDZ:
case FPSCR_VXIMZ:
case FPSCR_VXVC:
case FPSCR_VXSOFT:
case FPSCR_VXSQRT:
case FPSCR_VXCVI:
if (!fpscr_ix) {
/* Set VX bit to zero */
env->fpscr &= ~(1 << FPSCR_VX);
}
break;
case FPSCR_OX:
case FPSCR_UX:
case FPSCR_ZX:
case FPSCR_XX:
case FPSCR_VE:
case FPSCR_OE:
case FPSCR_UE:
case FPSCR_ZE:
case FPSCR_XE:
if (!fpscr_eex) {
/* Set the FEX bit */
env->fpscr &= ~(1 << FPSCR_FEX);
}
break;
default:
break;
}
}
}
void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
{
CPUState *cs = env_cpu(env);
int prev;
prev = (env->fpscr >> bit) & 1;
env->fpscr |= 1 << bit;
if (prev == 0) {
switch (bit) {
case FPSCR_VX:
env->fpscr |= FP_FX;
if (fpscr_ve) {
goto raise_ve;
}
break;
case FPSCR_OX:
env->fpscr |= FP_FX;
if (fpscr_oe) {
goto raise_oe;
}
break;
case FPSCR_UX:
env->fpscr |= FP_FX;
if (fpscr_ue) {
goto raise_ue;
}
break;
case FPSCR_ZX:
env->fpscr |= FP_FX;
if (fpscr_ze) {
goto raise_ze;
}
break;
case FPSCR_XX:
env->fpscr |= FP_FX;
if (fpscr_xe) {
goto raise_xe;
}
break;
case FPSCR_VXSNAN:
case FPSCR_VXISI:
case FPSCR_VXIDI:
case FPSCR_VXZDZ:
case FPSCR_VXIMZ:
case FPSCR_VXVC:
case FPSCR_VXSOFT:
case FPSCR_VXSQRT:
case FPSCR_VXCVI:
env->fpscr |= 1 << FPSCR_VX;
env->fpscr |= FP_FX;
if (fpscr_ve != 0) {
goto raise_ve;
}
break;
case FPSCR_VE:
if (fpscr_vx != 0) {
raise_ve:
env->error_code = POWERPC_EXCP_FP;
if (fpscr_vxsnan) {
env->error_code |= POWERPC_EXCP_FP_VXSNAN;
}
if (fpscr_vxisi) {
env->error_code |= POWERPC_EXCP_FP_VXISI;
}
if (fpscr_vxidi) {
env->error_code |= POWERPC_EXCP_FP_VXIDI;
}
if (fpscr_vxzdz) {
env->error_code |= POWERPC_EXCP_FP_VXZDZ;
}
if (fpscr_vximz) {
env->error_code |= POWERPC_EXCP_FP_VXIMZ;
}
if (fpscr_vxvc) {
env->error_code |= POWERPC_EXCP_FP_VXVC;
}
if (fpscr_vxsoft) {
env->error_code |= POWERPC_EXCP_FP_VXSOFT;
}
if (fpscr_vxsqrt) {
env->error_code |= POWERPC_EXCP_FP_VXSQRT;
}
if (fpscr_vxcvi) {
env->error_code |= POWERPC_EXCP_FP_VXCVI;
}
goto raise_excp;
}
break;
case FPSCR_OE:
if (fpscr_ox != 0) {
raise_oe:
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
goto raise_excp;
}
break;
case FPSCR_UE:
if (fpscr_ux != 0) {
raise_ue:
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
goto raise_excp;
}
break;
case FPSCR_ZE:
if (fpscr_zx != 0) {
raise_ze:
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
goto raise_excp;
}
break;
case FPSCR_XE:
if (fpscr_xx != 0) {
raise_xe:
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
goto raise_excp;
}
break;
case FPSCR_RN1:
case FPSCR_RN:
fpscr_set_rounding_mode(env);
break;
default:
break;
raise_excp:
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* We have to update Rc1 before raising the exception */
cs->exception_index = POWERPC_EXCP_PROGRAM;
break;
}
}
}
void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
{
CPUState *cs = env_cpu(env);
target_ulong prev, new;
int i;
prev = env->fpscr;
new = (target_ulong)arg;
new &= ~0x60000000LL;
new |= prev & 0x60000000LL;
for (i = 0; i < sizeof(target_ulong) * 2; i++) {
if (mask & (1 << i)) {
env->fpscr &= ~(0xFLL << (4 * i));
env->fpscr |= new & (0xFLL << (4 * i));
}
}
/* Update VX and FEX */
if (fpscr_ix != 0) {
env->fpscr |= 1 << FPSCR_VX;
} else {
env->fpscr &= ~(1 << FPSCR_VX);
}
if ((fpscr_ex & fpscr_eex) != 0) {
env->fpscr |= 1 << FPSCR_FEX;
cs->exception_index = POWERPC_EXCP_PROGRAM;
/* XXX: we should compute it properly */
env->error_code = POWERPC_EXCP_FP;
} else {
env->fpscr &= ~(1 << FPSCR_FEX);
}
fpscr_set_rounding_mode(env);
}
void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
{
helper_store_fpscr(env, arg, mask);
}
static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
{
CPUState *cs = env_cpu(env);
int status = get_float_exception_flags(&env->fp_status);
bool inexact_happened = false;
if (status & float_flag_overflow) {
float_overflow_excp(env);
} else if (status & float_flag_underflow) {
float_underflow_excp(env);
} else if (status & float_flag_inexact) {
float_inexact_excp(env);
inexact_happened = true;
}
/* if the inexact flag was not set */
if (inexact_happened == false) {
env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
}
if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
(env->error_code & POWERPC_EXCP_FP)) {
/* Differred floating-point exception after target FPR update */
if (fp_exceptions_enabled(env)) {
raise_exception_err_ra(env, cs->exception_index,
env->error_code, raddr);
}
}
}
void helper_float_check_status(CPUPPCState *env)
{
do_float_check_status(env, GETPC());
}
void helper_reset_fpstatus(CPUPPCState *env)
{
set_float_exception_flags(0, &env->fp_status);
}
static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
uintptr_t retaddr, int classes)
{
if ((classes & ~is_neg) == is_inf) {
/* Magnitude subtraction of infinities */
float_invalid_op_vxisi(env, set_fpcc, retaddr);
} else if (classes & is_snan) {
float_invalid_op_vxsnan(env, retaddr);
}
}
/* fadd - fadd. */
float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
{
float64 ret = float64_add(arg1, arg2, &env->fp_status);
int status = get_float_exception_flags(&env->fp_status);
if (unlikely(status & float_flag_invalid)) {
float_invalid_op_addsub(env, 1, GETPC(),
float64_classify(arg1) |
float64_classify(arg2));
}
return ret;
}
/* fsub - fsub. */
float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
{
float64 ret = float64_sub(arg1, arg2, &env->fp_status);
int status = get_float_exception_flags(&env->fp_status);
if (unlikely(status & float_flag_invalid)) {
float_invalid_op_addsub(env, 1, GETPC(),
float64_classify(arg1) |
float64_classify(arg2));
}
return ret;
}
static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
uintptr_t retaddr, int classes)
{
if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
/* Multiplication of zero by infinity */
float_invalid_op_vximz(env, set_fprc, retaddr);
} else if (classes & is_snan) {
float_invalid_op_vxsnan(env, retaddr);
}
}
/* fmul - fmul. */
float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
{
float64 ret = float64_mul(arg1, arg2, &env->fp_status);
int status = get_float_exception_flags(&env->fp_status);
if (unlikely(status & float_flag_invalid)) {
float_invalid_op_mul(env, 1, GETPC(),
float64_classify(arg1) |
float64_classify(arg2));
}
return ret;
}
static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
uintptr_t retaddr, int classes)
{
classes &= ~is_neg;
if (classes == is_inf) {
/* Division of infinity by infinity */
float_invalid_op_vxidi(env, set_fprc, retaddr);
} else if (classes == is_zero) {
/* Division of zero by zero */
float_invalid_op_vxzdz(env, set_fprc, retaddr);
} else if (classes & is_snan) {
float_invalid_op_vxsnan(env, retaddr);
}
}
/* fdiv - fdiv. */
float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
{
float64 ret = float64_div(arg1, arg2, &env->fp_status);
int status = get_float_exception_flags(&env->fp_status);
if (unlikely(status)) {
if (status & float_flag_invalid) {
float_invalid_op_div(env, 1, GETPC(),
float64_classify(arg1) |
float64_classify(arg2));
}
if (status & float_flag_divbyzero) {
float_zero_divide_excp(env, GETPC());
}
}
return ret;
}
static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
uintptr_t retaddr, int class1)
{
float_invalid_op_vxcvi(env, set_fprc, retaddr);
if (class1 & is_snan) {
float_invalid_op_vxsnan(env, retaddr);
}
}
#define FPU_FCTI(op, cvt, nanval) \
uint64_t helper_##op(CPUPPCState *env, float64 arg) \
{ \
uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
int status = get_float_exception_flags(&env->fp_status); \
\
if (unlikely(status)) { \
if (status & float_flag_invalid) { \
float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
ret = nanval; \
} \
do_float_check_status(env, GETPC()); \
} \
return ret; \
}
FPU_FCTI(fctiw, int32, 0x80000000U)
FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
FPU_FCTI(fctiwu, uint32, 0x00000000U)
FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
#define FPU_FCFI(op, cvtr, is_single) \
uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
{ \
CPU_DoubleU farg; \
\
if (is_single) { \
float32 tmp = cvtr(arg, &env->fp_status); \
farg.d = float32_to_float64(tmp, &env->fp_status); \
} else { \
farg.d = cvtr(arg, &env->fp_status); \
} \
do_float_check_status(env, GETPC()); \
return farg.ll; \
}
FPU_FCFI(fcfid, int64_to_float64, 0)
FPU_FCFI(fcfids, int64_to_float32, 1)
FPU_FCFI(fcfidu, uint64_to_float64, 0)
FPU_FCFI(fcfidus, uint64_to_float32, 1)
static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
int rounding_mode)
{
CPU_DoubleU farg;
farg.ll = arg;
if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
/* sNaN round */
float_invalid_op_vxsnan(env, GETPC());
farg.ll = arg | 0x0008000000000000ULL;
} else {
int inexact = get_float_exception_flags(&env->fp_status) &
float_flag_inexact;
set_float_rounding_mode(rounding_mode, &env->fp_status);
farg.ll = float64_round_to_int(farg.d, &env->fp_status);
/* Restore rounding mode from FPSCR */
fpscr_set_rounding_mode(env);
/* fri* does not set FPSCR[XX] */
if (!inexact) {
env->fp_status.float_exception_flags &= ~float_flag_inexact;
}
}
do_float_check_status(env, GETPC());
return farg.ll;
}
uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
{
return do_fri(env, arg, float_round_ties_away);
}
uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
{
return do_fri(env, arg, float_round_to_zero);
}
uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
{
return do_fri(env, arg, float_round_up);
}
uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
{
return do_fri(env, arg, float_round_down);
}
#define FPU_MADDSUB_UPDATE(NAME, TP) \
static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
unsigned int madd_flags, uintptr_t retaddr) \
{ \
if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
TP##_is_signaling_nan(arg2, &env->fp_status) || \
TP##_is_signaling_nan(arg3, &env->fp_status)) { \
/* sNaN operation */ \
float_invalid_op_vxsnan(env, retaddr); \
} \
if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
(TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
/* Multiplication of zero by infinity */ \
float_invalid_op_vximz(env, 1, retaddr); \
} \
if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
TP##_is_infinity(arg3)) { \
uint8_t aSign, bSign, cSign; \
\
aSign = TP##_is_neg(arg1); \
bSign = TP##_is_neg(arg2); \
cSign = TP##_is_neg(arg3); \
if (madd_flags & float_muladd_negate_c) { \
cSign ^= 1; \
} \
if (aSign ^ bSign ^ cSign) { \
float_invalid_op_vxisi(env, 1, retaddr); \
} \
} \
}
FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
#define FPU_FMADD(op, madd_flags) \
uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
uint64_t arg2, uint64_t arg3) \
{ \
uint32_t flags; \
float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
&env->fp_status); \
flags = get_float_exception_flags(&env->fp_status); \
if (flags) { \
if (flags & float_flag_invalid) { \
float64_maddsub_update_excp(env, arg1, arg2, arg3, \
madd_flags, GETPC()); \
} \
do_float_check_status(env, GETPC()); \
} \
return ret; \
}
#define MADD_FLGS 0
#define MSUB_FLGS float_muladd_negate_c
#define NMADD_FLGS float_muladd_negate_result
#define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
FPU_FMADD(fmadd, MADD_FLGS)
FPU_FMADD(fnmadd, NMADD_FLGS)
FPU_FMADD(fmsub, MSUB_FLGS)
FPU_FMADD(fnmsub, NMSUB_FLGS)
/* frsp - frsp. */
uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
{
CPU_DoubleU farg;
float32 f32;
farg.ll = arg;
if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
float_invalid_op_vxsnan(env, GETPC());
}
f32 = float64_to_float32(farg.d, &env->fp_status);
farg.d = float32_to_float64(f32, &env->fp_status);
return farg.ll;
}
/* fsqrt - fsqrt. */
float64 helper_fsqrt(CPUPPCState *env, float64 arg)
{
float64 ret = float64_sqrt(arg, &env->fp_status);
int status = get_float_exception_flags(&env->fp_status);
if (unlikely(status & float_flag_invalid)) {
if (unlikely(float64_is_any_nan(arg))) {
if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
/* sNaN square root */
float_invalid_op_vxsnan(env, GETPC());
}
} else {
/* Square root of a negative nonzero number */
float_invalid_op_vxsqrt(env, 1, GETPC());
}
}
return ret;
}
/* fre - fre. */
float64 helper_fre(CPUPPCState *env, float64 arg)
{
/* "Estimate" the reciprocal with actual division. */
float64 ret = float64_div(float64_one, arg, &env->fp_status);
int status = get_float_exception_flags(&env->fp_status);
if (unlikely(status)) {
if (status & float_flag_invalid) {
if (float64_is_signaling_nan(arg, &env->fp_status)) {
/* sNaN reciprocal */
float_invalid_op_vxsnan(env, GETPC());
}
}
if (status & float_flag_divbyzero) {
float_zero_divide_excp(env, GETPC());
/* For FPSCR.ZE == 0, the result is 1/2. */
ret = float64_set_sign(float64_half, float64_is_neg(arg));
}
}
return ret;
}
/* fres - fres. */
uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
{
CPU_DoubleU farg;
float32 f32;
farg.ll = arg;
if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
/* sNaN reciprocal */
float_invalid_op_vxsnan(env, GETPC());
}
farg.d = float64_div(float64_one, farg.d, &env->fp_status);
f32 = float64_to_float32(farg.d, &env->fp_status);
farg.d = float32_to_float64(f32, &env->fp_status);
return farg.ll;
}
/* frsqrte - frsqrte. */
float64 helper_frsqrte(CPUPPCState *env, float64 arg)
{
/* "Estimate" the reciprocal with actual division. */
float64 rets = float64_sqrt(arg, &env->fp_status);
float64 retd = float64_div(float64_one, rets, &env->fp_status);
int status = get_float_exception_flags(&env->fp_status);
if (unlikely(status)) {
if (status & float_flag_invalid) {
if (float64_is_signaling_nan(arg, &env->fp_status)) {
/* sNaN reciprocal */
float_invalid_op_vxsnan(env, GETPC());
} else {
/* Square root of a negative nonzero number */
float_invalid_op_vxsqrt(env, 1, GETPC());
}
}
if (status & float_flag_divbyzero) {
/* Reciprocal of (square root of) zero. */
float_zero_divide_excp(env, GETPC());
}
}
return retd;
}
/* fsel - fsel. */
uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
uint64_t arg3)
{
CPU_DoubleU farg1;
farg1.ll = arg1;
if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
!float64_is_any_nan(farg1.d)) {
return arg2;
} else {
return arg3;
}
}
uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
{
int fe_flag = 0;
int fg_flag = 0;
if (unlikely(float64_is_infinity(fra) ||
float64_is_infinity(frb) ||
float64_is_zero(frb))) {
fe_flag = 1;
fg_flag = 1;
} else {
int e_a = ppc_float64_get_unbiased_exp(fra);
int e_b = ppc_float64_get_unbiased_exp(frb);
if (unlikely(float64_is_any_nan(fra) ||
float64_is_any_nan(frb))) {
fe_flag = 1;
} else if ((e_b <= -1022) || (e_b >= 1021)) {
fe_flag = 1;
} else if (!float64_is_zero(fra) &&
(((e_a - e_b) >= 1023) ||
((e_a - e_b) <= -1021) ||
(e_a <= -970))) {
fe_flag = 1;
}
if (unlikely(float64_is_zero_or_denormal(frb))) {
/* XB is not zero because of the above check and */
/* so must be denormalized. */
fg_flag = 1;
}
}
return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
}
uint32_t helper_ftsqrt(uint64_t frb)
{
int fe_flag = 0;
int fg_flag = 0;
if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
fe_flag = 1;
fg_flag = 1;
} else {
int e_b = ppc_float64_get_unbiased_exp(frb);
if (unlikely(float64_is_any_nan(frb))) {
fe_flag = 1;
} else if (unlikely(float64_is_zero(frb))) {
fe_flag = 1;
} else if (unlikely(float64_is_neg(frb))) {
fe_flag = 1;
} else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
fe_flag = 1;
}
if (unlikely(float64_is_zero_or_denormal(frb))) {
/* XB is not zero because of the above check and */
/* therefore must be denormalized. */
fg_flag = 1;
}
}
return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
}
void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
uint32_t crfD)
{
CPU_DoubleU farg1, farg2;
uint32_t ret = 0;
farg1.ll = arg1;
farg2.ll = arg2;
if (unlikely(float64_is_any_nan(farg1.d) ||
float64_is_any_nan(farg2.d))) {
ret = 0x01UL;
} else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
ret = 0x08UL;
} else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
ret = 0x04UL;
} else {
ret = 0x02UL;
}
env->fpscr &= ~(0x0F << FPSCR_FPRF);
env->fpscr |= ret << FPSCR_FPRF;
env->crf[crfD] = ret;
if (unlikely(ret == 0x01UL
&& (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
/* sNaN comparison */
float_invalid_op_vxsnan(env, GETPC());
}
}
void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
uint32_t crfD)
{
CPU_DoubleU farg1, farg2;
uint32_t ret = 0;
farg1.ll = arg1;
farg2.ll = arg2;
if (unlikely(float64_is_any_nan(farg1.d) ||
float64_is_any_nan(farg2.d))) {
ret = 0x01UL;
} else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
ret = 0x08UL;
} else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
ret = 0x04UL;
} else {
ret = 0x02UL;
}
env->fpscr &= ~(0x0F << FPSCR_FPRF);
env->fpscr |= ret << FPSCR_FPRF;
env->crf[crfD] = ret;
if (unlikely(ret == 0x01UL)) {
float_invalid_op_vxvc(env, 1, GETPC());
if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
float64_is_signaling_nan(farg2.d, &env->fp_status)) {
/* sNaN comparison */
float_invalid_op_vxsnan(env, GETPC());
}
}
}
/* Single-precision floating-point conversions */
static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
u.f = int32_to_float32(val, &env->vec_status);
return u.l;
}
static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
u.f = uint32_to_float32(val, &env->vec_status);
return u.l;
}
static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
return 0;
}
return float32_to_int32(u.f, &env->vec_status);
}
static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
return 0;
}
return float32_to_uint32(u.f, &env->vec_status);
}
static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
return 0;
}
return float32_to_int32_round_to_zero(u.f, &env->vec_status);
}
static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
return 0;
}
return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
}
static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.f = int32_to_float32(val, &env->vec_status);
tmp = int64_to_float32(1ULL << 32, &env->vec_status);
u.f = float32_div(u.f, tmp, &env->vec_status);
return u.l;
}
static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.f = uint32_to_float32(val, &env->vec_status);
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
u.f = float32_div(u.f, tmp, &env->vec_status);
return u.l;
}
static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
return 0;
}
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
u.f = float32_mul(u.f, tmp, &env->vec_status);
return float32_to_int32(u.f, &env->vec_status);
}
static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
return 0;
}
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
u.f = float32_mul(u.f, tmp, &env->vec_status);
return float32_to_uint32(u.f, &env->vec_status);
}
#define HELPER_SPE_SINGLE_CONV(name) \
uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
{ \
return e##name(env, val); \
}
/* efscfsi */
HELPER_SPE_SINGLE_CONV(fscfsi);
/* efscfui */
HELPER_SPE_SINGLE_CONV(fscfui);
/* efscfuf */
HELPER_SPE_SINGLE_CONV(fscfuf);
/* efscfsf */
HELPER_SPE_SINGLE_CONV(fscfsf);
/* efsctsi */
HELPER_SPE_SINGLE_CONV(fsctsi);
/* efsctui */
HELPER_SPE_SINGLE_CONV(fsctui);
/* efsctsiz */
HELPER_SPE_SINGLE_CONV(fsctsiz);
/* efsctuiz */
HELPER_SPE_SINGLE_CONV(fsctuiz);
/* efsctsf */
HELPER_SPE_SINGLE_CONV(fsctsf);
/* efsctuf */
HELPER_SPE_SINGLE_CONV(fsctuf);
#define HELPER_SPE_VECTOR_CONV(name) \
uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
{ \
return ((uint64_t)e##name(env, val >> 32) << 32) | \
(uint64_t)e##name(env, val); \
}
/* evfscfsi */
HELPER_SPE_VECTOR_CONV(fscfsi);
/* evfscfui */
HELPER_SPE_VECTOR_CONV(fscfui);
/* evfscfuf */
HELPER_SPE_VECTOR_CONV(fscfuf);
/* evfscfsf */
HELPER_SPE_VECTOR_CONV(fscfsf);
/* evfsctsi */
HELPER_SPE_VECTOR_CONV(fsctsi);
/* evfsctui */
HELPER_SPE_VECTOR_CONV(fsctui);
/* evfsctsiz */
HELPER_SPE_VECTOR_CONV(fsctsiz);
/* evfsctuiz */
HELPER_SPE_VECTOR_CONV(fsctuiz);
/* evfsctsf */
HELPER_SPE_VECTOR_CONV(fsctsf);
/* evfsctuf */
HELPER_SPE_VECTOR_CONV(fsctuf);
/* Single-precision floating-point arithmetic */
static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
CPU_FloatU u1, u2;
u1.l = op1;
u2.l = op2;
u1.f = float32_add(u1.f, u2.f, &env->vec_status);
return u1.l;
}
static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
CPU_FloatU u1, u2;
u1.l = op1;
u2.l = op2;
u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
return u1.l;
}
static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
CPU_FloatU u1, u2;
u1.l = op1;
u2.l = op2;
u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
return u1.l;
}
static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
CPU_FloatU u1, u2;
u1.l = op1;
u2.l = op2;
u1.f = float32_div(u1.f, u2.f, &env->vec_status);
return u1.l;
}
#define HELPER_SPE_SINGLE_ARITH(name) \
uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
{ \
return e##name(env, op1, op2); \
}
/* efsadd */
HELPER_SPE_SINGLE_ARITH(fsadd);
/* efssub */
HELPER_SPE_SINGLE_ARITH(fssub);
/* efsmul */
HELPER_SPE_SINGLE_ARITH(fsmul);
/* efsdiv */
HELPER_SPE_SINGLE_ARITH(fsdiv);
#define HELPER_SPE_VECTOR_ARITH(name) \
uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
{ \
return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
(uint64_t)e##name(env, op1, op2); \
}
/* evfsadd */
HELPER_SPE_VECTOR_ARITH(fsadd);
/* evfssub */
HELPER_SPE_VECTOR_ARITH(fssub);
/* evfsmul */
HELPER_SPE_VECTOR_ARITH(fsmul);
/* evfsdiv */
HELPER_SPE_VECTOR_ARITH(fsdiv);
/* Single-precision floating-point comparisons */
static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
CPU_FloatU u1, u2;
u1.l = op1;
u2.l = op2;
return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
}
static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
CPU_FloatU u1, u2;
u1.l = op1;
u2.l = op2;
return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
}
static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
CPU_FloatU u1, u2;
u1.l = op1;
u2.l = op2;
return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
}
static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
/* XXX: TODO: ignore special values (NaN, infinites, ...) */
return efscmplt(env, op1, op2);
}
static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
/* XXX: TODO: ignore special values (NaN, infinites, ...) */
return efscmpgt(env, op1, op2);
}
static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
{
/* XXX: TODO: ignore special values (NaN, infinites, ...) */
return efscmpeq(env, op1, op2);
}
#define HELPER_SINGLE_SPE_CMP(name) \
uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
{ \
return e##name(env, op1, op2); \
}
/* efststlt */
HELPER_SINGLE_SPE_CMP(fststlt);
/* efststgt */
HELPER_SINGLE_SPE_CMP(fststgt);
/* efststeq */
HELPER_SINGLE_SPE_CMP(fststeq);
/* efscmplt */
HELPER_SINGLE_SPE_CMP(fscmplt);
/* efscmpgt */
HELPER_SINGLE_SPE_CMP(fscmpgt);
/* efscmpeq */
HELPER_SINGLE_SPE_CMP(fscmpeq);
static inline uint32_t evcmp_merge(int t0, int t1)
{
return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
}
#define HELPER_VECTOR_SPE_CMP(name) \
uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
{ \
return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
e##name(env, op1, op2)); \
}
/* evfststlt */
HELPER_VECTOR_SPE_CMP(fststlt);
/* evfststgt */
HELPER_VECTOR_SPE_CMP(fststgt);
/* evfststeq */
HELPER_VECTOR_SPE_CMP(fststeq);
/* evfscmplt */
HELPER_VECTOR_SPE_CMP(fscmplt);
/* evfscmpgt */
HELPER_VECTOR_SPE_CMP(fscmpgt);
/* evfscmpeq */
HELPER_VECTOR_SPE_CMP(fscmpeq);
/* Double-precision floating-point conversion */
uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
{
CPU_DoubleU u;
u.d = int32_to_float64(val, &env->vec_status);
return u.ll;
}
uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
u.d = int64_to_float64(val, &env->vec_status);
return u.ll;
}
uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
{
CPU_DoubleU u;
u.d = uint32_to_float64(val, &env->vec_status);
return u.ll;
}
uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
u.d = uint64_to_float64(val, &env->vec_status);
return u.ll;
}
uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float64_is_any_nan(u.d))) {
return 0;
}
return float64_to_int32(u.d, &env->vec_status);
}
uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float64_is_any_nan(u.d))) {
return 0;
}
return float64_to_uint32(u.d, &env->vec_status);
}
uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float64_is_any_nan(u.d))) {
return 0;
}
return float64_to_int32_round_to_zero(u.d, &env->vec_status);
}
uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float64_is_any_nan(u.d))) {
return 0;
}
return float64_to_int64_round_to_zero(u.d, &env->vec_status);
}
uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float64_is_any_nan(u.d))) {
return 0;
}
return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
}
uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float64_is_any_nan(u.d))) {
return 0;
}
return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
}
uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
{
CPU_DoubleU u;
float64 tmp;
u.d = int32_to_float64(val, &env->vec_status);
tmp = int64_to_float64(1ULL << 32, &env->vec_status);
u.d = float64_div(u.d, tmp, &env->vec_status);
return u.ll;
}
uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
{
CPU_DoubleU u;
float64 tmp;
u.d = uint32_to_float64(val, &env->vec_status);
tmp = int64_to_float64(1ULL << 32, &env->vec_status);
u.d = float64_div(u.d, tmp, &env->vec_status);
return u.ll;
}
uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
float64 tmp;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float64_is_any_nan(u.d))) {
return 0;
}
tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
u.d = float64_mul(u.d, tmp, &env->vec_status);
return float64_to_int32(u.d, &env->vec_status);
}
uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u;
float64 tmp;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(float64_is_any_nan(u.d))) {
return 0;
}
tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
u.d = float64_mul(u.d, tmp, &env->vec_status);
return float64_to_uint32(u.d, &env->vec_status);
}
uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
{
CPU_DoubleU u1;
CPU_FloatU u2;
u1.ll = val;
u2.f = float64_to_float32(u1.d, &env->vec_status);
return u2.l;
}
uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
{
CPU_DoubleU u2;
CPU_FloatU u1;
u1.l = val;
u2.d = float32_to_float64(u1.f, &env->vec_status);
return u2.ll;
}
/* Double precision fixed-point arithmetic */
uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
CPU_DoubleU u1, u2;
u1.ll = op1;
u2.ll = op2;
u1.d = float64_add(u1.d, u2.d, &env->vec_status);
return u1.ll;
}
uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
CPU_DoubleU u1, u2;
u1.ll = op1;
u2.ll = op2;
u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
return u1.ll;
}
uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
CPU_DoubleU u1, u2;
u1.ll = op1;
u2.ll = op2;
u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
return u1.ll;
}
uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
CPU_DoubleU u1, u2;
u1.ll = op1;
u2.ll = op2;
u1.d = float64_div(u1.d, u2.d, &env->vec_status);
return u1.ll;
}
/* Double precision floating point helpers */
uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
CPU_DoubleU u1, u2;
u1.ll = op1;
u2.ll = op2;
return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
}
uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
CPU_DoubleU u1, u2;
u1.ll = op1;
u2.ll = op2;
return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
}
uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
CPU_DoubleU u1, u2;
u1.ll = op1;
u2.ll = op2;
return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
}
uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return helper_efdtstlt(env, op1, op2);
}
uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return helper_efdtstgt(env, op1, op2);
}
uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return helper_efdtsteq(env, op1, op2);
}
#define float64_to_float64(x, env) x
/*
* VSX_ADD_SUB - VSX floating point add/subract
* name - instruction mnemonic
* op - operation (add or sub)
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* sfprf - set FPRF
*/
#define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
helper_reset_fpstatus(env); \
\
for (i = 0; i < nels; i++) { \
float_status tstat = env->fp_status; \
set_float_exception_flags(0, &tstat); \
t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
\
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
float_invalid_op_addsub(env, sfprf, GETPC(), \
tp##_classify(xa->fld) | \
tp##_classify(xb->fld)); \
} \
\
if (r2sp) { \
t.fld = helper_frsp(env, t.fld); \
} \
\
if (sfprf) { \
helper_compute_fprf_float64(env, t.fld); \
} \
} \
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
{
ppc_vsr_t t = *xt;
float_status tstat;
helper_reset_fpstatus(env);
tstat = env->fp_status;
if (unlikely(Rc(opcode) != 0)) {
tstat.float_rounding_mode = float_round_to_odd;
}
set_float_exception_flags(0, &tstat);
t.f128 = float128_add(xa->f128, xb->f128, &tstat);
env->fp_status.float_exception_flags |= tstat.float_exception_flags;
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
float_invalid_op_addsub(env, 1, GETPC(),
float128_classify(xa->f128) |
float128_classify(xb->f128));
}
helper_compute_fprf_float128(env, t.f128);
*xt = t;
do_float_check_status(env, GETPC());
}
/*
* VSX_MUL - VSX floating point multiply
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* sfprf - set FPRF
*/
#define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
helper_reset_fpstatus(env); \
\
for (i = 0; i < nels; i++) { \
float_status tstat = env->fp_status; \
set_float_exception_flags(0, &tstat); \
t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
\
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
float_invalid_op_mul(env, sfprf, GETPC(), \
tp##_classify(xa->fld) | \
tp##_classify(xb->fld)); \
} \
\
if (r2sp) { \
t.fld = helper_frsp(env, t.fld); \
} \
\
if (sfprf) { \
helper_compute_fprf_float64(env, t.fld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
{
ppc_vsr_t t = *xt;
float_status tstat;
helper_reset_fpstatus(env);
tstat = env->fp_status;
if (unlikely(Rc(opcode) != 0)) {
tstat.float_rounding_mode = float_round_to_odd;
}
set_float_exception_flags(0, &tstat);
t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
env->fp_status.float_exception_flags |= tstat.float_exception_flags;
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
float_invalid_op_mul(env, 1, GETPC(),
float128_classify(xa->f128) |
float128_classify(xb->f128));
}
helper_compute_fprf_float128(env, t.f128);
*xt = t;
do_float_check_status(env, GETPC());
}
/*
* VSX_DIV - VSX floating point divide
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* sfprf - set FPRF
*/
#define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
helper_reset_fpstatus(env); \
\
for (i = 0; i < nels; i++) { \
float_status tstat = env->fp_status; \
set_float_exception_flags(0, &tstat); \
t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
\
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
float_invalid_op_div(env, sfprf, GETPC(), \
tp##_classify(xa->fld) | \
tp##_classify(xb->fld)); \
} \
if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
float_zero_divide_excp(env, GETPC()); \
} \
\
if (r2sp) { \
t.fld = helper_frsp(env, t.fld); \
} \
\
if (sfprf) { \
helper_compute_fprf_float64(env, t.fld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
{
ppc_vsr_t t = *xt;
float_status tstat;
helper_reset_fpstatus(env);
tstat = env->fp_status;
if (unlikely(Rc(opcode) != 0)) {
tstat.float_rounding_mode = float_round_to_odd;
}
set_float_exception_flags(0, &tstat);
t.f128 = float128_div(xa->f128, xb->f128, &tstat);
env->fp_status.float_exception_flags |= tstat.float_exception_flags;
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
float_invalid_op_div(env, 1, GETPC(),
float128_classify(xa->f128) |
float128_classify(xb->f128));
}
if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
float_zero_divide_excp(env, GETPC());
}
helper_compute_fprf_float128(env, t.f128);
*xt = t;
do_float_check_status(env, GETPC());
}
/*
* VSX_RE - VSX floating point reciprocal estimate
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* sfprf - set FPRF
*/
#define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
helper_reset_fpstatus(env); \
\
for (i = 0; i < nels; i++) { \
if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
\
if (r2sp) { \
t.fld = helper_frsp(env, t.fld); \
} \
\
if (sfprf) { \
helper_compute_fprf_float64(env, t.fld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
/*
* VSX_SQRT - VSX floating point square root
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* sfprf - set FPRF
*/
#define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
helper_reset_fpstatus(env); \
\
for (i = 0; i < nels; i++) { \
float_status tstat = env->fp_status; \
set_float_exception_flags(0, &tstat); \
t.fld = tp##_sqrt(xb->fld, &tstat); \
env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
\
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
} else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
} \
\
if (r2sp) { \
t.fld = helper_frsp(env, t.fld); \
} \
\
if (sfprf) { \
helper_compute_fprf_float64(env, t.fld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
/*
*VSX_RSQRTE - VSX floating point reciprocal square root estimate
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* sfprf - set FPRF
*/
#define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
helper_reset_fpstatus(env); \
\
for (i = 0; i < nels; i++) { \
float_status tstat = env->fp_status; \
set_float_exception_flags(0, &tstat); \
t.fld = tp##_sqrt(xb->fld, &tstat); \
t.fld = tp##_div(tp##_one, t.fld, &tstat); \
env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
\
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
} else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
} \
\
if (r2sp) { \
t.fld = helper_frsp(env, t.fld); \
} \
\
if (sfprf) { \
helper_compute_fprf_float64(env, t.fld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
/*
* VSX_TDIV - VSX floating point test for divide
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* emin - minimum unbiased exponent
* emax - maximum unbiased exponent
* nbits - number of fraction bits
*/
#define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
void helper_##op(CPUPPCState *env, uint32_t opcode, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
int i; \
int fe_flag = 0; \
int fg_flag = 0; \
\
for (i = 0; i < nels; i++) { \
if (unlikely(tp##_is_infinity(xa->fld) || \
tp##_is_infinity(xb->fld) || \
tp##_is_zero(xb->fld))) { \
fe_flag = 1; \
fg_flag = 1; \
} else { \
int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
\
if (unlikely(tp##_is_any_nan(xa->fld) || \
tp##_is_any_nan(xb->fld))) { \
fe_flag = 1; \
} else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
fe_flag = 1; \
} else if (!tp##_is_zero(xa->fld) && \
(((e_a - e_b) >= emax) || \
((e_a - e_b) <= (emin + 1)) || \
(e_a <= (emin + nbits)))) { \
fe_flag = 1; \
} \
\
if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
/* \
* XB is not zero because of the above check and so \
* must be denormalized. \
*/ \
fg_flag = 1; \
} \
} \
} \
\
env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
}
VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
/*
* VSX_TSQRT - VSX floating point test for square root
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* emin - minimum unbiased exponent
* emax - maximum unbiased exponent
* nbits - number of fraction bits
*/
#define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
{ \
int i; \
int fe_flag = 0; \
int fg_flag = 0; \
\
for (i = 0; i < nels; i++) { \
if (unlikely(tp##_is_infinity(xb->fld) || \
tp##_is_zero(xb->fld))) { \
fe_flag = 1; \
fg_flag = 1; \
} else { \
int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
\
if (unlikely(tp##_is_any_nan(xb->fld))) { \
fe_flag = 1; \
} else if (unlikely(tp##_is_zero(xb->fld))) { \
fe_flag = 1; \
} else if (unlikely(tp##_is_neg(xb->fld))) { \
fe_flag = 1; \
} else if (!tp##_is_zero(xb->fld) && \
(e_b <= (emin + nbits))) { \
fe_flag = 1; \
} \
\
if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
/* \
* XB is not zero because of the above check and \
* therefore must be denormalized. \
*/ \
fg_flag = 1; \
} \
} \
} \
\
env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
}
VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
/*
* VSX_MADD - VSX floating point muliply/add variations
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* maddflgs - flags for the float*muladd routine that control the
* various forms (madd, msub, nmadd, nmsub)
* sfprf - set FPRF
*/
#define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
helper_reset_fpstatus(env); \
\
for (i = 0; i < nels; i++) { \
float_status tstat = env->fp_status; \
set_float_exception_flags(0, &tstat); \
if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
/* \
* Avoid double rounding errors by rounding the intermediate \
* result to odd. \
*/ \
set_float_rounding_mode(float_round_to_zero, &tstat); \
t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
maddflgs, &tstat); \
t.fld |= (get_float_exception_flags(&tstat) & \
float_flag_inexact) != 0; \
} else { \
t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
maddflgs, &tstat); \
} \
env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
\
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
tp##_maddsub_update_excp(env, xa->fld, b->fld, \
c->fld, maddflgs, GETPC()); \
} \
\
if (r2sp) { \
t.fld = helper_frsp(env, t.fld); \
} \
\
if (sfprf) { \
helper_compute_fprf_float64(env, t.fld); \
} \
} \
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0)
VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0)
VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0)
VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0)
VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1)
VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1)
VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1)
VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1)
VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0)
VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0)
VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0)
VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0)
VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0)
VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0)
VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0)
VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0)
/*
* VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
* op - instruction mnemonic
* cmp - comparison operation
* exp - expected result of comparison
* svxvc - set VXVC bit
*/
#define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
\
if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
vxsnan_flag = true; \
if (fpscr_ve == 0 && svxvc) { \
vxvc_flag = true; \
} \
} else if (svxvc) { \
vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \
} \
if (vxsnan_flag) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
if (vxvc_flag) { \
float_invalid_op_vxvc(env, 0, GETPC()); \
} \
vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
\
if (!vex_flag) { \
if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \
&env->fp_status) == exp) { \
t.VsrD(0) = -1; \
t.VsrD(1) = 0; \
} else { \
t.VsrD(0) = 0; \
t.VsrD(1) = 0; \
} \
} \
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xa, ppc_vsr_t *xb)
{
int64_t exp_a, exp_b;
uint32_t cc;
exp_a = extract64(xa->VsrD(0), 52, 11);
exp_b = extract64(xb->VsrD(0), 52, 11);
if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
float64_is_any_nan(xb->VsrD(0)))) {
cc = CRF_SO;
} else {
if (exp_a < exp_b) {
cc = CRF_LT;
} else if (exp_a > exp_b) {
cc = CRF_GT;
} else {
cc = CRF_EQ;
}
}
env->fpscr &= ~(0x0F << FPSCR_FPRF);
env->fpscr |= cc << FPSCR_FPRF;
env->crf[BF(opcode)] = cc;
do_float_check_status(env, GETPC());
}
void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xa, ppc_vsr_t *xb)
{
int64_t exp_a, exp_b;
uint32_t cc;
exp_a = extract64(xa->VsrD(0), 48, 15);
exp_b = extract64(xb->VsrD(0), 48, 15);
if (unlikely(float128_is_any_nan(xa->f128) ||
float128_is_any_nan(xb->f128))) {
cc = CRF_SO;
} else {
if (exp_a < exp_b) {
cc = CRF_LT;
} else if (exp_a > exp_b) {
cc = CRF_GT;
} else {
cc = CRF_EQ;
}
}
env->fpscr &= ~(0x0F << FPSCR_FPRF);
env->fpscr |= cc << FPSCR_FPRF;
env->crf[BF(opcode)] = cc;
do_float_check_status(env, GETPC());
}
#define VSX_SCALAR_CMP(op, ordered) \
void helper_##op(CPUPPCState *env, uint32_t opcode, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
uint32_t cc = 0; \
bool vxsnan_flag = false, vxvc_flag = false; \
\
helper_reset_fpstatus(env); \
\
if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
vxsnan_flag = true; \
cc = CRF_SO; \
if (fpscr_ve == 0 && ordered) { \
vxvc_flag = true; \
} \
} else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { \
cc = CRF_SO; \
if (ordered) { \
vxvc_flag = true; \
} \
} \
if (vxsnan_flag) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
if (vxvc_flag) { \
float_invalid_op_vxvc(env, 0, GETPC()); \
} \
\
if (float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
cc |= CRF_LT; \
} else if (!float64_le(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
cc |= CRF_GT; \
} else { \
cc |= CRF_EQ; \
} \
\
env->fpscr &= ~(0x0F << FPSCR_FPRF); \
env->fpscr |= cc << FPSCR_FPRF; \
env->crf[BF(opcode)] = cc; \
\
do_float_check_status(env, GETPC()); \
}
VSX_SCALAR_CMP(xscmpodp, 1)
VSX_SCALAR_CMP(xscmpudp, 0)
#define VSX_SCALAR_CMPQ(op, ordered) \
void helper_##op(CPUPPCState *env, uint32_t opcode, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
uint32_t cc = 0; \
bool vxsnan_flag = false, vxvc_flag = false; \
\
helper_reset_fpstatus(env); \
\
if (float128_is_signaling_nan(xa->f128, &env->fp_status) || \
float128_is_signaling_nan(xb->f128, &env->fp_status)) { \
vxsnan_flag = true; \
cc = CRF_SO; \
if (fpscr_ve == 0 && ordered) { \
vxvc_flag = true; \
} \
} else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || \
float128_is_quiet_nan(xb->f128, &env->fp_status)) { \
cc = CRF_SO; \
if (ordered) { \
vxvc_flag = true; \
} \
} \
if (vxsnan_flag) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
if (vxvc_flag) { \
float_invalid_op_vxvc(env, 0, GETPC()); \
} \
\
if (float128_lt(xa->f128, xb->f128, &env->fp_status)) { \
cc |= CRF_LT; \
} else if (!float128_le(xa->f128, xb->f128, &env->fp_status)) { \
cc |= CRF_GT; \
} else { \
cc |= CRF_EQ; \
} \
\
env->fpscr &= ~(0x0F << FPSCR_FPRF); \
env->fpscr |= cc << FPSCR_FPRF; \
env->crf[BF(opcode)] = cc; \
\
do_float_check_status(env, GETPC()); \
}
VSX_SCALAR_CMPQ(xscmpoqp, 1)
VSX_SCALAR_CMPQ(xscmpuqp, 0)
/*
* VSX_MAX_MIN - VSX floating point maximum/minimum
* name - instruction mnemonic
* op - operation (max or min)
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
*/
#define VSX_MAX_MIN(name, op, nels, tp, fld) \
void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
for (i = 0; i < nels; i++) { \
t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
#define VSX_MAX_MINC(name, max) \
void helper_##name(CPUPPCState *env, uint32_t opcode, \
ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
bool vxsnan_flag = false, vex_flag = false; \
\
if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \
float64_is_any_nan(xb->VsrD(0)))) { \
if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
vxsnan_flag = true; \
} \
t.VsrD(0) = xb->VsrD(0); \
} else if ((max && \
!float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
(!max && \
float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
t.VsrD(0) = xa->VsrD(0); \
} else { \
t.VsrD(0) = xb->VsrD(0); \
} \
\
vex_flag = fpscr_ve & vxsnan_flag; \
if (vxsnan_flag) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
if (!vex_flag) { \
*xt = t; \
} \
} \
VSX_MAX_MINC(xsmaxcdp, 1);
VSX_MAX_MINC(xsmincdp, 0);
#define VSX_MAX_MINJ(name, max) \
void helper_##name(CPUPPCState *env, uint32_t opcode, \
ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
bool vxsnan_flag = false, vex_flag = false; \
\
if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
vxsnan_flag = true; \
} \
t.VsrD(0) = xa->VsrD(0); \
} else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
vxsnan_flag = true; \
} \
t.VsrD(0) = xb->VsrD(0); \
} else if (float64_is_zero(xa->VsrD(0)) && \
float64_is_zero(xb->VsrD(0))) { \
if (max) { \
if (!float64_is_neg(xa->VsrD(0)) || \
!float64_is_neg(xb->VsrD(0))) { \
t.VsrD(0) = 0ULL; \
} else { \
t.VsrD(0) = 0x8000000000000000ULL; \
} \
} else { \
if (float64_is_neg(xa->VsrD(0)) || \
float64_is_neg(xb->VsrD(0))) { \
t.VsrD(0) = 0x8000000000000000ULL; \
} else { \
t.VsrD(0) = 0ULL; \
} \
} \
} else if ((max && \
!float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
(!max && \
float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
t.VsrD(0) = xa->VsrD(0); \
} else { \
t.VsrD(0) = xb->VsrD(0); \
} \
\
vex_flag = fpscr_ve & vxsnan_flag; \
if (vxsnan_flag) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
if (!vex_flag) { \
*xt = t; \
} \
} \
VSX_MAX_MINJ(xsmaxjdp, 1);
VSX_MAX_MINJ(xsminjdp, 0);
/*
* VSX_CMP - VSX floating point compare
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* cmp - comparison operation
* svxvc - set VXVC bit
* exp - expected result of comparison
*/
#define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
ppc_vsr_t *xa, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
uint32_t crf6 = 0; \
int i; \
int all_true = 1; \
int all_false = 1; \
\
for (i = 0; i < nels; i++) { \
if (unlikely(tp##_is_any_nan(xa->fld) || \
tp##_is_any_nan(xb->fld))) { \
if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
float_invalid_op_vxsnan(env, GETPC()); \
} \
if (svxvc) { \
float_invalid_op_vxvc(env, 0, GETPC()); \
} \
t.fld = 0; \
all_true = 0; \
} else { \
if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
t.fld = -1; \
all_false = 0; \
} else { \
t.fld = 0; \
all_true = 0; \
} \
} \
} \
\
*xt = t; \
crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
return crf6; \
}
VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
/*
* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* stp - source type (float32 or float64)
* ttp - target type (float32 or float64)
* sfld - source vsr_t field
* tfld - target vsr_t field (f32 or f64)
* sfprf - set FPRF
*/
#define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
for (i = 0; i < nels; i++) { \
t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
if (unlikely(stp##_is_signaling_nan(xb->sfld, \
&env->fp_status))) { \
float_invalid_op_vxsnan(env, GETPC()); \
t.tfld = ttp##_snan_to_qnan(t.tfld); \
} \
if (sfprf) { \
helper_compute_fprf_##ttp(env, t.tfld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
/*
* VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* stp - source type (float32 or float64)
* ttp - target type (float32 or float64)
* sfld - source vsr_t field
* tfld - target vsr_t field (f32 or f64)
* sfprf - set FPRF
*/
#define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
void helper_##op(CPUPPCState *env, uint32_t opcode, \
ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
for (i = 0; i < nels; i++) { \
t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
if (unlikely(stp##_is_signaling_nan(xb->sfld, \
&env->fp_status))) { \
float_invalid_op_vxsnan(env, GETPC()); \
t.tfld = ttp##_snan_to_qnan(t.tfld); \
} \
if (sfprf) { \
helper_compute_fprf_##ttp(env, t.tfld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
/*
* VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
* involving one half precision value
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* stp - source type
* ttp - target type
* sfld - source vsr_t field
* tfld - target vsr_t field
* sfprf - set FPRF
*/
#define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = { }; \
int i; \
\
for (i = 0; i < nels; i++) { \
t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
if (unlikely(stp##_is_signaling_nan(xb->sfld, \
&env->fp_status))) { \
float_invalid_op_vxsnan(env, GETPC()); \
t.tfld = ttp##_snan_to_qnan(t.tfld); \
} \
if (sfprf) { \
helper_compute_fprf_##ttp(env, t.tfld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
/*
* xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
* added to this later.
*/
void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xt, ppc_vsr_t *xb)
{
ppc_vsr_t t = { };
float_status tstat;
tstat = env->fp_status;
if (unlikely(Rc(opcode) != 0)) {
tstat.float_rounding_mode = float_round_to_odd;
}
t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
env->fp_status.float_exception_flags |= tstat.float_exception_flags;
if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
float_invalid_op_vxsnan(env, GETPC());
t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
}
helper_compute_fprf_float64(env, t.VsrD(0));
*xt = t;
do_float_check_status(env, GETPC());
}
uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
{
float_status tstat = env->fp_status;
set_float_exception_flags(0, &tstat);
return (uint64_t)float64_to_float32(xb, &tstat) << 32;
}
uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
{
float_status tstat = env->fp_status;
set_float_exception_flags(0, &tstat);
return float32_to_float64(xb >> 32, &tstat);
}
/*
* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* stp - source type (float32 or float64)
* ttp - target type (int32, uint32, int64 or uint64)
* sfld - source vsr_t field
* tfld - target vsr_t field
* rnan - resulting NaN
*/
#define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
int all_flags = env->fp_status.float_exception_flags, flags; \
ppc_vsr_t t = *xt; \
int i; \
\
for (i = 0; i < nels; i++) { \
env->fp_status.float_exception_flags = 0; \
t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
flags = env->fp_status.float_exception_flags; \
if (unlikely(flags & float_flag_invalid)) { \
float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
t.tfld = rnan; \
} \
all_flags |= flags; \
} \
\
*xt = t; \
env->fp_status.float_exception_flags = all_flags; \
do_float_check_status(env, GETPC()); \
}
VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
0x8000000000000000ULL)
VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
0x80000000U)
VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
0x8000000000000000ULL)
VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
0x80000000U)
VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
0x8000000000000000ULL)
VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
/*
* VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
* op - instruction mnemonic
* stp - source type (float32 or float64)
* ttp - target type (int32, uint32, int64 or uint64)
* sfld - source vsr_t field
* tfld - target vsr_t field
* rnan - resulting NaN
*/
#define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
void helper_##op(CPUPPCState *env, uint32_t opcode, \
ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = { }; \
\
t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
if (env->fp_status.float_exception_flags & float_flag_invalid) { \
float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
t.tfld = rnan; \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
0x8000000000000000ULL)
VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
0xffffffff80000000ULL)
VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
/*
* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* stp - source type (int32, uint32, int64 or uint64)
* ttp - target type (float32 or float64)
* sfld - source vsr_t field
* tfld - target vsr_t field
* jdef - definition of the j index (i or 2*i)
* sfprf - set FPRF
*/
#define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
for (i = 0; i < nels; i++) { \
t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
if (r2sp) { \
t.tfld = helper_frsp(env, t.tfld); \
} \
if (sfprf) { \
helper_compute_fprf_float64(env, t.tfld); \
} \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
/*
* VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
* op - instruction mnemonic
* stp - source type (int32, uint32, int64 or uint64)
* ttp - target type (float32 or float64)
* sfld - source vsr_t field
* tfld - target vsr_t field
*/
#define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
void helper_##op(CPUPPCState *env, uint32_t opcode, \
ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
\
t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
helper_compute_fprf_##ttp(env, t.tfld); \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
/*
* For "use current rounding mode", define a value that will not be
* one of the existing rounding model enums.
*/
#define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
float_round_up + float_round_to_zero)
/*
* VSX_ROUND - VSX floating point round
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* rmode - rounding mode
* sfprf - set FPRF
*/
#define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
{ \
ppc_vsr_t t = *xt; \
int i; \
\
if (rmode != FLOAT_ROUND_CURRENT) { \
set_float_rounding_mode(rmode, &env->fp_status); \
} \
\
for (i = 0; i < nels; i++) { \
if (unlikely(tp##_is_signaling_nan(xb->fld, \
&env->fp_status))) { \
float_invalid_op_vxsnan(env, GETPC()); \
t.fld = tp##_snan_to_qnan(xb->fld); \
} else { \
t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
} \
if (sfprf) { \
helper_compute_fprf_float64(env, t.fld); \
} \
} \
\
/* \
* If this is not a "use current rounding mode" instruction, \
* then inhibit setting of the XX bit and restore rounding \
* mode from FPSCR \
*/ \
if (rmode != FLOAT_ROUND_CURRENT) { \
fpscr_set_rounding_mode(env); \
env->fp_status.float_exception_flags &= ~float_flag_inexact; \
} \
\
*xt = t; \
do_float_check_status(env, GETPC()); \
}
VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
{
helper_reset_fpstatus(env);
uint64_t xt = helper_frsp(env, xb);
helper_compute_fprf_float64(env, xt);
do_float_check_status(env, GETPC());
return xt;
}
#define VSX_XXPERM(op, indexed) \
void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
ppc_vsr_t *xa, ppc_vsr_t *pcv) \
{ \
ppc_vsr_t t = *xt; \
int i, idx; \
\
for (i = 0; i < 16; i++) { \
idx = pcv->VsrB(i) & 0x1F; \
if (indexed) { \
idx = 31 - idx; \
} \
t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \
: xt->VsrB(idx - 16); \
} \
*xt = t; \
}
VSX_XXPERM(xxperm, 0)
VSX_XXPERM(xxpermr, 1)
void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
{
ppc_vsr_t t = { };
uint32_t exp, i, fraction;
for (i = 0; i < 4; i++) {
exp = (xb->VsrW(i) >> 23) & 0xFF;
fraction = xb->VsrW(i) & 0x7FFFFF;
if (exp != 0 && exp != 255) {
t.VsrW(i) = fraction | 0x00800000;
} else {
t.VsrW(i) = fraction;
}
}
*xt = t;
}
/*
* VSX_TEST_DC - VSX floating point test data class
* op - instruction mnemonic
* nels - number of elements (1, 2 or 4)
* xbn - VSR register number
* tp - type (float32 or float64)
* fld - vsr_t field (VsrD(*) or VsrW(*))
* tfld - target vsr_t field (VsrD(*) or VsrW(*))
* fld_max - target field max
* scrf - set result in CR and FPCC
*/
#define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
void helper_##op(CPUPPCState *env, uint32_t opcode) \
{ \
ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \
ppc_vsr_t *xb = &env->vsr[xbn]; \
ppc_vsr_t t = { }; \
uint32_t i, sign, dcmx; \
uint32_t cc, match = 0; \
\
if (!scrf) { \
dcmx = DCMX_XV(opcode); \
} else { \
t = *xt; \
dcmx = DCMX(opcode); \
} \
\
for (i = 0; i < nels; i++) { \
sign = tp##_is_neg(xb->fld); \
if (tp##_is_any_nan(xb->fld)) { \
match = extract32(dcmx, 6, 1); \
} else if (tp##_is_infinity(xb->fld)) { \
match = extract32(dcmx, 4 + !sign, 1); \
} else if (tp##_is_zero(xb->fld)) { \
match = extract32(dcmx, 2 + !sign, 1); \
} else if (tp##_is_zero_or_denormal(xb->fld)) { \
match = extract32(dcmx, 0 + !sign, 1); \
} \
\
if (scrf) { \
cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
env->fpscr &= ~(0x0F << FPSCR_FPRF); \
env->fpscr |= cc << FPSCR_FPRF; \
env->crf[BF(opcode)] = cc; \
} else { \
t.tfld = match ? fld_max : 0; \
} \
match = 0; \
} \
if (!scrf) { \
*xt = t; \
} \
}
VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)
{
uint32_t dcmx, sign, exp;
uint32_t cc, match = 0, not_sp = 0;
dcmx = DCMX(opcode);
exp = (xb->VsrD(0) >> 52) & 0x7FF;
sign = float64_is_neg(xb->VsrD(0));
if (float64_is_any_nan(xb->VsrD(0))) {
match = extract32(dcmx, 6, 1);
} else if (float64_is_infinity(xb->VsrD(0))) {
match = extract32(dcmx, 4 + !sign, 1);
} else if (float64_is_zero(xb->VsrD(0))) {
match = extract32(dcmx, 2 + !sign, 1);
} else if (float64_is_zero_or_denormal(xb->VsrD(0)) ||
(exp > 0 && exp < 0x381)) {
match = extract32(dcmx, 0 + !sign, 1);
}
not_sp = !float64_eq(xb->VsrD(0),
float32_to_float64(
float64_to_float32(xb->VsrD(0), &env->fp_status),
&env->fp_status), &env->fp_status);
cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
env->fpscr &= ~(0x0F << FPSCR_FPRF);
env->fpscr |= cc << FPSCR_FPRF;
env->crf[BF(opcode)] = cc;
}
void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xt, ppc_vsr_t *xb)
{
ppc_vsr_t t = { };
uint8_t r = Rrm(opcode);
uint8_t ex = Rc(opcode);
uint8_t rmc = RMC(opcode);
uint8_t rmode = 0;
float_status tstat;
helper_reset_fpstatus(env);
if (r == 0 && rmc == 0) {
rmode = float_round_ties_away;
} else if (r == 0 && rmc == 0x3) {
rmode = fpscr_rn;
} else if (r == 1) {
switch (rmc) {
case 0:
rmode = float_round_nearest_even;
break;
case 1:
rmode = float_round_to_zero;
break;
case 2:
rmode = float_round_up;
break;
case 3:
rmode = float_round_down;
break;
default:
abort();
}
}
tstat = env->fp_status;
set_float_exception_flags(0, &tstat);
set_float_rounding_mode(rmode, &tstat);
t.f128 = float128_round_to_int(xb->f128, &tstat);
env->fp_status.float_exception_flags |= tstat.float_exception_flags;
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
if (float128_is_signaling_nan(xb->f128, &tstat)) {
float_invalid_op_vxsnan(env, GETPC());
t.f128 = float128_snan_to_qnan(t.f128);
}
}
if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
env->fp_status.float_exception_flags &= ~float_flag_inexact;
}
helper_compute_fprf_float128(env, t.f128);
do_float_check_status(env, GETPC());
*xt = t;
}
void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xt, ppc_vsr_t *xb)
{
ppc_vsr_t t = { };
uint8_t r = Rrm(opcode);
uint8_t rmc = RMC(opcode);
uint8_t rmode = 0;
floatx80 round_res;
float_status tstat;
helper_reset_fpstatus(env);
if (r == 0 && rmc == 0) {
rmode = float_round_ties_away;
} else if (r == 0 && rmc == 0x3) {
rmode = fpscr_rn;
} else if (r == 1) {
switch (rmc) {
case 0:
rmode = float_round_nearest_even;
break;
case 1:
rmode = float_round_to_zero;
break;
case 2:
rmode = float_round_up;
break;
case 3:
rmode = float_round_down;
break;
default:
abort();
}
}
tstat = env->fp_status;
set_float_exception_flags(0, &tstat);
set_float_rounding_mode(rmode, &tstat);
round_res = float128_to_floatx80(xb->f128, &tstat);
t.f128 = floatx80_to_float128(round_res, &tstat);
env->fp_status.float_exception_flags |= tstat.float_exception_flags;
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
if (float128_is_signaling_nan(xb->f128, &tstat)) {
float_invalid_op_vxsnan(env, GETPC());
t.f128 = float128_snan_to_qnan(t.f128);
}
}
helper_compute_fprf_float128(env, t.f128);
*xt = t;
do_float_check_status(env, GETPC());
}
void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xt, ppc_vsr_t *xb)
{
ppc_vsr_t t = { };
float_status tstat;
helper_reset_fpstatus(env);
tstat = env->fp_status;
if (unlikely(Rc(opcode) != 0)) {
tstat.float_rounding_mode = float_round_to_odd;
}
set_float_exception_flags(0, &tstat);
t.f128 = float128_sqrt(xb->f128, &tstat);
env->fp_status.float_exception_flags |= tstat.float_exception_flags;
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
if (float128_is_signaling_nan(xb->f128, &tstat)) {
float_invalid_op_vxsnan(env, GETPC());
t.f128 = float128_snan_to_qnan(xb->f128);
} else if (float128_is_quiet_nan(xb->f128, &tstat)) {
t.f128 = xb->f128;
} else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) {
float_invalid_op_vxsqrt(env, 1, GETPC());
t.f128 = float128_default_nan(&env->fp_status);
}
}
helper_compute_fprf_float128(env, t.f128);
*xt = t;
do_float_check_status(env, GETPC());
}
void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
{
ppc_vsr_t t = *xt;
float_status tstat;
helper_reset_fpstatus(env);
tstat = env->fp_status;
if (unlikely(Rc(opcode) != 0)) {
tstat.float_rounding_mode = float_round_to_odd;
}
set_float_exception_flags(0, &tstat);
t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
env->fp_status.float_exception_flags |= tstat.float_exception_flags;
if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
float_invalid_op_addsub(env, 1, GETPC(),
float128_classify(xa->f128) |
float128_classify(xb->f128));
}
helper_compute_fprf_float128(env, t.f128);
*xt = t;
do_float_check_status(env, GETPC());
}