xemu/hw/mem/pc-dimm.c
Eric Blake 1fd5d4fea4 memory: Convert to new qapi union layout
We have two issues with our qapi union layout:
1) Even though the QMP wire format spells the tag 'type', the
C code spells it 'kind', requiring some hacks in the generator.
2) The C struct uses an anonymous union, which places all tag
values in the same namespace as all non-variant members. This
leads to spurious collisions if a tag value matches a non-variant
member's name.

Make the conversion to the new layout for memory-related code.

Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <1445898903-12082-21-git-send-email-eblake@redhat.com>
[Commit message tweaked slightly]
Signed-off-by: Markus Armbruster <armbru@redhat.com>
2015-11-02 08:30:28 +01:00

465 lines
14 KiB
C

/*
* Dimm device for Memory Hotplug
*
* Copyright ProfitBricks GmbH 2012
* Copyright (C) 2014 Red Hat Inc
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>
*/
#include "hw/mem/pc-dimm.h"
#include "qemu/config-file.h"
#include "qapi/visitor.h"
#include "qemu/range.h"
#include "sysemu/numa.h"
#include "sysemu/kvm.h"
#include "trace.h"
#include "hw/virtio/vhost.h"
typedef struct pc_dimms_capacity {
uint64_t size;
Error **errp;
} pc_dimms_capacity;
void pc_dimm_memory_plug(DeviceState *dev, MemoryHotplugState *hpms,
MemoryRegion *mr, uint64_t align, Error **errp)
{
int slot;
MachineState *machine = MACHINE(qdev_get_machine());
PCDIMMDevice *dimm = PC_DIMM(dev);
Error *local_err = NULL;
uint64_t existing_dimms_capacity = 0;
uint64_t addr;
addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
if (local_err) {
goto out;
}
addr = pc_dimm_get_free_addr(hpms->base,
memory_region_size(&hpms->mr),
!addr ? NULL : &addr, align,
memory_region_size(mr), &local_err);
if (local_err) {
goto out;
}
existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
if (local_err) {
goto out;
}
if (existing_dimms_capacity + memory_region_size(mr) >
machine->maxram_size - machine->ram_size) {
error_setg(&local_err, "not enough space, currently 0x%" PRIx64
" in use of total hot pluggable 0x" RAM_ADDR_FMT,
existing_dimms_capacity,
machine->maxram_size - machine->ram_size);
goto out;
}
object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
if (local_err) {
goto out;
}
trace_mhp_pc_dimm_assigned_address(addr);
slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
if (local_err) {
goto out;
}
slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
machine->ram_slots, &local_err);
if (local_err) {
goto out;
}
object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
if (local_err) {
goto out;
}
trace_mhp_pc_dimm_assigned_slot(slot);
if (kvm_enabled() && !kvm_has_free_slot(machine)) {
error_setg(&local_err, "hypervisor has no free memory slots left");
goto out;
}
if (!vhost_has_free_slot()) {
error_setg(&local_err, "a used vhost backend has no free"
" memory slots left");
goto out;
}
memory_region_add_subregion(&hpms->mr, addr - hpms->base, mr);
vmstate_register_ram(mr, dev);
numa_set_mem_node_id(addr, memory_region_size(mr), dimm->node);
out:
error_propagate(errp, local_err);
}
void pc_dimm_memory_unplug(DeviceState *dev, MemoryHotplugState *hpms,
MemoryRegion *mr)
{
PCDIMMDevice *dimm = PC_DIMM(dev);
numa_unset_mem_node_id(dimm->addr, memory_region_size(mr), dimm->node);
memory_region_del_subregion(&hpms->mr, mr);
vmstate_unregister_ram(mr, dev);
}
static int pc_existing_dimms_capacity_internal(Object *obj, void *opaque)
{
pc_dimms_capacity *cap = opaque;
uint64_t *size = &cap->size;
if (object_dynamic_cast(obj, TYPE_PC_DIMM)) {
DeviceState *dev = DEVICE(obj);
if (dev->realized) {
(*size) += object_property_get_int(obj, PC_DIMM_SIZE_PROP,
cap->errp);
}
if (cap->errp && *cap->errp) {
return 1;
}
}
object_child_foreach(obj, pc_existing_dimms_capacity_internal, opaque);
return 0;
}
uint64_t pc_existing_dimms_capacity(Error **errp)
{
pc_dimms_capacity cap;
cap.size = 0;
cap.errp = errp;
pc_existing_dimms_capacity_internal(qdev_get_machine(), &cap);
return cap.size;
}
int qmp_pc_dimm_device_list(Object *obj, void *opaque)
{
MemoryDeviceInfoList ***prev = opaque;
if (object_dynamic_cast(obj, TYPE_PC_DIMM)) {
DeviceState *dev = DEVICE(obj);
if (dev->realized) {
MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
PCDIMMDeviceInfo *di = g_new0(PCDIMMDeviceInfo, 1);
DeviceClass *dc = DEVICE_GET_CLASS(obj);
PCDIMMDevice *dimm = PC_DIMM(obj);
if (dev->id) {
di->has_id = true;
di->id = g_strdup(dev->id);
}
di->hotplugged = dev->hotplugged;
di->hotpluggable = dc->hotpluggable;
di->addr = dimm->addr;
di->slot = dimm->slot;
di->node = dimm->node;
di->size = object_property_get_int(OBJECT(dimm), PC_DIMM_SIZE_PROP,
NULL);
di->memdev = object_get_canonical_path(OBJECT(dimm->hostmem));
info->u.dimm = di;
elem->value = info;
elem->next = NULL;
**prev = elem;
*prev = &elem->next;
}
}
object_child_foreach(obj, qmp_pc_dimm_device_list, opaque);
return 0;
}
ram_addr_t get_current_ram_size(void)
{
MemoryDeviceInfoList *info_list = NULL;
MemoryDeviceInfoList **prev = &info_list;
MemoryDeviceInfoList *info;
ram_addr_t size = ram_size;
qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
for (info = info_list; info; info = info->next) {
MemoryDeviceInfo *value = info->value;
if (value) {
switch (value->type) {
case MEMORY_DEVICE_INFO_KIND_DIMM:
size += value->u.dimm->size;
break;
default:
break;
}
}
}
qapi_free_MemoryDeviceInfoList(info_list);
return size;
}
static int pc_dimm_slot2bitmap(Object *obj, void *opaque)
{
unsigned long *bitmap = opaque;
if (object_dynamic_cast(obj, TYPE_PC_DIMM)) {
DeviceState *dev = DEVICE(obj);
if (dev->realized) { /* count only realized DIMMs */
PCDIMMDevice *d = PC_DIMM(obj);
set_bit(d->slot, bitmap);
}
}
object_child_foreach(obj, pc_dimm_slot2bitmap, opaque);
return 0;
}
int pc_dimm_get_free_slot(const int *hint, int max_slots, Error **errp)
{
unsigned long *bitmap = bitmap_new(max_slots);
int slot = 0;
object_child_foreach(qdev_get_machine(), pc_dimm_slot2bitmap, bitmap);
/* check if requested slot is not occupied */
if (hint) {
if (*hint >= max_slots) {
error_setg(errp, "invalid slot# %d, should be less than %d",
*hint, max_slots);
} else if (!test_bit(*hint, bitmap)) {
slot = *hint;
} else {
error_setg(errp, "slot %d is busy", *hint);
}
goto out;
}
/* search for free slot */
slot = find_first_zero_bit(bitmap, max_slots);
if (slot == max_slots) {
error_setg(errp, "no free slots available");
}
out:
g_free(bitmap);
return slot;
}
static gint pc_dimm_addr_sort(gconstpointer a, gconstpointer b)
{
PCDIMMDevice *x = PC_DIMM(a);
PCDIMMDevice *y = PC_DIMM(b);
Int128 diff = int128_sub(int128_make64(x->addr), int128_make64(y->addr));
if (int128_lt(diff, int128_zero())) {
return -1;
} else if (int128_gt(diff, int128_zero())) {
return 1;
}
return 0;
}
static int pc_dimm_built_list(Object *obj, void *opaque)
{
GSList **list = opaque;
if (object_dynamic_cast(obj, TYPE_PC_DIMM)) {
DeviceState *dev = DEVICE(obj);
if (dev->realized) { /* only realized DIMMs matter */
*list = g_slist_insert_sorted(*list, dev, pc_dimm_addr_sort);
}
}
object_child_foreach(obj, pc_dimm_built_list, opaque);
return 0;
}
uint64_t pc_dimm_get_free_addr(uint64_t address_space_start,
uint64_t address_space_size,
uint64_t *hint, uint64_t align, uint64_t size,
Error **errp)
{
GSList *list = NULL, *item;
uint64_t new_addr, ret = 0;
uint64_t address_space_end = address_space_start + address_space_size;
g_assert(QEMU_ALIGN_UP(address_space_start, align) == address_space_start);
if (!address_space_size) {
error_setg(errp, "memory hotplug is not enabled, "
"please add maxmem option");
goto out;
}
if (hint && QEMU_ALIGN_UP(*hint, align) != *hint) {
error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
align);
goto out;
}
if (QEMU_ALIGN_UP(size, align) != size) {
error_setg(errp, "backend memory size must be multiple of 0x%"
PRIx64, align);
goto out;
}
assert(address_space_end > address_space_start);
object_child_foreach(qdev_get_machine(), pc_dimm_built_list, &list);
if (hint) {
new_addr = *hint;
} else {
new_addr = address_space_start;
}
/* find address range that will fit new DIMM */
for (item = list; item; item = g_slist_next(item)) {
PCDIMMDevice *dimm = item->data;
uint64_t dimm_size = object_property_get_int(OBJECT(dimm),
PC_DIMM_SIZE_PROP,
errp);
if (errp && *errp) {
goto out;
}
if (ranges_overlap(dimm->addr, dimm_size, new_addr, size)) {
if (hint) {
DeviceState *d = DEVICE(dimm);
error_setg(errp, "address range conflicts with '%s'", d->id);
goto out;
}
new_addr = QEMU_ALIGN_UP(dimm->addr + dimm_size, align);
}
}
ret = new_addr;
if (new_addr < address_space_start) {
error_setg(errp, "can't add memory [0x%" PRIx64 ":0x%" PRIx64
"] at 0x%" PRIx64, new_addr, size, address_space_start);
} else if ((new_addr + size) > address_space_end) {
error_setg(errp, "can't add memory [0x%" PRIx64 ":0x%" PRIx64
"] beyond 0x%" PRIx64, new_addr, size, address_space_end);
}
out:
g_slist_free(list);
return ret;
}
static Property pc_dimm_properties[] = {
DEFINE_PROP_UINT64(PC_DIMM_ADDR_PROP, PCDIMMDevice, addr, 0),
DEFINE_PROP_UINT32(PC_DIMM_NODE_PROP, PCDIMMDevice, node, 0),
DEFINE_PROP_INT32(PC_DIMM_SLOT_PROP, PCDIMMDevice, slot,
PC_DIMM_UNASSIGNED_SLOT),
DEFINE_PROP_END_OF_LIST(),
};
static void pc_dimm_get_size(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
int64_t value;
MemoryRegion *mr;
PCDIMMDevice *dimm = PC_DIMM(obj);
mr = host_memory_backend_get_memory(dimm->hostmem, errp);
value = memory_region_size(mr);
visit_type_int(v, &value, name, errp);
}
static void pc_dimm_check_memdev_is_busy(Object *obj, const char *name,
Object *val, Error **errp)
{
MemoryRegion *mr;
mr = host_memory_backend_get_memory(MEMORY_BACKEND(val), errp);
if (memory_region_is_mapped(mr)) {
char *path = object_get_canonical_path_component(val);
error_setg(errp, "can't use already busy memdev: %s", path);
g_free(path);
} else {
qdev_prop_allow_set_link_before_realize(obj, name, val, errp);
}
}
static void pc_dimm_init(Object *obj)
{
PCDIMMDevice *dimm = PC_DIMM(obj);
object_property_add(obj, PC_DIMM_SIZE_PROP, "int", pc_dimm_get_size,
NULL, NULL, NULL, &error_abort);
object_property_add_link(obj, PC_DIMM_MEMDEV_PROP, TYPE_MEMORY_BACKEND,
(Object **)&dimm->hostmem,
pc_dimm_check_memdev_is_busy,
OBJ_PROP_LINK_UNREF_ON_RELEASE,
&error_abort);
}
static void pc_dimm_realize(DeviceState *dev, Error **errp)
{
PCDIMMDevice *dimm = PC_DIMM(dev);
if (!dimm->hostmem) {
error_setg(errp, "'" PC_DIMM_MEMDEV_PROP "' property is not set");
return;
}
if (((nb_numa_nodes > 0) && (dimm->node >= nb_numa_nodes)) ||
(!nb_numa_nodes && dimm->node)) {
error_setg(errp, "'DIMM property " PC_DIMM_NODE_PROP " has value %"
PRIu32 "' which exceeds the number of numa nodes: %d",
dimm->node, nb_numa_nodes ? nb_numa_nodes : 1);
return;
}
}
static MemoryRegion *pc_dimm_get_memory_region(PCDIMMDevice *dimm)
{
return host_memory_backend_get_memory(dimm->hostmem, &error_abort);
}
static void pc_dimm_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
PCDIMMDeviceClass *ddc = PC_DIMM_CLASS(oc);
dc->realize = pc_dimm_realize;
dc->props = pc_dimm_properties;
dc->desc = "DIMM memory module";
ddc->get_memory_region = pc_dimm_get_memory_region;
}
static TypeInfo pc_dimm_info = {
.name = TYPE_PC_DIMM,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PCDIMMDevice),
.instance_init = pc_dimm_init,
.class_init = pc_dimm_class_init,
.class_size = sizeof(PCDIMMDeviceClass),
};
static void pc_dimm_register_types(void)
{
type_register_static(&pc_dimm_info);
}
type_init(pc_dimm_register_types)