mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-27 13:30:52 +00:00
213ff4e6df
Architectures that don't have signaling NaNs can define NO_SIGNALING_NANS, it will make float*_is_quiet_nan return 1 for any NaN and float*_is_signaling_nan always return 0. Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
639 lines
24 KiB
C
639 lines
24 KiB
C
/*
|
|
* QEMU float support
|
|
*
|
|
* Derived from SoftFloat.
|
|
*/
|
|
|
|
/*============================================================================
|
|
|
|
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
|
Package, Release 2b.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
these four paragraphs for those parts of this code that are retained.
|
|
|
|
=============================================================================*/
|
|
|
|
#ifndef SOFTFLOAT_H
|
|
#define SOFTFLOAT_H
|
|
|
|
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
|
|
#include <sunmath.h>
|
|
#endif
|
|
|
|
#include <inttypes.h>
|
|
#include "config-host.h"
|
|
#include "osdep.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Each of the following `typedef's defines the most convenient type that holds
|
|
| integers of at least as many bits as specified. For example, `uint8' should
|
|
| be the most convenient type that can hold unsigned integers of as many as
|
|
| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
|
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
|
| to the same as `int'.
|
|
*----------------------------------------------------------------------------*/
|
|
typedef uint8_t flag;
|
|
typedef uint8_t uint8;
|
|
typedef int8_t int8;
|
|
typedef unsigned int uint32;
|
|
typedef signed int int32;
|
|
typedef uint64_t uint64;
|
|
typedef int64_t int64;
|
|
|
|
#define LIT64( a ) a##LL
|
|
#define INLINE static inline
|
|
|
|
#define STATUS_PARAM , float_status *status
|
|
#define STATUS(field) status->field
|
|
#define STATUS_VAR , status
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point ordering relations
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_relation_less = -1,
|
|
float_relation_equal = 0,
|
|
float_relation_greater = 1,
|
|
float_relation_unordered = 2
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point types.
|
|
*----------------------------------------------------------------------------*/
|
|
/* Use structures for soft-float types. This prevents accidentally mixing
|
|
them with native int/float types. A sufficiently clever compiler and
|
|
sane ABI should be able to see though these structs. However
|
|
x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
|
|
//#define USE_SOFTFLOAT_STRUCT_TYPES
|
|
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
|
|
typedef struct {
|
|
uint16_t v;
|
|
} float16;
|
|
#define float16_val(x) (((float16)(x)).v)
|
|
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
|
|
#define const_float16(x) { x }
|
|
typedef struct {
|
|
uint32_t v;
|
|
} float32;
|
|
/* The cast ensures an error if the wrong type is passed. */
|
|
#define float32_val(x) (((float32)(x)).v)
|
|
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
|
|
#define const_float32(x) { x }
|
|
typedef struct {
|
|
uint64_t v;
|
|
} float64;
|
|
#define float64_val(x) (((float64)(x)).v)
|
|
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
|
|
#define const_float64(x) { x }
|
|
#else
|
|
typedef uint16_t float16;
|
|
typedef uint32_t float32;
|
|
typedef uint64_t float64;
|
|
#define float16_val(x) (x)
|
|
#define float32_val(x) (x)
|
|
#define float64_val(x) (x)
|
|
#define make_float16(x) (x)
|
|
#define make_float32(x) (x)
|
|
#define make_float64(x) (x)
|
|
#define const_float16(x) (x)
|
|
#define const_float32(x) (x)
|
|
#define const_float64(x) (x)
|
|
#endif
|
|
typedef struct {
|
|
uint64_t low;
|
|
uint16_t high;
|
|
} floatx80;
|
|
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
|
|
#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
|
|
typedef struct {
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
uint64_t high, low;
|
|
#else
|
|
uint64_t low, high;
|
|
#endif
|
|
} float128;
|
|
#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
|
|
#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point underflow tininess-detection mode.
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_tininess_after_rounding = 0,
|
|
float_tininess_before_rounding = 1
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point rounding mode.
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_round_nearest_even = 0,
|
|
float_round_down = 1,
|
|
float_round_up = 2,
|
|
float_round_to_zero = 3
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point exception flags.
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_flag_invalid = 1,
|
|
float_flag_divbyzero = 4,
|
|
float_flag_overflow = 8,
|
|
float_flag_underflow = 16,
|
|
float_flag_inexact = 32,
|
|
float_flag_input_denormal = 64,
|
|
float_flag_output_denormal = 128
|
|
};
|
|
|
|
typedef struct float_status {
|
|
signed char float_detect_tininess;
|
|
signed char float_rounding_mode;
|
|
signed char float_exception_flags;
|
|
signed char floatx80_rounding_precision;
|
|
/* should denormalised results go to zero and set the inexact flag? */
|
|
flag flush_to_zero;
|
|
/* should denormalised inputs go to zero and set the input_denormal flag? */
|
|
flag flush_inputs_to_zero;
|
|
flag default_nan_mode;
|
|
} float_status;
|
|
|
|
void set_float_rounding_mode(int val STATUS_PARAM);
|
|
void set_float_exception_flags(int val STATUS_PARAM);
|
|
INLINE void set_float_detect_tininess(int val STATUS_PARAM)
|
|
{
|
|
STATUS(float_detect_tininess) = val;
|
|
}
|
|
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
|
|
{
|
|
STATUS(flush_to_zero) = val;
|
|
}
|
|
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
|
|
{
|
|
STATUS(flush_inputs_to_zero) = val;
|
|
}
|
|
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
|
|
{
|
|
STATUS(default_nan_mode) = val;
|
|
}
|
|
INLINE int get_float_exception_flags(float_status *status)
|
|
{
|
|
return STATUS(float_exception_flags);
|
|
}
|
|
void set_floatx80_rounding_precision(int val STATUS_PARAM);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Routine to raise any or all of the software IEC/IEEE floating-point
|
|
| exception flags.
|
|
*----------------------------------------------------------------------------*/
|
|
void float_raise( int8 flags STATUS_PARAM);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Options to indicate which negations to perform in float*_muladd()
|
|
| Using these differs from negating an input or output before calling
|
|
| the muladd function in that this means that a NaN doesn't have its
|
|
| sign bit inverted before it is propagated.
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_muladd_negate_c = 1,
|
|
float_muladd_negate_product = 2,
|
|
float_muladd_negate_result = 4,
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 int32_to_float32( int32 STATUS_PARAM );
|
|
float64 int32_to_float64( int32 STATUS_PARAM );
|
|
float32 uint32_to_float32( uint32 STATUS_PARAM );
|
|
float64 uint32_to_float64( uint32 STATUS_PARAM );
|
|
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
|
|
float128 int32_to_float128( int32 STATUS_PARAM );
|
|
float32 int64_to_float32( int64 STATUS_PARAM );
|
|
float32 uint64_to_float32( uint64 STATUS_PARAM );
|
|
float64 int64_to_float64( int64 STATUS_PARAM );
|
|
float64 uint64_to_float64( uint64 STATUS_PARAM );
|
|
floatx80 int64_to_floatx80( int64 STATUS_PARAM );
|
|
float128 int64_to_float128( int64 STATUS_PARAM );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software half-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
float16 float32_to_float16( float32, flag STATUS_PARAM );
|
|
float32 float16_to_float32( float16, flag STATUS_PARAM );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software half-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
int float16_is_quiet_nan( float16 );
|
|
int float16_is_signaling_nan( float16 );
|
|
float16 float16_maybe_silence_nan( float16 );
|
|
|
|
INLINE int float16_is_any_nan(float16 a)
|
|
{
|
|
return ((float16_val(a) & ~0x8000) > 0x7c00);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated half-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
extern const float16 float16_default_nan;
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE single-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
|
|
uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
|
|
int32 float32_to_int32( float32 STATUS_PARAM );
|
|
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
|
|
uint32 float32_to_uint32( float32 STATUS_PARAM );
|
|
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
|
|
int64 float32_to_int64( float32 STATUS_PARAM );
|
|
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
|
|
float64 float32_to_float64( float32 STATUS_PARAM );
|
|
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
|
|
float128 float32_to_float128( float32 STATUS_PARAM );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE single-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_round_to_int( float32 STATUS_PARAM );
|
|
float32 float32_add( float32, float32 STATUS_PARAM );
|
|
float32 float32_sub( float32, float32 STATUS_PARAM );
|
|
float32 float32_mul( float32, float32 STATUS_PARAM );
|
|
float32 float32_div( float32, float32 STATUS_PARAM );
|
|
float32 float32_rem( float32, float32 STATUS_PARAM );
|
|
float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
|
|
float32 float32_sqrt( float32 STATUS_PARAM );
|
|
float32 float32_exp2( float32 STATUS_PARAM );
|
|
float32 float32_log2( float32 STATUS_PARAM );
|
|
int float32_eq( float32, float32 STATUS_PARAM );
|
|
int float32_le( float32, float32 STATUS_PARAM );
|
|
int float32_lt( float32, float32 STATUS_PARAM );
|
|
int float32_unordered( float32, float32 STATUS_PARAM );
|
|
int float32_eq_quiet( float32, float32 STATUS_PARAM );
|
|
int float32_le_quiet( float32, float32 STATUS_PARAM );
|
|
int float32_lt_quiet( float32, float32 STATUS_PARAM );
|
|
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
|
|
int float32_compare( float32, float32 STATUS_PARAM );
|
|
int float32_compare_quiet( float32, float32 STATUS_PARAM );
|
|
float32 float32_min(float32, float32 STATUS_PARAM);
|
|
float32 float32_max(float32, float32 STATUS_PARAM);
|
|
int float32_is_quiet_nan( float32 );
|
|
int float32_is_signaling_nan( float32 );
|
|
float32 float32_maybe_silence_nan( float32 );
|
|
float32 float32_scalbn( float32, int STATUS_PARAM );
|
|
|
|
INLINE float32 float32_abs(float32 a)
|
|
{
|
|
/* Note that abs does *not* handle NaN specially, nor does
|
|
* it flush denormal inputs to zero.
|
|
*/
|
|
return make_float32(float32_val(a) & 0x7fffffff);
|
|
}
|
|
|
|
INLINE float32 float32_chs(float32 a)
|
|
{
|
|
/* Note that chs does *not* handle NaN specially, nor does
|
|
* it flush denormal inputs to zero.
|
|
*/
|
|
return make_float32(float32_val(a) ^ 0x80000000);
|
|
}
|
|
|
|
INLINE int float32_is_infinity(float32 a)
|
|
{
|
|
return (float32_val(a) & 0x7fffffff) == 0x7f800000;
|
|
}
|
|
|
|
INLINE int float32_is_neg(float32 a)
|
|
{
|
|
return float32_val(a) >> 31;
|
|
}
|
|
|
|
INLINE int float32_is_zero(float32 a)
|
|
{
|
|
return (float32_val(a) & 0x7fffffff) == 0;
|
|
}
|
|
|
|
INLINE int float32_is_any_nan(float32 a)
|
|
{
|
|
return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
|
|
}
|
|
|
|
INLINE int float32_is_zero_or_denormal(float32 a)
|
|
{
|
|
return (float32_val(a) & 0x7f800000) == 0;
|
|
}
|
|
|
|
INLINE float32 float32_set_sign(float32 a, int sign)
|
|
{
|
|
return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
|
|
}
|
|
|
|
#define float32_zero make_float32(0)
|
|
#define float32_one make_float32(0x3f800000)
|
|
#define float32_ln2 make_float32(0x3f317218)
|
|
#define float32_pi make_float32(0x40490fdb)
|
|
#define float32_half make_float32(0x3f000000)
|
|
#define float32_infinity make_float32(0x7f800000)
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated single-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
extern const float32 float32_default_nan;
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE double-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
|
|
uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
|
|
int32 float64_to_int32( float64 STATUS_PARAM );
|
|
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
|
|
uint32 float64_to_uint32( float64 STATUS_PARAM );
|
|
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
|
|
int64 float64_to_int64( float64 STATUS_PARAM );
|
|
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
|
|
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
|
|
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
|
|
float32 float64_to_float32( float64 STATUS_PARAM );
|
|
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
|
|
float128 float64_to_float128( float64 STATUS_PARAM );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE double-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float64 float64_round_to_int( float64 STATUS_PARAM );
|
|
float64 float64_trunc_to_int( float64 STATUS_PARAM );
|
|
float64 float64_add( float64, float64 STATUS_PARAM );
|
|
float64 float64_sub( float64, float64 STATUS_PARAM );
|
|
float64 float64_mul( float64, float64 STATUS_PARAM );
|
|
float64 float64_div( float64, float64 STATUS_PARAM );
|
|
float64 float64_rem( float64, float64 STATUS_PARAM );
|
|
float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
|
|
float64 float64_sqrt( float64 STATUS_PARAM );
|
|
float64 float64_log2( float64 STATUS_PARAM );
|
|
int float64_eq( float64, float64 STATUS_PARAM );
|
|
int float64_le( float64, float64 STATUS_PARAM );
|
|
int float64_lt( float64, float64 STATUS_PARAM );
|
|
int float64_unordered( float64, float64 STATUS_PARAM );
|
|
int float64_eq_quiet( float64, float64 STATUS_PARAM );
|
|
int float64_le_quiet( float64, float64 STATUS_PARAM );
|
|
int float64_lt_quiet( float64, float64 STATUS_PARAM );
|
|
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
|
|
int float64_compare( float64, float64 STATUS_PARAM );
|
|
int float64_compare_quiet( float64, float64 STATUS_PARAM );
|
|
float64 float64_min(float64, float64 STATUS_PARAM);
|
|
float64 float64_max(float64, float64 STATUS_PARAM);
|
|
int float64_is_quiet_nan( float64 a );
|
|
int float64_is_signaling_nan( float64 );
|
|
float64 float64_maybe_silence_nan( float64 );
|
|
float64 float64_scalbn( float64, int STATUS_PARAM );
|
|
|
|
INLINE float64 float64_abs(float64 a)
|
|
{
|
|
/* Note that abs does *not* handle NaN specially, nor does
|
|
* it flush denormal inputs to zero.
|
|
*/
|
|
return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
|
|
}
|
|
|
|
INLINE float64 float64_chs(float64 a)
|
|
{
|
|
/* Note that chs does *not* handle NaN specially, nor does
|
|
* it flush denormal inputs to zero.
|
|
*/
|
|
return make_float64(float64_val(a) ^ 0x8000000000000000LL);
|
|
}
|
|
|
|
INLINE int float64_is_infinity(float64 a)
|
|
{
|
|
return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
|
|
}
|
|
|
|
INLINE int float64_is_neg(float64 a)
|
|
{
|
|
return float64_val(a) >> 63;
|
|
}
|
|
|
|
INLINE int float64_is_zero(float64 a)
|
|
{
|
|
return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
|
|
}
|
|
|
|
INLINE int float64_is_any_nan(float64 a)
|
|
{
|
|
return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
|
|
}
|
|
|
|
INLINE int float64_is_zero_or_denormal(float64 a)
|
|
{
|
|
return (float64_val(a) & 0x7ff0000000000000LL) == 0;
|
|
}
|
|
|
|
INLINE float64 float64_set_sign(float64 a, int sign)
|
|
{
|
|
return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
|
|
| ((int64_t)sign << 63));
|
|
}
|
|
|
|
#define float64_zero make_float64(0)
|
|
#define float64_one make_float64(0x3ff0000000000000LL)
|
|
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
|
|
#define float64_pi make_float64(0x400921fb54442d18LL)
|
|
#define float64_half make_float64(0x3fe0000000000000LL)
|
|
#define float64_infinity make_float64(0x7ff0000000000000LL)
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated double-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
extern const float64 float64_default_nan;
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE extended double-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
|
|
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
|
|
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
|
|
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
|
|
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
|
|
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
|
|
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE extended double-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
|
|
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
|
|
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
|
|
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
|
|
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
|
|
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
|
|
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
|
|
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_is_quiet_nan( floatx80 );
|
|
int floatx80_is_signaling_nan( floatx80 );
|
|
floatx80 floatx80_maybe_silence_nan( floatx80 );
|
|
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
|
|
|
|
INLINE floatx80 floatx80_abs(floatx80 a)
|
|
{
|
|
a.high &= 0x7fff;
|
|
return a;
|
|
}
|
|
|
|
INLINE floatx80 floatx80_chs(floatx80 a)
|
|
{
|
|
a.high ^= 0x8000;
|
|
return a;
|
|
}
|
|
|
|
INLINE int floatx80_is_infinity(floatx80 a)
|
|
{
|
|
return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
|
|
}
|
|
|
|
INLINE int floatx80_is_neg(floatx80 a)
|
|
{
|
|
return a.high >> 15;
|
|
}
|
|
|
|
INLINE int floatx80_is_zero(floatx80 a)
|
|
{
|
|
return (a.high & 0x7fff) == 0 && a.low == 0;
|
|
}
|
|
|
|
INLINE int floatx80_is_zero_or_denormal(floatx80 a)
|
|
{
|
|
return (a.high & 0x7fff) == 0;
|
|
}
|
|
|
|
INLINE int floatx80_is_any_nan(floatx80 a)
|
|
{
|
|
return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
|
|
}
|
|
|
|
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
|
|
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
|
|
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
|
|
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
|
|
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
|
|
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated extended double-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
extern const floatx80 floatx80_default_nan;
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE quadruple-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int32 float128_to_int32( float128 STATUS_PARAM );
|
|
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
|
|
int64 float128_to_int64( float128 STATUS_PARAM );
|
|
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
|
|
float32 float128_to_float32( float128 STATUS_PARAM );
|
|
float64 float128_to_float64( float128 STATUS_PARAM );
|
|
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE quadruple-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float128 float128_round_to_int( float128 STATUS_PARAM );
|
|
float128 float128_add( float128, float128 STATUS_PARAM );
|
|
float128 float128_sub( float128, float128 STATUS_PARAM );
|
|
float128 float128_mul( float128, float128 STATUS_PARAM );
|
|
float128 float128_div( float128, float128 STATUS_PARAM );
|
|
float128 float128_rem( float128, float128 STATUS_PARAM );
|
|
float128 float128_sqrt( float128 STATUS_PARAM );
|
|
int float128_eq( float128, float128 STATUS_PARAM );
|
|
int float128_le( float128, float128 STATUS_PARAM );
|
|
int float128_lt( float128, float128 STATUS_PARAM );
|
|
int float128_unordered( float128, float128 STATUS_PARAM );
|
|
int float128_eq_quiet( float128, float128 STATUS_PARAM );
|
|
int float128_le_quiet( float128, float128 STATUS_PARAM );
|
|
int float128_lt_quiet( float128, float128 STATUS_PARAM );
|
|
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
|
|
int float128_compare( float128, float128 STATUS_PARAM );
|
|
int float128_compare_quiet( float128, float128 STATUS_PARAM );
|
|
int float128_is_quiet_nan( float128 );
|
|
int float128_is_signaling_nan( float128 );
|
|
float128 float128_maybe_silence_nan( float128 );
|
|
float128 float128_scalbn( float128, int STATUS_PARAM );
|
|
|
|
INLINE float128 float128_abs(float128 a)
|
|
{
|
|
a.high &= 0x7fffffffffffffffLL;
|
|
return a;
|
|
}
|
|
|
|
INLINE float128 float128_chs(float128 a)
|
|
{
|
|
a.high ^= 0x8000000000000000LL;
|
|
return a;
|
|
}
|
|
|
|
INLINE int float128_is_infinity(float128 a)
|
|
{
|
|
return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
|
|
}
|
|
|
|
INLINE int float128_is_neg(float128 a)
|
|
{
|
|
return a.high >> 63;
|
|
}
|
|
|
|
INLINE int float128_is_zero(float128 a)
|
|
{
|
|
return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
|
|
}
|
|
|
|
INLINE int float128_is_zero_or_denormal(float128 a)
|
|
{
|
|
return (a.high & 0x7fff000000000000LL) == 0;
|
|
}
|
|
|
|
INLINE int float128_is_any_nan(float128 a)
|
|
{
|
|
return ((a.high >> 48) & 0x7fff) == 0x7fff &&
|
|
((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated quadruple-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
extern const float128 float128_default_nan;
|
|
|
|
#endif /* !SOFTFLOAT_H */
|