xemu/hw/arm/virt.c
Peter Maydell 1d939a68af hw/arm/virt: Wire up memory region to CPUs explicitly
Wire up the system memory region to the CPUs explicitly
by setting the QOM property. This doesn't change anything
over letting it default, but will be needed for adding
a secure memory region later.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
2016-01-21 14:15:07 +00:00

1277 lines
46 KiB
C

/*
* ARM mach-virt emulation
*
* Copyright (c) 2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* Emulate a virtual board which works by passing Linux all the information
* it needs about what devices are present via the device tree.
* There are some restrictions about what we can do here:
* + we can only present devices whose Linux drivers will work based
* purely on the device tree with no platform data at all
* + we want to present a very stripped-down minimalist platform,
* both because this reduces the security attack surface from the guest
* and also because it reduces our exposure to being broken when
* the kernel updates its device tree bindings and requires further
* information in a device binding that we aren't providing.
* This is essentially the same approach kvmtool uses.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "hw/arm/arm.h"
#include "hw/arm/primecell.h"
#include "hw/arm/virt.h"
#include "hw/devices.h"
#include "net/net.h"
#include "sysemu/block-backend.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "exec/address-spaces.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "hw/pci-host/gpex.h"
#include "hw/arm/virt-acpi-build.h"
#include "hw/arm/sysbus-fdt.h"
#include "hw/platform-bus.h"
#include "hw/arm/fdt.h"
#include "hw/intc/arm_gic_common.h"
#include "kvm_arm.h"
#include "hw/smbios/smbios.h"
#include "qapi/visitor.h"
#include "standard-headers/linux/input.h"
/* Number of external interrupt lines to configure the GIC with */
#define NUM_IRQS 256
#define PLATFORM_BUS_NUM_IRQS 64
static ARMPlatformBusSystemParams platform_bus_params;
typedef struct VirtBoardInfo {
struct arm_boot_info bootinfo;
const char *cpu_model;
const MemMapEntry *memmap;
const int *irqmap;
int smp_cpus;
void *fdt;
int fdt_size;
uint32_t clock_phandle;
uint32_t gic_phandle;
uint32_t v2m_phandle;
} VirtBoardInfo;
typedef struct {
MachineClass parent;
VirtBoardInfo *daughterboard;
} VirtMachineClass;
typedef struct {
MachineState parent;
bool secure;
bool highmem;
int32_t gic_version;
} VirtMachineState;
#define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
#define VIRT_MACHINE(obj) \
OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
#define VIRT_MACHINE_GET_CLASS(obj) \
OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
#define VIRT_MACHINE_CLASS(klass) \
OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
/* Addresses and sizes of our components.
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
* 128MB..256MB is used for miscellaneous device I/O.
* 256MB..1GB is reserved for possible future PCI support (ie where the
* PCI memory window will go if we add a PCI host controller).
* 1GB and up is RAM (which may happily spill over into the
* high memory region beyond 4GB).
* This represents a compromise between how much RAM can be given to
* a 32 bit VM and leaving space for expansion and in particular for PCI.
* Note that devices should generally be placed at multiples of 0x10000,
* to accommodate guests using 64K pages.
*/
static const MemMapEntry a15memmap[] = {
/* Space up to 0x8000000 is reserved for a boot ROM */
[VIRT_FLASH] = { 0, 0x08000000 },
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
[VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
/* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
[VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
/* This redistributor space allows up to 2*64kB*123 CPUs */
[VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
[VIRT_UART] = { 0x09000000, 0x00001000 },
[VIRT_RTC] = { 0x09010000, 0x00001000 },
[VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
[VIRT_GPIO] = { 0x09030000, 0x00001000 },
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
[VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
[VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
/* Second PCIe window, 512GB wide at the 512GB boundary */
[VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
};
static const int a15irqmap[] = {
[VIRT_UART] = 1,
[VIRT_RTC] = 2,
[VIRT_PCIE] = 3, /* ... to 6 */
[VIRT_GPIO] = 7,
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
[VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
[VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
};
static VirtBoardInfo machines[] = {
{
.cpu_model = "cortex-a15",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
{
.cpu_model = "cortex-a53",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
{
.cpu_model = "cortex-a57",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
{
.cpu_model = "host",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
};
static VirtBoardInfo *find_machine_info(const char *cpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(machines); i++) {
if (strcmp(cpu, machines[i].cpu_model) == 0) {
return &machines[i];
}
}
return NULL;
}
static void create_fdt(VirtBoardInfo *vbi)
{
void *fdt = create_device_tree(&vbi->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
vbi->fdt = fdt;
/* Header */
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
/*
* /chosen and /memory nodes must exist for load_dtb
* to fill in necessary properties later
*/
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
/* Clock node, for the benefit of the UART. The kernel device tree
* binding documentation claims the PL011 node clock properties are
* optional but in practice if you omit them the kernel refuses to
* probe for the device.
*/
vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_add_subnode(fdt, "/apb-pclk");
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
"clk24mhz");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
}
static void fdt_add_psci_node(const VirtBoardInfo *vbi)
{
uint32_t cpu_suspend_fn;
uint32_t cpu_off_fn;
uint32_t cpu_on_fn;
uint32_t migrate_fn;
void *fdt = vbi->fdt;
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
qemu_fdt_add_subnode(fdt, "/psci");
if (armcpu->psci_version == 2) {
const char comp[] = "arm,psci-0.2\0arm,psci";
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
} else {
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
}
} else {
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
}
/* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
* to the instruction that should be used to invoke PSCI functions.
* However, the device tree binding uses 'method' instead, so that is
* what we should use here.
*/
qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
}
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
{
/* Note that on A15 h/w these interrupts are level-triggered,
* but for the GIC implementation provided by both QEMU and KVM
* they are edge-triggered.
*/
ARMCPU *armcpu;
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
if (gictype == 2) {
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH,
(1 << vbi->smp_cpus) - 1);
}
qemu_fdt_add_subnode(vbi->fdt, "/timer");
armcpu = ARM_CPU(qemu_get_cpu(0));
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
compat, sizeof(compat));
} else {
qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
"arm,armv7-timer");
}
qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
}
static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
{
int cpu;
int addr_cells = 1;
/*
* From Documentation/devicetree/bindings/arm/cpus.txt
* On ARM v8 64-bit systems value should be set to 2,
* that corresponds to the MPIDR_EL1 register size.
* If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
* in the system, #address-cells can be set to 1, since
* MPIDR_EL1[63:32] bits are not used for CPUs
* identification.
*
* Here we actually don't know whether our system is 32- or 64-bit one.
* The simplest way to go is to examine affinity IDs of all our CPUs. If
* at least one of them has Aff3 populated, we set #address-cells to 2.
*/
for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
if (armcpu->mp_affinity & ARM_AFF3_MASK) {
addr_cells = 2;
break;
}
}
qemu_fdt_add_subnode(vbi->fdt, "/cpus");
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
armcpu->dtb_compatible);
if (vbi->smp_cpus > 1) {
qemu_fdt_setprop_string(vbi->fdt, nodename,
"enable-method", "psci");
}
if (addr_cells == 2) {
qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
armcpu->mp_affinity);
} else {
qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
armcpu->mp_affinity);
}
g_free(nodename);
}
}
static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
{
vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
"arm,gic-v2m-frame");
qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
2, vbi->memmap[VIRT_GIC_V2M].base,
2, vbi->memmap[VIRT_GIC_V2M].size);
qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
}
static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
{
vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
qemu_fdt_add_subnode(vbi->fdt, "/intc");
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
if (type == 3) {
qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
"arm,gic-v3");
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
2, vbi->memmap[VIRT_GIC_DIST].base,
2, vbi->memmap[VIRT_GIC_DIST].size,
2, vbi->memmap[VIRT_GIC_REDIST].base,
2, vbi->memmap[VIRT_GIC_REDIST].size);
} else {
/* 'cortex-a15-gic' means 'GIC v2' */
qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
"arm,cortex-a15-gic");
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
2, vbi->memmap[VIRT_GIC_DIST].base,
2, vbi->memmap[VIRT_GIC_DIST].size,
2, vbi->memmap[VIRT_GIC_CPU].base,
2, vbi->memmap[VIRT_GIC_CPU].size);
}
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
}
static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
{
int i;
int irq = vbi->irqmap[VIRT_GIC_V2M];
DeviceState *dev;
dev = qdev_create(NULL, "arm-gicv2m");
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
qdev_prop_set_uint32(dev, "base-spi", irq);
qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
qdev_init_nofail(dev);
for (i = 0; i < NUM_GICV2M_SPIS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
}
fdt_add_v2m_gic_node(vbi);
}
static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
{
/* We create a standalone GIC */
DeviceState *gicdev;
SysBusDevice *gicbusdev;
const char *gictype;
int i;
gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
gicdev = qdev_create(NULL, gictype);
qdev_prop_set_uint32(gicdev, "revision", type);
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
/* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
if (!kvm_irqchip_in_kernel()) {
qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
}
qdev_init_nofail(gicdev);
gicbusdev = SYS_BUS_DEVICE(gicdev);
sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
if (type == 3) {
sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
} else {
sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
}
/* Wire the outputs from each CPU's generic timer to the
* appropriate GIC PPI inputs, and the GIC's IRQ output to
* the CPU's IRQ input.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
int irq;
/* Mapping from the output timer irq lines from the CPU to the
* GIC PPI inputs we use for the virt board.
*/
const int timer_irq[] = {
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
};
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
qdev_connect_gpio_out(cpudev, irq,
qdev_get_gpio_in(gicdev,
ppibase + timer_irq[irq]));
}
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(gicbusdev, i + smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
}
for (i = 0; i < NUM_IRQS; i++) {
pic[i] = qdev_get_gpio_in(gicdev, i);
}
fdt_add_gic_node(vbi, type);
if (type == 2) {
create_v2m(vbi, pic);
}
}
static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
{
char *nodename;
hwaddr base = vbi->memmap[VIRT_UART].base;
hwaddr size = vbi->memmap[VIRT_UART].size;
int irq = vbi->irqmap[VIRT_UART];
const char compat[] = "arm,pl011\0arm,primecell";
const char clocknames[] = "uartclk\0apb_pclk";
sysbus_create_simple("pl011", base, pic[irq]);
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
/* Note that we can't use setprop_string because of the embedded NUL */
qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
vbi->clock_phandle, vbi->clock_phandle);
qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
clocknames, sizeof(clocknames));
qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
g_free(nodename);
}
static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
{
char *nodename;
hwaddr base = vbi->memmap[VIRT_RTC].base;
hwaddr size = vbi->memmap[VIRT_RTC].size;
int irq = vbi->irqmap[VIRT_RTC];
const char compat[] = "arm,pl031\0arm,primecell";
sysbus_create_simple("pl031", base, pic[irq]);
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
g_free(nodename);
}
static DeviceState *pl061_dev;
static void virt_powerdown_req(Notifier *n, void *opaque)
{
/* use gpio Pin 3 for power button event */
qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1);
}
static Notifier virt_system_powerdown_notifier = {
.notify = virt_powerdown_req
};
static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
{
char *nodename;
hwaddr base = vbi->memmap[VIRT_GPIO].base;
hwaddr size = vbi->memmap[VIRT_GPIO].size;
int irq = vbi->irqmap[VIRT_GPIO];
const char compat[] = "arm,pl061\0arm,primecell";
pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
nodename = g_strdup_printf("/pl061@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
"label", "GPIO Key Poweroff");
qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
KEY_POWER);
qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
"gpios", phandle, 3, 0);
/* connect powerdown request */
qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
g_free(nodename);
}
static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
{
int i;
hwaddr size = vbi->memmap[VIRT_MMIO].size;
/* We create the transports in forwards order. Since qbus_realize()
* prepends (not appends) new child buses, the incrementing loop below will
* create a list of virtio-mmio buses with decreasing base addresses.
*
* When a -device option is processed from the command line,
* qbus_find_recursive() picks the next free virtio-mmio bus in forwards
* order. The upshot is that -device options in increasing command line
* order are mapped to virtio-mmio buses with decreasing base addresses.
*
* When this code was originally written, that arrangement ensured that the
* guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
* the first -device on the command line. (The end-to-end order is a
* function of this loop, qbus_realize(), qbus_find_recursive(), and the
* guest kernel's name-to-address assignment strategy.)
*
* Meanwhile, the kernel's traversal seems to have been reversed; see eg.
* the message, if not necessarily the code, of commit 70161ff336.
* Therefore the loop now establishes the inverse of the original intent.
*
* Unfortunately, we can't counteract the kernel change by reversing the
* loop; it would break existing command lines.
*
* In any case, the kernel makes no guarantee about the stability of
* enumeration order of virtio devices (as demonstrated by it changing
* between kernel versions). For reliable and stable identification
* of disks users must use UUIDs or similar mechanisms.
*/
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
int irq = vbi->irqmap[VIRT_MMIO] + i;
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
sysbus_create_simple("virtio-mmio", base, pic[irq]);
}
/* We add dtb nodes in reverse order so that they appear in the finished
* device tree lowest address first.
*
* Note that this mapping is independent of the loop above. The previous
* loop influences virtio device to virtio transport assignment, whereas
* this loop controls how virtio transports are laid out in the dtb.
*/
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
char *nodename;
int irq = vbi->irqmap[VIRT_MMIO] + i;
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename,
"compatible", "virtio,mmio");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
g_free(nodename);
}
}
static void create_one_flash(const char *name, hwaddr flashbase,
hwaddr flashsize)
{
/* Create and map a single flash device. We use the same
* parameters as the flash devices on the Versatile Express board.
*/
DriveInfo *dinfo = drive_get_next(IF_PFLASH);
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
const uint64_t sectorlength = 256 * 1024;
if (dinfo) {
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
&error_abort);
}
qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
qdev_prop_set_uint64(dev, "sector-length", sectorlength);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
}
static void create_flash(const VirtBoardInfo *vbi)
{
/* Create two flash devices to fill the VIRT_FLASH space in the memmap.
* Any file passed via -bios goes in the first of these.
*/
hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
char *nodename;
if (bios_name) {
char *fn;
int image_size;
if (drive_get(IF_PFLASH, 0, 0)) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fn) {
error_report("Could not find ROM image '%s'", bios_name);
exit(1);
}
image_size = load_image_targphys(fn, flashbase, flashsize);
g_free(fn);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
}
create_one_flash("virt.flash0", flashbase, flashsize);
create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
g_free(nodename);
}
static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
{
hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
char *nodename;
fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename,
"compatible", "qemu,fw-cfg-mmio");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
g_free(nodename);
}
static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
int first_irq, const char *nodename)
{
int devfn, pin;
uint32_t full_irq_map[4 * 4 * 10] = { 0 };
uint32_t *irq_map = full_irq_map;
for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
for (pin = 0; pin < 4; pin++) {
int irq_type = GIC_FDT_IRQ_TYPE_SPI;
int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
int i;
uint32_t map[] = {
devfn << 8, 0, 0, /* devfn */
pin + 1, /* PCI pin */
gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
/* Convert map to big endian */
for (i = 0; i < 10; i++) {
irq_map[i] = cpu_to_be32(map[i]);
}
irq_map += 10;
}
}
qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
full_irq_map, sizeof(full_irq_map));
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
0x7 /* PCI irq */);
}
static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
bool use_highmem)
{
hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
hwaddr base = base_mmio;
int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
int irq = vbi->irqmap[VIRT_PCIE];
MemoryRegion *mmio_alias;
MemoryRegion *mmio_reg;
MemoryRegion *ecam_alias;
MemoryRegion *ecam_reg;
DeviceState *dev;
char *nodename;
int i;
PCIHostState *pci;
dev = qdev_create(NULL, TYPE_GPEX_HOST);
qdev_init_nofail(dev);
/* Map only the first size_ecam bytes of ECAM space */
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, size_ecam);
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
/* Map the MMIO window into system address space so as to expose
* the section of PCI MMIO space which starts at the same base address
* (ie 1:1 mapping for that part of PCI MMIO space visible through
* the window).
*/
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, base_mmio, size_mmio);
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
if (use_highmem) {
/* Map high MMIO space */
MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
mmio_reg, base_mmio_high, size_mmio_high);
memory_region_add_subregion(get_system_memory(), base_mmio_high,
high_mmio_alias);
}
/* Map IO port space */
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
}
pci = PCI_HOST_BRIDGE(dev);
if (pci->bus) {
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("virtio");
}
pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
}
}
nodename = g_strdup_printf("/pcie@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename,
"compatible", "pci-host-ecam-generic");
qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
nr_pcie_buses - 1);
if (vbi->v2m_phandle) {
qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
vbi->v2m_phandle);
}
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base_ecam, 2, size_ecam);
if (use_highmem) {
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, base_pio, 2, size_pio,
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
2, base_mmio, 2, size_mmio,
1, FDT_PCI_RANGE_MMIO_64BIT,
2, base_mmio_high,
2, base_mmio_high, 2, size_mmio_high);
} else {
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, base_pio, 2, size_pio,
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
2, base_mmio, 2, size_mmio);
}
qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
g_free(nodename);
}
static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
{
DeviceState *dev;
SysBusDevice *s;
int i;
ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
MemoryRegion *sysmem = get_system_memory();
platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
fdt_params->system_params = &platform_bus_params;
fdt_params->binfo = &vbi->bootinfo;
fdt_params->intc = "/intc";
/*
* register a machine init done notifier that creates the device tree
* nodes of the platform bus and its children dynamic sysbus devices
*/
arm_register_platform_bus_fdt_creator(fdt_params);
dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
dev->id = TYPE_PLATFORM_BUS_DEVICE;
qdev_prop_set_uint32(dev, "num_irqs",
platform_bus_params.platform_bus_num_irqs);
qdev_prop_set_uint32(dev, "mmio_size",
platform_bus_params.platform_bus_size);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
int irqn = platform_bus_params.platform_bus_first_irq + i;
sysbus_connect_irq(s, i, pic[irqn]);
}
memory_region_add_subregion(sysmem,
platform_bus_params.platform_bus_base,
sysbus_mmio_get_region(s, 0));
}
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
*fdt_size = board->fdt_size;
return board->fdt;
}
static void virt_build_smbios(VirtGuestInfo *guest_info)
{
FWCfgState *fw_cfg = guest_info->fw_cfg;
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
const char *product = "QEMU Virtual Machine";
if (!fw_cfg) {
return;
}
if (kvm_enabled()) {
product = "KVM Virtual Machine";
}
smbios_set_defaults("QEMU", product,
"1.0", false, true, SMBIOS_ENTRY_POINT_30);
smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len);
if (smbios_anchor) {
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
}
static
void virt_guest_info_machine_done(Notifier *notifier, void *data)
{
VirtGuestInfoState *guest_info_state = container_of(notifier,
VirtGuestInfoState, machine_done);
virt_acpi_setup(&guest_info_state->info);
virt_build_smbios(&guest_info_state->info);
}
static void machvirt_init(MachineState *machine)
{
VirtMachineState *vms = VIRT_MACHINE(machine);
qemu_irq pic[NUM_IRQS];
MemoryRegion *sysmem = get_system_memory();
int gic_version = vms->gic_version;
int n, max_cpus;
MemoryRegion *ram = g_new(MemoryRegion, 1);
const char *cpu_model = machine->cpu_model;
VirtBoardInfo *vbi;
VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
VirtGuestInfo *guest_info = &guest_info_state->info;
char **cpustr;
if (!cpu_model) {
cpu_model = "cortex-a15";
}
/* We can probe only here because during property set
* KVM is not available yet
*/
if (!gic_version) {
gic_version = kvm_arm_vgic_probe();
if (!gic_version) {
error_report("Unable to determine GIC version supported by host");
error_printf("KVM acceleration is probably not supported\n");
exit(1);
}
}
/* Separate the actual CPU model name from any appended features */
cpustr = g_strsplit(cpu_model, ",", 2);
vbi = find_machine_info(cpustr[0]);
if (!vbi) {
error_report("mach-virt: CPU %s not supported", cpustr[0]);
exit(1);
}
/* The maximum number of CPUs depends on the GIC version, or on how
* many redistributors we can fit into the memory map.
*/
if (gic_version == 3) {
max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
} else {
max_cpus = GIC_NCPU;
}
if (smp_cpus > max_cpus) {
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
"supported by machine 'mach-virt' (%d)",
smp_cpus, max_cpus);
exit(1);
}
vbi->smp_cpus = smp_cpus;
if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
error_report("mach-virt: cannot model more than 30GB RAM");
exit(1);
}
create_fdt(vbi);
for (n = 0; n < smp_cpus; n++) {
ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
CPUClass *cc = CPU_CLASS(oc);
Object *cpuobj;
Error *err = NULL;
char *cpuopts = g_strdup(cpustr[1]);
if (!oc) {
error_report("Unable to find CPU definition");
exit(1);
}
cpuobj = object_new(object_class_get_name(oc));
/* Handle any CPU options specified by the user */
cc->parse_features(CPU(cpuobj), cpuopts, &err);
g_free(cpuopts);
if (err) {
error_report_err(err);
exit(1);
}
if (!vms->secure) {
object_property_set_bool(cpuobj, false, "has_el3", NULL);
}
object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
NULL);
/* Secondary CPUs start in PSCI powered-down state */
if (n > 0) {
object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
}
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
"reset-cbar", &error_abort);
}
object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
&error_abort);
object_property_set_bool(cpuobj, true, "realized", NULL);
}
g_strfreev(cpustr);
fdt_add_timer_nodes(vbi, gic_version);
fdt_add_cpu_nodes(vbi);
fdt_add_psci_node(vbi);
memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
machine->ram_size);
memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
create_flash(vbi);
create_gic(vbi, pic, gic_version, vms->secure);
create_uart(vbi, pic);
create_rtc(vbi, pic);
create_pcie(vbi, pic, vms->highmem);
create_gpio(vbi, pic);
/* Create mmio transports, so the user can create virtio backends
* (which will be automatically plugged in to the transports). If
* no backend is created the transport will just sit harmlessly idle.
*/
create_virtio_devices(vbi, pic);
create_fw_cfg(vbi, &address_space_memory);
rom_set_fw(fw_cfg_find());
guest_info->smp_cpus = smp_cpus;
guest_info->fw_cfg = fw_cfg_find();
guest_info->memmap = vbi->memmap;
guest_info->irqmap = vbi->irqmap;
guest_info->use_highmem = vms->highmem;
guest_info->gic_version = gic_version;
guest_info_state->machine_done.notify = virt_guest_info_machine_done;
qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
vbi->bootinfo.ram_size = machine->ram_size;
vbi->bootinfo.kernel_filename = machine->kernel_filename;
vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
vbi->bootinfo.initrd_filename = machine->initrd_filename;
vbi->bootinfo.nb_cpus = smp_cpus;
vbi->bootinfo.board_id = -1;
vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
vbi->bootinfo.get_dtb = machvirt_dtb;
vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
/*
* arm_load_kernel machine init done notifier registration must
* happen before the platform_bus_create call. In this latter,
* another notifier is registered which adds platform bus nodes.
* Notifiers are executed in registration reverse order.
*/
create_platform_bus(vbi, pic);
}
static bool virt_get_secure(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->secure;
}
static void virt_set_secure(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->secure = value;
}
static bool virt_get_highmem(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->highmem;
}
static void virt_set_highmem(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->highmem = value;
}
static char *virt_get_gic_version(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
const char *val = vms->gic_version == 3 ? "3" : "2";
return g_strdup(val);
}
static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
if (!strcmp(value, "3")) {
vms->gic_version = 3;
} else if (!strcmp(value, "2")) {
vms->gic_version = 2;
} else if (!strcmp(value, "host")) {
vms->gic_version = 0; /* Will probe later */
} else {
error_setg(errp, "Invalid gic-version value");
error_append_hint(errp, "Valid values are 3, 2, host.\n");
}
}
static void virt_instance_init(Object *obj)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
/* EL3 is disabled by default on virt: this makes us consistent
* between KVM and TCG for this board, and it also allows us to
* boot UEFI blobs which assume no TrustZone support.
*/
vms->secure = false;
object_property_add_bool(obj, "secure", virt_get_secure,
virt_set_secure, NULL);
object_property_set_description(obj, "secure",
"Set on/off to enable/disable the ARM "
"Security Extensions (TrustZone)",
NULL);
/* High memory is enabled by default */
vms->highmem = true;
object_property_add_bool(obj, "highmem", virt_get_highmem,
virt_set_highmem, NULL);
object_property_set_description(obj, "highmem",
"Set on/off to enable/disable using "
"physical address space above 32 bits",
NULL);
/* Default GIC type is v2 */
vms->gic_version = 2;
object_property_add_str(obj, "gic-version", virt_get_gic_version,
virt_set_gic_version, NULL);
object_property_set_description(obj, "gic-version",
"Set GIC version. "
"Valid values are 2, 3 and host", NULL);
}
static void virt_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "ARM Virtual Machine",
mc->init = machvirt_init;
/* Start max_cpus at the maximum QEMU supports. We'll further restrict
* it later in machvirt_init, where we have more information about the
* configuration of the particular instance.
*/
mc->max_cpus = MAX_CPUMASK_BITS;
mc->has_dynamic_sysbus = true;
mc->block_default_type = IF_VIRTIO;
mc->no_cdrom = 1;
mc->pci_allow_0_address = true;
}
static const TypeInfo machvirt_info = {
.name = TYPE_VIRT_MACHINE,
.parent = TYPE_MACHINE,
.instance_size = sizeof(VirtMachineState),
.instance_init = virt_instance_init,
.class_size = sizeof(VirtMachineClass),
.class_init = virt_class_init,
};
static void machvirt_machine_init(void)
{
type_register_static(&machvirt_info);
}
machine_init(machvirt_machine_init);