mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 03:59:52 +00:00
2507c12ab0
As stated before, devices can be little, big or native endian. The target endianness is not of their concern, so we need to push things down a level. This patch adds a parameter to cpu_register_io_memory that allows a device to choose its endianness. For now, all devices simply choose native endian, because that's the same behavior as before. Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2064 lines
66 KiB
C
2064 lines
66 KiB
C
/*
|
|
* QEMU i8255x (PRO100) emulation
|
|
*
|
|
* Copyright (C) 2006-2010 Stefan Weil
|
|
*
|
|
* Portions of the code are copies from grub / etherboot eepro100.c
|
|
* and linux e100.c.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) version 3 or any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Tested features (i82559):
|
|
* PXE boot (i386) ok
|
|
* Linux networking (i386) ok
|
|
*
|
|
* Untested:
|
|
* non-i386 platforms
|
|
* Windows networking
|
|
*
|
|
* References:
|
|
*
|
|
* Intel 8255x 10/100 Mbps Ethernet Controller Family
|
|
* Open Source Software Developer Manual
|
|
*
|
|
* TODO:
|
|
* * PHY emulation should be separated from nic emulation.
|
|
* Most nic emulations could share the same phy code.
|
|
* * i82550 is untested. It is programmed like the i82559.
|
|
* * i82562 is untested. It is programmed like the i82559.
|
|
* * Power management (i82558 and later) is not implemented.
|
|
* * Wake-on-LAN is not implemented.
|
|
*/
|
|
|
|
#include <stddef.h> /* offsetof */
|
|
#include "hw.h"
|
|
#include "pci.h"
|
|
#include "net.h"
|
|
#include "eeprom93xx.h"
|
|
|
|
#define KiB 1024
|
|
|
|
/* Debug EEPRO100 card. */
|
|
#if 0
|
|
# define DEBUG_EEPRO100
|
|
#endif
|
|
|
|
#ifdef DEBUG_EEPRO100
|
|
#define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
|
|
#else
|
|
#define logout(fmt, ...) ((void)0)
|
|
#endif
|
|
|
|
/* Set flags to 0 to disable debug output. */
|
|
#define INT 1 /* interrupt related actions */
|
|
#define MDI 1 /* mdi related actions */
|
|
#define OTHER 1
|
|
#define RXTX 1
|
|
#define EEPROM 1 /* eeprom related actions */
|
|
|
|
#define TRACE(flag, command) ((flag) ? (command) : (void)0)
|
|
|
|
#define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
|
|
|
|
#define MAX_ETH_FRAME_SIZE 1514
|
|
|
|
/* This driver supports several different devices which are declared here. */
|
|
#define i82550 0x82550
|
|
#define i82551 0x82551
|
|
#define i82557A 0x82557a
|
|
#define i82557B 0x82557b
|
|
#define i82557C 0x82557c
|
|
#define i82558A 0x82558a
|
|
#define i82558B 0x82558b
|
|
#define i82559A 0x82559a
|
|
#define i82559B 0x82559b
|
|
#define i82559C 0x82559c
|
|
#define i82559ER 0x82559e
|
|
#define i82562 0x82562
|
|
#define i82801 0x82801
|
|
|
|
/* Use 64 word EEPROM. TODO: could be a runtime option. */
|
|
#define EEPROM_SIZE 64
|
|
|
|
#define PCI_MEM_SIZE (4 * KiB)
|
|
#define PCI_IO_SIZE 64
|
|
#define PCI_FLASH_SIZE (128 * KiB)
|
|
|
|
#define BIT(n) (1 << (n))
|
|
#define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
|
|
|
|
/* The SCB accepts the following controls for the Tx and Rx units: */
|
|
#define CU_NOP 0x0000 /* No operation. */
|
|
#define CU_START 0x0010 /* CU start. */
|
|
#define CU_RESUME 0x0020 /* CU resume. */
|
|
#define CU_STATSADDR 0x0040 /* Load dump counters address. */
|
|
#define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
|
|
#define CU_CMD_BASE 0x0060 /* Load CU base address. */
|
|
#define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
|
|
#define CU_SRESUME 0x00a0 /* CU static resume. */
|
|
|
|
#define RU_NOP 0x0000
|
|
#define RX_START 0x0001
|
|
#define RX_RESUME 0x0002
|
|
#define RU_ABORT 0x0004
|
|
#define RX_ADDR_LOAD 0x0006
|
|
#define RX_RESUMENR 0x0007
|
|
#define INT_MASK 0x0100
|
|
#define DRVR_INT 0x0200 /* Driver generated interrupt. */
|
|
|
|
typedef struct {
|
|
PCIDeviceInfo pci;
|
|
uint32_t device;
|
|
uint16_t device_id;
|
|
uint8_t revision;
|
|
uint8_t stats_size;
|
|
bool has_extended_tcb_support;
|
|
bool power_management;
|
|
} E100PCIDeviceInfo;
|
|
|
|
/* Offsets to the various registers.
|
|
All accesses need not be longword aligned. */
|
|
enum speedo_offsets {
|
|
SCBStatus = 0, /* Status Word. */
|
|
SCBAck = 1,
|
|
SCBCmd = 2, /* Rx/Command Unit command and status. */
|
|
SCBIntmask = 3,
|
|
SCBPointer = 4, /* General purpose pointer. */
|
|
SCBPort = 8, /* Misc. commands and operands. */
|
|
SCBflash = 12, /* Flash memory control. */
|
|
SCBeeprom = 14, /* EEPROM control. */
|
|
SCBCtrlMDI = 16, /* MDI interface control. */
|
|
SCBEarlyRx = 20, /* Early receive byte count. */
|
|
SCBFlow = 24, /* Flow Control. */
|
|
SCBpmdr = 27, /* Power Management Driver. */
|
|
SCBgctrl = 28, /* General Control. */
|
|
SCBgstat = 29, /* General Status. */
|
|
};
|
|
|
|
/* A speedo3 transmit buffer descriptor with two buffers... */
|
|
typedef struct {
|
|
uint16_t status;
|
|
uint16_t command;
|
|
uint32_t link; /* void * */
|
|
uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
|
|
uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
|
|
uint8_t tx_threshold; /* transmit threshold */
|
|
uint8_t tbd_count; /* TBD number */
|
|
#if 0
|
|
/* This constitutes two "TBD" entries: hdr and data */
|
|
uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
|
|
int32_t tx_buf_size0; /* Length of Tx hdr. */
|
|
uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
|
|
int32_t tx_buf_size1; /* Length of Tx data. */
|
|
#endif
|
|
} eepro100_tx_t;
|
|
|
|
/* Receive frame descriptor. */
|
|
typedef struct {
|
|
int16_t status;
|
|
uint16_t command;
|
|
uint32_t link; /* struct RxFD * */
|
|
uint32_t rx_buf_addr; /* void * */
|
|
uint16_t count;
|
|
uint16_t size;
|
|
char packet[MAX_ETH_FRAME_SIZE + 4];
|
|
} eepro100_rx_t;
|
|
|
|
typedef enum {
|
|
COMMAND_EL = BIT(15),
|
|
COMMAND_S = BIT(14),
|
|
COMMAND_I = BIT(13),
|
|
COMMAND_NC = BIT(4),
|
|
COMMAND_SF = BIT(3),
|
|
COMMAND_CMD = BITS(2, 0),
|
|
} scb_command_bit;
|
|
|
|
typedef enum {
|
|
STATUS_C = BIT(15),
|
|
STATUS_OK = BIT(13),
|
|
} scb_status_bit;
|
|
|
|
typedef struct {
|
|
uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
|
|
tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
|
|
tx_multiple_collisions, tx_total_collisions;
|
|
uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
|
|
rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
|
|
rx_short_frame_errors;
|
|
uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
|
|
uint16_t xmt_tco_frames, rcv_tco_frames;
|
|
/* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
|
|
uint32_t reserved[4];
|
|
} eepro100_stats_t;
|
|
|
|
typedef enum {
|
|
cu_idle = 0,
|
|
cu_suspended = 1,
|
|
cu_active = 2,
|
|
cu_lpq_active = 2,
|
|
cu_hqp_active = 3
|
|
} cu_state_t;
|
|
|
|
typedef enum {
|
|
ru_idle = 0,
|
|
ru_suspended = 1,
|
|
ru_no_resources = 2,
|
|
ru_ready = 4
|
|
} ru_state_t;
|
|
|
|
typedef struct {
|
|
PCIDevice dev;
|
|
/* Hash register (multicast mask array, multiple individual addresses). */
|
|
uint8_t mult[8];
|
|
int mmio_index;
|
|
NICState *nic;
|
|
NICConf conf;
|
|
uint8_t scb_stat; /* SCB stat/ack byte */
|
|
uint8_t int_stat; /* PCI interrupt status */
|
|
/* region must not be saved by nic_save. */
|
|
uint32_t region[3]; /* PCI region addresses */
|
|
uint16_t mdimem[32];
|
|
eeprom_t *eeprom;
|
|
uint32_t device; /* device variant */
|
|
uint32_t pointer;
|
|
/* (cu_base + cu_offset) address the next command block in the command block list. */
|
|
uint32_t cu_base; /* CU base address */
|
|
uint32_t cu_offset; /* CU address offset */
|
|
/* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
|
|
uint32_t ru_base; /* RU base address */
|
|
uint32_t ru_offset; /* RU address offset */
|
|
uint32_t statsaddr; /* pointer to eepro100_stats_t */
|
|
|
|
/* Temporary status information (no need to save these values),
|
|
* used while processing CU commands. */
|
|
eepro100_tx_t tx; /* transmit buffer descriptor */
|
|
uint32_t cb_address; /* = cu_base + cu_offset */
|
|
|
|
/* Statistical counters. Also used for wake-up packet (i82559). */
|
|
eepro100_stats_t statistics;
|
|
|
|
/* Configuration bytes. */
|
|
uint8_t configuration[22];
|
|
|
|
/* Data in mem is always in the byte order of the controller (le). */
|
|
uint8_t mem[PCI_MEM_SIZE];
|
|
/* vmstate for each particular nic */
|
|
VMStateDescription *vmstate;
|
|
|
|
/* Quasi static device properties (no need to save them). */
|
|
uint16_t stats_size;
|
|
bool has_extended_tcb_support;
|
|
} EEPRO100State;
|
|
|
|
/* Word indices in EEPROM. */
|
|
typedef enum {
|
|
EEPROM_CNFG_MDIX = 0x03,
|
|
EEPROM_ID = 0x05,
|
|
EEPROM_PHY_ID = 0x06,
|
|
EEPROM_VENDOR_ID = 0x0c,
|
|
EEPROM_CONFIG_ASF = 0x0d,
|
|
EEPROM_DEVICE_ID = 0x23,
|
|
EEPROM_SMBUS_ADDR = 0x90,
|
|
} EEPROMOffset;
|
|
|
|
/* Bit values for EEPROM ID word. */
|
|
typedef enum {
|
|
EEPROM_ID_MDM = BIT(0), /* Modem */
|
|
EEPROM_ID_STB = BIT(1), /* Standby Enable */
|
|
EEPROM_ID_WMR = BIT(2), /* ??? */
|
|
EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
|
|
EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
|
|
EEPROM_ID_ALT = BIT(7), /* */
|
|
/* BITS(10, 8) device revision */
|
|
EEPROM_ID_BD = BIT(11), /* boot disable */
|
|
EEPROM_ID_ID = BIT(13), /* id bit */
|
|
/* BITS(15, 14) signature */
|
|
EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
|
|
} eeprom_id_bit;
|
|
|
|
/* Default values for MDI (PHY) registers */
|
|
static const uint16_t eepro100_mdi_default[] = {
|
|
/* MDI Registers 0 - 6, 7 */
|
|
0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
|
|
/* MDI Registers 8 - 15 */
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
/* MDI Registers 16 - 31 */
|
|
0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
};
|
|
|
|
/* Readonly mask for MDI (PHY) registers */
|
|
static const uint16_t eepro100_mdi_mask[] = {
|
|
0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
};
|
|
|
|
/* XXX: optimize */
|
|
static void stl_le_phys(target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
val = cpu_to_le32(val);
|
|
cpu_physical_memory_write(addr, (const uint8_t *)&val, sizeof(val));
|
|
}
|
|
|
|
#define POLYNOMIAL 0x04c11db6
|
|
|
|
/* From FreeBSD */
|
|
/* XXX: optimize */
|
|
static unsigned compute_mcast_idx(const uint8_t * ep)
|
|
{
|
|
uint32_t crc;
|
|
int carry, i, j;
|
|
uint8_t b;
|
|
|
|
crc = 0xffffffff;
|
|
for (i = 0; i < 6; i++) {
|
|
b = *ep++;
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
|
|
crc <<= 1;
|
|
b >>= 1;
|
|
if (carry) {
|
|
crc = ((crc ^ POLYNOMIAL) | carry);
|
|
}
|
|
}
|
|
}
|
|
return (crc & BITS(7, 2)) >> 2;
|
|
}
|
|
|
|
#if defined(DEBUG_EEPRO100)
|
|
static const char *nic_dump(const uint8_t * buf, unsigned size)
|
|
{
|
|
static char dump[3 * 16 + 1];
|
|
char *p = &dump[0];
|
|
if (size > 16) {
|
|
size = 16;
|
|
}
|
|
while (size-- > 0) {
|
|
p += sprintf(p, " %02x", *buf++);
|
|
}
|
|
return dump;
|
|
}
|
|
#endif /* DEBUG_EEPRO100 */
|
|
|
|
enum scb_stat_ack {
|
|
stat_ack_not_ours = 0x00,
|
|
stat_ack_sw_gen = 0x04,
|
|
stat_ack_rnr = 0x10,
|
|
stat_ack_cu_idle = 0x20,
|
|
stat_ack_frame_rx = 0x40,
|
|
stat_ack_cu_cmd_done = 0x80,
|
|
stat_ack_not_present = 0xFF,
|
|
stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
|
|
stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
|
|
};
|
|
|
|
static void disable_interrupt(EEPRO100State * s)
|
|
{
|
|
if (s->int_stat) {
|
|
TRACE(INT, logout("interrupt disabled\n"));
|
|
qemu_irq_lower(s->dev.irq[0]);
|
|
s->int_stat = 0;
|
|
}
|
|
}
|
|
|
|
static void enable_interrupt(EEPRO100State * s)
|
|
{
|
|
if (!s->int_stat) {
|
|
TRACE(INT, logout("interrupt enabled\n"));
|
|
qemu_irq_raise(s->dev.irq[0]);
|
|
s->int_stat = 1;
|
|
}
|
|
}
|
|
|
|
static void eepro100_acknowledge(EEPRO100State * s)
|
|
{
|
|
s->scb_stat &= ~s->mem[SCBAck];
|
|
s->mem[SCBAck] = s->scb_stat;
|
|
if (s->scb_stat == 0) {
|
|
disable_interrupt(s);
|
|
}
|
|
}
|
|
|
|
static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
|
|
{
|
|
uint8_t mask = ~s->mem[SCBIntmask];
|
|
s->mem[SCBAck] |= status;
|
|
status = s->scb_stat = s->mem[SCBAck];
|
|
status &= (mask | 0x0f);
|
|
#if 0
|
|
status &= (~s->mem[SCBIntmask] | 0x0xf);
|
|
#endif
|
|
if (status && (mask & 0x01)) {
|
|
/* SCB mask and SCB Bit M do not disable interrupt. */
|
|
enable_interrupt(s);
|
|
} else if (s->int_stat) {
|
|
disable_interrupt(s);
|
|
}
|
|
}
|
|
|
|
static void eepro100_cx_interrupt(EEPRO100State * s)
|
|
{
|
|
/* CU completed action command. */
|
|
/* Transmit not ok (82557 only, not in emulation). */
|
|
eepro100_interrupt(s, 0x80);
|
|
}
|
|
|
|
static void eepro100_cna_interrupt(EEPRO100State * s)
|
|
{
|
|
/* CU left the active state. */
|
|
eepro100_interrupt(s, 0x20);
|
|
}
|
|
|
|
static void eepro100_fr_interrupt(EEPRO100State * s)
|
|
{
|
|
/* RU received a complete frame. */
|
|
eepro100_interrupt(s, 0x40);
|
|
}
|
|
|
|
static void eepro100_rnr_interrupt(EEPRO100State * s)
|
|
{
|
|
/* RU is not ready. */
|
|
eepro100_interrupt(s, 0x10);
|
|
}
|
|
|
|
static void eepro100_mdi_interrupt(EEPRO100State * s)
|
|
{
|
|
/* MDI completed read or write cycle. */
|
|
eepro100_interrupt(s, 0x08);
|
|
}
|
|
|
|
static void eepro100_swi_interrupt(EEPRO100State * s)
|
|
{
|
|
/* Software has requested an interrupt. */
|
|
eepro100_interrupt(s, 0x04);
|
|
}
|
|
|
|
#if 0
|
|
static void eepro100_fcp_interrupt(EEPRO100State * s)
|
|
{
|
|
/* Flow control pause interrupt (82558 and later). */
|
|
eepro100_interrupt(s, 0x01);
|
|
}
|
|
#endif
|
|
|
|
static void e100_pci_reset(EEPRO100State * s, E100PCIDeviceInfo *e100_device)
|
|
{
|
|
uint32_t device = s->device;
|
|
uint8_t *pci_conf = s->dev.config;
|
|
|
|
TRACE(OTHER, logout("%p\n", s));
|
|
|
|
/* PCI Vendor ID */
|
|
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
|
|
/* PCI Device ID */
|
|
pci_config_set_device_id(pci_conf, e100_device->device_id);
|
|
/* PCI Status */
|
|
pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
|
|
PCI_STATUS_FAST_BACK);
|
|
/* PCI Revision ID */
|
|
pci_config_set_revision(pci_conf, e100_device->revision);
|
|
pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
|
|
/* PCI Latency Timer */
|
|
pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
|
|
/* Capability Pointer is set by PCI framework. */
|
|
/* Interrupt Line */
|
|
/* Interrupt Pin */
|
|
pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
|
|
/* Minimum Grant */
|
|
pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
|
|
/* Maximum Latency */
|
|
pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
|
|
|
|
s->stats_size = e100_device->stats_size;
|
|
s->has_extended_tcb_support = e100_device->has_extended_tcb_support;
|
|
|
|
switch (device) {
|
|
case i82550:
|
|
case i82551:
|
|
case i82557A:
|
|
case i82557B:
|
|
case i82557C:
|
|
case i82558A:
|
|
case i82558B:
|
|
case i82559A:
|
|
case i82559B:
|
|
case i82559ER:
|
|
case i82562:
|
|
case i82801:
|
|
break;
|
|
case i82559C:
|
|
#if EEPROM_SIZE > 0
|
|
pci_set_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID, PCI_VENDOR_ID_INTEL);
|
|
pci_set_word(pci_conf + PCI_SUBSYSTEM_ID, 0x0040);
|
|
#endif
|
|
break;
|
|
default:
|
|
logout("Device %X is undefined!\n", device);
|
|
}
|
|
|
|
/* Standard TxCB. */
|
|
s->configuration[6] |= BIT(4);
|
|
|
|
/* Standard statistical counters. */
|
|
s->configuration[6] |= BIT(5);
|
|
|
|
if (s->stats_size == 80) {
|
|
/* TODO: check TCO Statistical Counters bit. Documentation not clear. */
|
|
if (s->configuration[6] & BIT(2)) {
|
|
/* TCO statistical counters. */
|
|
assert(s->configuration[6] & BIT(5));
|
|
} else {
|
|
if (s->configuration[6] & BIT(5)) {
|
|
/* No extended statistical counters, i82557 compatible. */
|
|
s->stats_size = 64;
|
|
} else {
|
|
/* i82558 compatible. */
|
|
s->stats_size = 76;
|
|
}
|
|
}
|
|
} else {
|
|
if (s->configuration[6] & BIT(5)) {
|
|
/* No extended statistical counters. */
|
|
s->stats_size = 64;
|
|
}
|
|
}
|
|
assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
|
|
|
|
if (e100_device->power_management) {
|
|
/* Power Management Capabilities */
|
|
int cfg_offset = 0xdc;
|
|
int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
|
|
cfg_offset, PCI_PM_SIZEOF);
|
|
assert(r >= 0);
|
|
pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
|
|
#if 0 /* TODO: replace dummy code for power management emulation. */
|
|
/* TODO: Power Management Control / Status. */
|
|
pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
|
|
/* TODO: Ethernet Power Consumption Registers (i82559 and later). */
|
|
pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
|
|
#endif
|
|
}
|
|
|
|
#if EEPROM_SIZE > 0
|
|
if (device == i82557C || device == i82558B || device == i82559C) {
|
|
/*
|
|
TODO: get vendor id from EEPROM for i82557C or later.
|
|
TODO: get device id from EEPROM for i82557C or later.
|
|
TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
|
|
TODO: header type is determined by EEPROM for i82559.
|
|
TODO: get subsystem id from EEPROM for i82557C or later.
|
|
TODO: get subsystem vendor id from EEPROM for i82557C or later.
|
|
TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
|
|
TODO: capability pointer depends on EEPROM for i82558.
|
|
*/
|
|
logout("Get device id and revision from EEPROM!!!\n");
|
|
}
|
|
#endif /* EEPROM_SIZE > 0 */
|
|
}
|
|
|
|
static void nic_selective_reset(EEPRO100State * s)
|
|
{
|
|
size_t i;
|
|
uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
|
|
#if 0
|
|
eeprom93xx_reset(s->eeprom);
|
|
#endif
|
|
memcpy(eeprom_contents, s->conf.macaddr.a, 6);
|
|
eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
|
|
if (s->device == i82557B || s->device == i82557C)
|
|
eeprom_contents[5] = 0x0100;
|
|
eeprom_contents[EEPROM_PHY_ID] = 1;
|
|
uint16_t sum = 0;
|
|
for (i = 0; i < EEPROM_SIZE - 1; i++) {
|
|
sum += eeprom_contents[i];
|
|
}
|
|
eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
|
|
TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
|
|
|
|
memset(s->mem, 0, sizeof(s->mem));
|
|
uint32_t val = BIT(21);
|
|
memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
|
|
|
|
assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
|
|
memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
|
|
}
|
|
|
|
static void nic_reset(void *opaque)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
TRACE(OTHER, logout("%p\n", s));
|
|
/* TODO: Clearing of hash register for selective reset, too? */
|
|
memset(&s->mult[0], 0, sizeof(s->mult));
|
|
nic_selective_reset(s);
|
|
}
|
|
|
|
#if defined(DEBUG_EEPRO100)
|
|
static const char * const e100_reg[PCI_IO_SIZE / 4] = {
|
|
"Command/Status",
|
|
"General Pointer",
|
|
"Port",
|
|
"EEPROM/Flash Control",
|
|
"MDI Control",
|
|
"Receive DMA Byte Count",
|
|
"Flow Control",
|
|
"General Status/Control"
|
|
};
|
|
|
|
static char *regname(uint32_t addr)
|
|
{
|
|
static char buf[32];
|
|
if (addr < PCI_IO_SIZE) {
|
|
const char *r = e100_reg[addr / 4];
|
|
if (r != 0) {
|
|
snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
|
|
} else {
|
|
snprintf(buf, sizeof(buf), "0x%02x", addr);
|
|
}
|
|
} else {
|
|
snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
|
|
}
|
|
return buf;
|
|
}
|
|
#endif /* DEBUG_EEPRO100 */
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Command emulation.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#if 0
|
|
static uint16_t eepro100_read_command(EEPRO100State * s)
|
|
{
|
|
uint16_t val = 0xffff;
|
|
TRACE(OTHER, logout("val=0x%04x\n", val));
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
/* Commands that can be put in a command list entry. */
|
|
enum commands {
|
|
CmdNOp = 0,
|
|
CmdIASetup = 1,
|
|
CmdConfigure = 2,
|
|
CmdMulticastList = 3,
|
|
CmdTx = 4,
|
|
CmdTDR = 5, /* load microcode */
|
|
CmdDump = 6,
|
|
CmdDiagnose = 7,
|
|
|
|
/* And some extra flags: */
|
|
CmdSuspend = 0x4000, /* Suspend after completion. */
|
|
CmdIntr = 0x2000, /* Interrupt after completion. */
|
|
CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
|
|
};
|
|
|
|
static cu_state_t get_cu_state(EEPRO100State * s)
|
|
{
|
|
return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
|
|
}
|
|
|
|
static void set_cu_state(EEPRO100State * s, cu_state_t state)
|
|
{
|
|
s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
|
|
}
|
|
|
|
static ru_state_t get_ru_state(EEPRO100State * s)
|
|
{
|
|
return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
|
|
}
|
|
|
|
static void set_ru_state(EEPRO100State * s, ru_state_t state)
|
|
{
|
|
s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
|
|
}
|
|
|
|
static void dump_statistics(EEPRO100State * s)
|
|
{
|
|
/* Dump statistical data. Most data is never changed by the emulation
|
|
* and always 0, so we first just copy the whole block and then those
|
|
* values which really matter.
|
|
* Number of data should check configuration!!!
|
|
*/
|
|
cpu_physical_memory_write(s->statsaddr,
|
|
(uint8_t *) & s->statistics, s->stats_size);
|
|
stl_le_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
|
|
stl_le_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
|
|
stl_le_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
|
|
stl_le_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
|
|
#if 0
|
|
stw_le_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
|
|
stw_le_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
|
|
missing("CU dump statistical counters");
|
|
#endif
|
|
}
|
|
|
|
static void read_cb(EEPRO100State *s)
|
|
{
|
|
cpu_physical_memory_read(s->cb_address, (uint8_t *) &s->tx, sizeof(s->tx));
|
|
s->tx.status = le16_to_cpu(s->tx.status);
|
|
s->tx.command = le16_to_cpu(s->tx.command);
|
|
s->tx.link = le32_to_cpu(s->tx.link);
|
|
s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
|
|
s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
|
|
}
|
|
|
|
static void tx_command(EEPRO100State *s)
|
|
{
|
|
uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
|
|
uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
|
|
/* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
|
|
uint8_t buf[2600];
|
|
uint16_t size = 0;
|
|
uint32_t tbd_address = s->cb_address + 0x10;
|
|
TRACE(RXTX, logout
|
|
("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
|
|
tbd_array, tcb_bytes, s->tx.tbd_count));
|
|
|
|
if (tcb_bytes > 2600) {
|
|
logout("TCB byte count too large, using 2600\n");
|
|
tcb_bytes = 2600;
|
|
}
|
|
if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
|
|
logout
|
|
("illegal values of TBD array address and TCB byte count!\n");
|
|
}
|
|
assert(tcb_bytes <= sizeof(buf));
|
|
while (size < tcb_bytes) {
|
|
uint32_t tx_buffer_address = ldl_phys(tbd_address);
|
|
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
|
|
#if 0
|
|
uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
|
|
#endif
|
|
tbd_address += 8;
|
|
TRACE(RXTX, logout
|
|
("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
|
|
tx_buffer_address, tx_buffer_size));
|
|
tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
|
|
cpu_physical_memory_read(tx_buffer_address, &buf[size],
|
|
tx_buffer_size);
|
|
size += tx_buffer_size;
|
|
}
|
|
if (tbd_array == 0xffffffff) {
|
|
/* Simplified mode. Was already handled by code above. */
|
|
} else {
|
|
/* Flexible mode. */
|
|
uint8_t tbd_count = 0;
|
|
if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
|
|
/* Extended Flexible TCB. */
|
|
for (; tbd_count < 2; tbd_count++) {
|
|
uint32_t tx_buffer_address = ldl_phys(tbd_address);
|
|
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
|
|
uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
|
|
tbd_address += 8;
|
|
TRACE(RXTX, logout
|
|
("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
|
|
tx_buffer_address, tx_buffer_size));
|
|
tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
|
|
cpu_physical_memory_read(tx_buffer_address, &buf[size],
|
|
tx_buffer_size);
|
|
size += tx_buffer_size;
|
|
if (tx_buffer_el & 1) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
tbd_address = tbd_array;
|
|
for (; tbd_count < s->tx.tbd_count; tbd_count++) {
|
|
uint32_t tx_buffer_address = ldl_phys(tbd_address);
|
|
uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
|
|
uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
|
|
tbd_address += 8;
|
|
TRACE(RXTX, logout
|
|
("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
|
|
tx_buffer_address, tx_buffer_size));
|
|
tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
|
|
cpu_physical_memory_read(tx_buffer_address, &buf[size],
|
|
tx_buffer_size);
|
|
size += tx_buffer_size;
|
|
if (tx_buffer_el & 1) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
|
|
qemu_send_packet(&s->nic->nc, buf, size);
|
|
s->statistics.tx_good_frames++;
|
|
/* Transmit with bad status would raise an CX/TNO interrupt.
|
|
* (82557 only). Emulation never has bad status. */
|
|
#if 0
|
|
eepro100_cx_interrupt(s);
|
|
#endif
|
|
}
|
|
|
|
static void set_multicast_list(EEPRO100State *s)
|
|
{
|
|
uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
|
|
uint16_t i;
|
|
memset(&s->mult[0], 0, sizeof(s->mult));
|
|
TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
|
|
for (i = 0; i < multicast_count; i += 6) {
|
|
uint8_t multicast_addr[6];
|
|
cpu_physical_memory_read(s->cb_address + 10 + i, multicast_addr, 6);
|
|
TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
|
|
unsigned mcast_idx = compute_mcast_idx(multicast_addr);
|
|
assert(mcast_idx < 64);
|
|
s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
|
|
}
|
|
}
|
|
|
|
static void action_command(EEPRO100State *s)
|
|
{
|
|
for (;;) {
|
|
bool bit_el;
|
|
bool bit_s;
|
|
bool bit_i;
|
|
bool bit_nc;
|
|
uint16_t ok_status = STATUS_OK;
|
|
s->cb_address = s->cu_base + s->cu_offset;
|
|
read_cb(s);
|
|
bit_el = ((s->tx.command & COMMAND_EL) != 0);
|
|
bit_s = ((s->tx.command & COMMAND_S) != 0);
|
|
bit_i = ((s->tx.command & COMMAND_I) != 0);
|
|
bit_nc = ((s->tx.command & COMMAND_NC) != 0);
|
|
#if 0
|
|
bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
|
|
#endif
|
|
s->cu_offset = s->tx.link;
|
|
TRACE(OTHER,
|
|
logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
|
|
s->tx.status, s->tx.command, s->tx.link));
|
|
switch (s->tx.command & COMMAND_CMD) {
|
|
case CmdNOp:
|
|
/* Do nothing. */
|
|
break;
|
|
case CmdIASetup:
|
|
cpu_physical_memory_read(s->cb_address + 8, &s->conf.macaddr.a[0], 6);
|
|
TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
|
|
break;
|
|
case CmdConfigure:
|
|
cpu_physical_memory_read(s->cb_address + 8, &s->configuration[0],
|
|
sizeof(s->configuration));
|
|
TRACE(OTHER, logout("configuration: %s\n",
|
|
nic_dump(&s->configuration[0], 16)));
|
|
TRACE(OTHER, logout("configuration: %s\n",
|
|
nic_dump(&s->configuration[16],
|
|
ARRAY_SIZE(s->configuration) - 16)));
|
|
if (s->configuration[20] & BIT(6)) {
|
|
TRACE(OTHER, logout("Multiple IA bit\n"));
|
|
}
|
|
break;
|
|
case CmdMulticastList:
|
|
set_multicast_list(s);
|
|
break;
|
|
case CmdTx:
|
|
if (bit_nc) {
|
|
missing("CmdTx: NC = 0");
|
|
ok_status = 0;
|
|
break;
|
|
}
|
|
tx_command(s);
|
|
break;
|
|
case CmdTDR:
|
|
TRACE(OTHER, logout("load microcode\n"));
|
|
/* Starting with offset 8, the command contains
|
|
* 64 dwords microcode which we just ignore here. */
|
|
break;
|
|
case CmdDiagnose:
|
|
TRACE(OTHER, logout("diagnose\n"));
|
|
/* Make sure error flag is not set. */
|
|
s->tx.status = 0;
|
|
break;
|
|
default:
|
|
missing("undefined command");
|
|
ok_status = 0;
|
|
break;
|
|
}
|
|
/* Write new status. */
|
|
stw_phys(s->cb_address, s->tx.status | ok_status | STATUS_C);
|
|
if (bit_i) {
|
|
/* CU completed action. */
|
|
eepro100_cx_interrupt(s);
|
|
}
|
|
if (bit_el) {
|
|
/* CU becomes idle. Terminate command loop. */
|
|
set_cu_state(s, cu_idle);
|
|
eepro100_cna_interrupt(s);
|
|
break;
|
|
} else if (bit_s) {
|
|
/* CU becomes suspended. Terminate command loop. */
|
|
set_cu_state(s, cu_suspended);
|
|
eepro100_cna_interrupt(s);
|
|
break;
|
|
} else {
|
|
/* More entries in list. */
|
|
TRACE(OTHER, logout("CU list with at least one more entry\n"));
|
|
}
|
|
}
|
|
TRACE(OTHER, logout("CU list empty\n"));
|
|
/* List is empty. Now CU is idle or suspended. */
|
|
}
|
|
|
|
static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
|
|
{
|
|
cu_state_t cu_state;
|
|
switch (val) {
|
|
case CU_NOP:
|
|
/* No operation. */
|
|
break;
|
|
case CU_START:
|
|
cu_state = get_cu_state(s);
|
|
if (cu_state != cu_idle && cu_state != cu_suspended) {
|
|
/* Intel documentation says that CU must be idle or suspended
|
|
* for the CU start command. */
|
|
logout("unexpected CU state is %u\n", cu_state);
|
|
}
|
|
set_cu_state(s, cu_active);
|
|
s->cu_offset = s->pointer;
|
|
action_command(s);
|
|
break;
|
|
case CU_RESUME:
|
|
if (get_cu_state(s) != cu_suspended) {
|
|
logout("bad CU resume from CU state %u\n", get_cu_state(s));
|
|
/* Workaround for bad Linux eepro100 driver which resumes
|
|
* from idle state. */
|
|
#if 0
|
|
missing("cu resume");
|
|
#endif
|
|
set_cu_state(s, cu_suspended);
|
|
}
|
|
if (get_cu_state(s) == cu_suspended) {
|
|
TRACE(OTHER, logout("CU resuming\n"));
|
|
set_cu_state(s, cu_active);
|
|
action_command(s);
|
|
}
|
|
break;
|
|
case CU_STATSADDR:
|
|
/* Load dump counters address. */
|
|
s->statsaddr = s->pointer;
|
|
TRACE(OTHER, logout("val=0x%02x (status address)\n", val));
|
|
break;
|
|
case CU_SHOWSTATS:
|
|
/* Dump statistical counters. */
|
|
TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
|
|
dump_statistics(s);
|
|
stl_le_phys(s->statsaddr + s->stats_size, 0xa005);
|
|
break;
|
|
case CU_CMD_BASE:
|
|
/* Load CU base. */
|
|
TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
|
|
s->cu_base = s->pointer;
|
|
break;
|
|
case CU_DUMPSTATS:
|
|
/* Dump and reset statistical counters. */
|
|
TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
|
|
dump_statistics(s);
|
|
stl_le_phys(s->statsaddr + s->stats_size, 0xa007);
|
|
memset(&s->statistics, 0, sizeof(s->statistics));
|
|
break;
|
|
case CU_SRESUME:
|
|
/* CU static resume. */
|
|
missing("CU static resume");
|
|
break;
|
|
default:
|
|
missing("Undefined CU command");
|
|
}
|
|
}
|
|
|
|
static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
|
|
{
|
|
switch (val) {
|
|
case RU_NOP:
|
|
/* No operation. */
|
|
break;
|
|
case RX_START:
|
|
/* RU start. */
|
|
if (get_ru_state(s) != ru_idle) {
|
|
logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
|
|
#if 0
|
|
assert(!"wrong RU state");
|
|
#endif
|
|
}
|
|
set_ru_state(s, ru_ready);
|
|
s->ru_offset = s->pointer;
|
|
TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
|
|
break;
|
|
case RX_RESUME:
|
|
/* Restart RU. */
|
|
if (get_ru_state(s) != ru_suspended) {
|
|
logout("RU state is %u, should be %u\n", get_ru_state(s),
|
|
ru_suspended);
|
|
#if 0
|
|
assert(!"wrong RU state");
|
|
#endif
|
|
}
|
|
set_ru_state(s, ru_ready);
|
|
break;
|
|
case RU_ABORT:
|
|
/* RU abort. */
|
|
if (get_ru_state(s) == ru_ready) {
|
|
eepro100_rnr_interrupt(s);
|
|
}
|
|
set_ru_state(s, ru_idle);
|
|
break;
|
|
case RX_ADDR_LOAD:
|
|
/* Load RU base. */
|
|
TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
|
|
s->ru_base = s->pointer;
|
|
break;
|
|
default:
|
|
logout("val=0x%02x (undefined RU command)\n", val);
|
|
missing("Undefined SU command");
|
|
}
|
|
}
|
|
|
|
static void eepro100_write_command(EEPRO100State * s, uint8_t val)
|
|
{
|
|
eepro100_ru_command(s, val & 0x0f);
|
|
eepro100_cu_command(s, val & 0xf0);
|
|
if ((val) == 0) {
|
|
TRACE(OTHER, logout("val=0x%02x\n", val));
|
|
}
|
|
/* Clear command byte after command was accepted. */
|
|
s->mem[SCBCmd] = 0;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* EEPROM emulation.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#define EEPROM_CS 0x02
|
|
#define EEPROM_SK 0x01
|
|
#define EEPROM_DI 0x04
|
|
#define EEPROM_DO 0x08
|
|
|
|
static uint16_t eepro100_read_eeprom(EEPRO100State * s)
|
|
{
|
|
uint16_t val;
|
|
memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
|
|
if (eeprom93xx_read(s->eeprom)) {
|
|
val |= EEPROM_DO;
|
|
} else {
|
|
val &= ~EEPROM_DO;
|
|
}
|
|
TRACE(EEPROM, logout("val=0x%04x\n", val));
|
|
return val;
|
|
}
|
|
|
|
static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
|
|
{
|
|
TRACE(EEPROM, logout("val=0x%02x\n", val));
|
|
|
|
/* mask unwriteable bits */
|
|
#if 0
|
|
val = SET_MASKED(val, 0x31, eeprom->value);
|
|
#endif
|
|
|
|
int eecs = ((val & EEPROM_CS) != 0);
|
|
int eesk = ((val & EEPROM_SK) != 0);
|
|
int eedi = ((val & EEPROM_DI) != 0);
|
|
eeprom93xx_write(eeprom, eecs, eesk, eedi);
|
|
}
|
|
|
|
static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
|
|
{
|
|
s->pointer = le32_to_cpu(val);
|
|
TRACE(OTHER, logout("val=0x%08x\n", val));
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* MDI emulation.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#if defined(DEBUG_EEPRO100)
|
|
static const char * const mdi_op_name[] = {
|
|
"opcode 0",
|
|
"write",
|
|
"read",
|
|
"opcode 3"
|
|
};
|
|
|
|
static const char * const mdi_reg_name[] = {
|
|
"Control",
|
|
"Status",
|
|
"PHY Identification (Word 1)",
|
|
"PHY Identification (Word 2)",
|
|
"Auto-Negotiation Advertisement",
|
|
"Auto-Negotiation Link Partner Ability",
|
|
"Auto-Negotiation Expansion"
|
|
};
|
|
|
|
static const char *reg2name(uint8_t reg)
|
|
{
|
|
static char buffer[10];
|
|
const char *p = buffer;
|
|
if (reg < ARRAY_SIZE(mdi_reg_name)) {
|
|
p = mdi_reg_name[reg];
|
|
} else {
|
|
snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
|
|
}
|
|
return p;
|
|
}
|
|
#endif /* DEBUG_EEPRO100 */
|
|
|
|
static uint32_t eepro100_read_mdi(EEPRO100State * s)
|
|
{
|
|
uint32_t val;
|
|
memcpy(&val, &s->mem[0x10], sizeof(val));
|
|
|
|
#ifdef DEBUG_EEPRO100
|
|
uint8_t raiseint = (val & BIT(29)) >> 29;
|
|
uint8_t opcode = (val & BITS(27, 26)) >> 26;
|
|
uint8_t phy = (val & BITS(25, 21)) >> 21;
|
|
uint8_t reg = (val & BITS(20, 16)) >> 16;
|
|
uint16_t data = (val & BITS(15, 0));
|
|
#endif
|
|
/* Emulation takes no time to finish MDI transaction. */
|
|
val |= BIT(28);
|
|
TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
|
|
val, raiseint, mdi_op_name[opcode], phy,
|
|
reg2name(reg), data));
|
|
return val;
|
|
}
|
|
|
|
static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
|
|
{
|
|
uint8_t raiseint = (val & BIT(29)) >> 29;
|
|
uint8_t opcode = (val & BITS(27, 26)) >> 26;
|
|
uint8_t phy = (val & BITS(25, 21)) >> 21;
|
|
uint8_t reg = (val & BITS(20, 16)) >> 16;
|
|
uint16_t data = (val & BITS(15, 0));
|
|
TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
|
|
val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
|
|
if (phy != 1) {
|
|
/* Unsupported PHY address. */
|
|
#if 0
|
|
logout("phy must be 1 but is %u\n", phy);
|
|
#endif
|
|
data = 0;
|
|
} else if (opcode != 1 && opcode != 2) {
|
|
/* Unsupported opcode. */
|
|
logout("opcode must be 1 or 2 but is %u\n", opcode);
|
|
data = 0;
|
|
} else if (reg > 6) {
|
|
/* Unsupported register. */
|
|
logout("register must be 0...6 but is %u\n", reg);
|
|
data = 0;
|
|
} else {
|
|
TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
|
|
val, raiseint, mdi_op_name[opcode], phy,
|
|
reg2name(reg), data));
|
|
if (opcode == 1) {
|
|
/* MDI write */
|
|
switch (reg) {
|
|
case 0: /* Control Register */
|
|
if (data & 0x8000) {
|
|
/* Reset status and control registers to default. */
|
|
s->mdimem[0] = eepro100_mdi_default[0];
|
|
s->mdimem[1] = eepro100_mdi_default[1];
|
|
data = s->mdimem[reg];
|
|
} else {
|
|
/* Restart Auto Configuration = Normal Operation */
|
|
data &= ~0x0200;
|
|
}
|
|
break;
|
|
case 1: /* Status Register */
|
|
missing("not writable");
|
|
data = s->mdimem[reg];
|
|
break;
|
|
case 2: /* PHY Identification Register (Word 1) */
|
|
case 3: /* PHY Identification Register (Word 2) */
|
|
missing("not implemented");
|
|
break;
|
|
case 4: /* Auto-Negotiation Advertisement Register */
|
|
case 5: /* Auto-Negotiation Link Partner Ability Register */
|
|
break;
|
|
case 6: /* Auto-Negotiation Expansion Register */
|
|
default:
|
|
missing("not implemented");
|
|
}
|
|
s->mdimem[reg] = data;
|
|
} else if (opcode == 2) {
|
|
/* MDI read */
|
|
switch (reg) {
|
|
case 0: /* Control Register */
|
|
if (data & 0x8000) {
|
|
/* Reset status and control registers to default. */
|
|
s->mdimem[0] = eepro100_mdi_default[0];
|
|
s->mdimem[1] = eepro100_mdi_default[1];
|
|
}
|
|
break;
|
|
case 1: /* Status Register */
|
|
s->mdimem[reg] |= 0x0020;
|
|
break;
|
|
case 2: /* PHY Identification Register (Word 1) */
|
|
case 3: /* PHY Identification Register (Word 2) */
|
|
case 4: /* Auto-Negotiation Advertisement Register */
|
|
break;
|
|
case 5: /* Auto-Negotiation Link Partner Ability Register */
|
|
s->mdimem[reg] = 0x41fe;
|
|
break;
|
|
case 6: /* Auto-Negotiation Expansion Register */
|
|
s->mdimem[reg] = 0x0001;
|
|
break;
|
|
}
|
|
data = s->mdimem[reg];
|
|
}
|
|
/* Emulation takes no time to finish MDI transaction.
|
|
* Set MDI bit in SCB status register. */
|
|
s->mem[SCBAck] |= 0x08;
|
|
val |= BIT(28);
|
|
if (raiseint) {
|
|
eepro100_mdi_interrupt(s);
|
|
}
|
|
}
|
|
val = (val & 0xffff0000) + data;
|
|
memcpy(&s->mem[0x10], &val, sizeof(val));
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Port emulation.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#define PORT_SOFTWARE_RESET 0
|
|
#define PORT_SELFTEST 1
|
|
#define PORT_SELECTIVE_RESET 2
|
|
#define PORT_DUMP 3
|
|
#define PORT_SELECTION_MASK 3
|
|
|
|
typedef struct {
|
|
uint32_t st_sign; /* Self Test Signature */
|
|
uint32_t st_result; /* Self Test Results */
|
|
} eepro100_selftest_t;
|
|
|
|
static uint32_t eepro100_read_port(EEPRO100State * s)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void eepro100_write_port(EEPRO100State * s, uint32_t val)
|
|
{
|
|
val = le32_to_cpu(val);
|
|
uint32_t address = (val & ~PORT_SELECTION_MASK);
|
|
uint8_t selection = (val & PORT_SELECTION_MASK);
|
|
switch (selection) {
|
|
case PORT_SOFTWARE_RESET:
|
|
nic_reset(s);
|
|
break;
|
|
case PORT_SELFTEST:
|
|
TRACE(OTHER, logout("selftest address=0x%08x\n", address));
|
|
eepro100_selftest_t data;
|
|
cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
|
|
data.st_sign = 0xffffffff;
|
|
data.st_result = 0;
|
|
cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
|
|
break;
|
|
case PORT_SELECTIVE_RESET:
|
|
TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
|
|
nic_selective_reset(s);
|
|
break;
|
|
default:
|
|
logout("val=0x%08x\n", val);
|
|
missing("unknown port selection");
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* General hardware emulation.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
|
|
{
|
|
uint8_t val = 0;
|
|
if (addr <= sizeof(s->mem) - sizeof(val)) {
|
|
memcpy(&val, &s->mem[addr], sizeof(val));
|
|
}
|
|
|
|
switch (addr) {
|
|
case SCBStatus:
|
|
case SCBAck:
|
|
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
|
|
break;
|
|
case SCBCmd:
|
|
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
|
|
#if 0
|
|
val = eepro100_read_command(s);
|
|
#endif
|
|
break;
|
|
case SCBIntmask:
|
|
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
|
|
break;
|
|
case SCBPort + 3:
|
|
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
|
|
break;
|
|
case SCBeeprom:
|
|
val = eepro100_read_eeprom(s);
|
|
break;
|
|
case SCBpmdr: /* Power Management Driver Register */
|
|
val = 0;
|
|
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
|
|
break;
|
|
case SCBgstat: /* General Status Register */
|
|
/* 100 Mbps full duplex, valid link */
|
|
val = 0x07;
|
|
TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
|
|
break;
|
|
default:
|
|
logout("addr=%s val=0x%02x\n", regname(addr), val);
|
|
missing("unknown byte read");
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
|
|
{
|
|
uint16_t val = 0;
|
|
if (addr <= sizeof(s->mem) - sizeof(val)) {
|
|
memcpy(&val, &s->mem[addr], sizeof(val));
|
|
}
|
|
|
|
switch (addr) {
|
|
case SCBStatus:
|
|
case SCBCmd:
|
|
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
|
|
break;
|
|
case SCBeeprom:
|
|
val = eepro100_read_eeprom(s);
|
|
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
|
|
break;
|
|
default:
|
|
logout("addr=%s val=0x%04x\n", regname(addr), val);
|
|
missing("unknown word read");
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
|
|
{
|
|
uint32_t val = 0;
|
|
if (addr <= sizeof(s->mem) - sizeof(val)) {
|
|
memcpy(&val, &s->mem[addr], sizeof(val));
|
|
}
|
|
|
|
switch (addr) {
|
|
case SCBStatus:
|
|
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
|
|
break;
|
|
case SCBPointer:
|
|
#if 0
|
|
val = eepro100_read_pointer(s);
|
|
#endif
|
|
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
|
|
break;
|
|
case SCBPort:
|
|
val = eepro100_read_port(s);
|
|
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
|
|
break;
|
|
case SCBCtrlMDI:
|
|
val = eepro100_read_mdi(s);
|
|
break;
|
|
default:
|
|
logout("addr=%s val=0x%08x\n", regname(addr), val);
|
|
missing("unknown longword read");
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
|
|
{
|
|
/* SCBStatus is readonly. */
|
|
if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
|
|
memcpy(&s->mem[addr], &val, sizeof(val));
|
|
}
|
|
|
|
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
|
|
|
|
switch (addr) {
|
|
case SCBStatus:
|
|
break;
|
|
case SCBAck:
|
|
eepro100_acknowledge(s);
|
|
break;
|
|
case SCBCmd:
|
|
eepro100_write_command(s, val);
|
|
break;
|
|
case SCBIntmask:
|
|
if (val & BIT(1)) {
|
|
eepro100_swi_interrupt(s);
|
|
}
|
|
eepro100_interrupt(s, 0);
|
|
break;
|
|
case SCBPort + 3:
|
|
case SCBFlow: /* does not exist on 82557 */
|
|
case SCBFlow + 1:
|
|
case SCBFlow + 2:
|
|
case SCBpmdr: /* does not exist on 82557 */
|
|
TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
|
|
break;
|
|
case SCBeeprom:
|
|
eepro100_write_eeprom(s->eeprom, val);
|
|
break;
|
|
default:
|
|
logout("addr=%s val=0x%02x\n", regname(addr), val);
|
|
missing("unknown byte write");
|
|
}
|
|
}
|
|
|
|
static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
|
|
{
|
|
/* SCBStatus is readonly. */
|
|
if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
|
|
memcpy(&s->mem[addr], &val, sizeof(val));
|
|
}
|
|
|
|
TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
|
|
|
|
switch (addr) {
|
|
case SCBStatus:
|
|
s->mem[SCBAck] = (val >> 8);
|
|
eepro100_acknowledge(s);
|
|
break;
|
|
case SCBCmd:
|
|
eepro100_write_command(s, val);
|
|
eepro100_write1(s, SCBIntmask, val >> 8);
|
|
break;
|
|
case SCBeeprom:
|
|
eepro100_write_eeprom(s->eeprom, val);
|
|
break;
|
|
default:
|
|
logout("addr=%s val=0x%04x\n", regname(addr), val);
|
|
missing("unknown word write");
|
|
}
|
|
}
|
|
|
|
static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
|
|
{
|
|
if (addr <= sizeof(s->mem) - sizeof(val)) {
|
|
memcpy(&s->mem[addr], &val, sizeof(val));
|
|
}
|
|
|
|
switch (addr) {
|
|
case SCBPointer:
|
|
eepro100_write_pointer(s, val);
|
|
break;
|
|
case SCBPort:
|
|
TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
|
|
eepro100_write_port(s, val);
|
|
break;
|
|
case SCBCtrlMDI:
|
|
eepro100_write_mdi(s, val);
|
|
break;
|
|
default:
|
|
logout("addr=%s val=0x%08x\n", regname(addr), val);
|
|
missing("unknown longword write");
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Port mapped I/O.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static uint32_t ioport_read1(void *opaque, uint32_t addr)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
#if 0
|
|
logout("addr=%s\n", regname(addr));
|
|
#endif
|
|
return eepro100_read1(s, addr - s->region[1]);
|
|
}
|
|
|
|
static uint32_t ioport_read2(void *opaque, uint32_t addr)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
return eepro100_read2(s, addr - s->region[1]);
|
|
}
|
|
|
|
static uint32_t ioport_read4(void *opaque, uint32_t addr)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
return eepro100_read4(s, addr - s->region[1]);
|
|
}
|
|
|
|
static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
#if 0
|
|
logout("addr=%s val=0x%02x\n", regname(addr), val);
|
|
#endif
|
|
eepro100_write1(s, addr - s->region[1], val);
|
|
}
|
|
|
|
static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
eepro100_write2(s, addr - s->region[1], val);
|
|
}
|
|
|
|
static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
eepro100_write4(s, addr - s->region[1], val);
|
|
}
|
|
|
|
/***********************************************************/
|
|
/* PCI EEPRO100 definitions */
|
|
|
|
static void pci_map(PCIDevice * pci_dev, int region_num,
|
|
pcibus_t addr, pcibus_t size, int type)
|
|
{
|
|
EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
|
|
|
|
TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
|
|
"size=0x%08"FMT_PCIBUS", type=%d\n",
|
|
region_num, addr, size, type));
|
|
|
|
assert(region_num == 1);
|
|
register_ioport_write(addr, size, 1, ioport_write1, s);
|
|
register_ioport_read(addr, size, 1, ioport_read1, s);
|
|
register_ioport_write(addr, size, 2, ioport_write2, s);
|
|
register_ioport_read(addr, size, 2, ioport_read2, s);
|
|
register_ioport_write(addr, size, 4, ioport_write4, s);
|
|
register_ioport_read(addr, size, 4, ioport_read4, s);
|
|
|
|
s->region[region_num] = addr;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Memory mapped I/O.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
#if 0
|
|
logout("addr=%s val=0x%02x\n", regname(addr), val);
|
|
#endif
|
|
eepro100_write1(s, addr, val);
|
|
}
|
|
|
|
static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
#if 0
|
|
logout("addr=%s val=0x%02x\n", regname(addr), val);
|
|
#endif
|
|
eepro100_write2(s, addr, val);
|
|
}
|
|
|
|
static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
#if 0
|
|
logout("addr=%s val=0x%02x\n", regname(addr), val);
|
|
#endif
|
|
eepro100_write4(s, addr, val);
|
|
}
|
|
|
|
static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
#if 0
|
|
logout("addr=%s\n", regname(addr));
|
|
#endif
|
|
return eepro100_read1(s, addr);
|
|
}
|
|
|
|
static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
#if 0
|
|
logout("addr=%s\n", regname(addr));
|
|
#endif
|
|
return eepro100_read2(s, addr);
|
|
}
|
|
|
|
static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
EEPRO100State *s = opaque;
|
|
#if 0
|
|
logout("addr=%s\n", regname(addr));
|
|
#endif
|
|
return eepro100_read4(s, addr);
|
|
}
|
|
|
|
static CPUWriteMemoryFunc * const pci_mmio_write[] = {
|
|
pci_mmio_writeb,
|
|
pci_mmio_writew,
|
|
pci_mmio_writel
|
|
};
|
|
|
|
static CPUReadMemoryFunc * const pci_mmio_read[] = {
|
|
pci_mmio_readb,
|
|
pci_mmio_readw,
|
|
pci_mmio_readl
|
|
};
|
|
|
|
static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
|
|
pcibus_t addr, pcibus_t size, int type)
|
|
{
|
|
EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
|
|
|
|
TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
|
|
"size=0x%08"FMT_PCIBUS", type=%d\n",
|
|
region_num, addr, size, type));
|
|
|
|
assert(region_num == 0 || region_num == 2);
|
|
|
|
/* Map control / status registers and flash. */
|
|
cpu_register_physical_memory(addr, size, s->mmio_index);
|
|
s->region[region_num] = addr;
|
|
}
|
|
|
|
static int nic_can_receive(VLANClientState *nc)
|
|
{
|
|
EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
|
|
TRACE(RXTX, logout("%p\n", s));
|
|
return get_ru_state(s) == ru_ready;
|
|
#if 0
|
|
return !eepro100_buffer_full(s);
|
|
#endif
|
|
}
|
|
|
|
static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size)
|
|
{
|
|
/* TODO:
|
|
* - Magic packets should set bit 30 in power management driver register.
|
|
* - Interesting packets should set bit 29 in power management driver register.
|
|
*/
|
|
EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
|
|
uint16_t rfd_status = 0xa000;
|
|
static const uint8_t broadcast_macaddr[6] =
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
|
|
if (s->configuration[8] & 0x80) {
|
|
/* CSMA is disabled. */
|
|
logout("%p received while CSMA is disabled\n", s);
|
|
return -1;
|
|
} else if (size < 64 && (s->configuration[7] & BIT(0))) {
|
|
/* Short frame and configuration byte 7/0 (discard short receive) set:
|
|
* Short frame is discarded */
|
|
logout("%p received short frame (%zu byte)\n", s, size);
|
|
s->statistics.rx_short_frame_errors++;
|
|
#if 0
|
|
return -1;
|
|
#endif
|
|
} else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
|
|
/* Long frame and configuration byte 18/3 (long receive ok) not set:
|
|
* Long frames are discarded. */
|
|
logout("%p received long frame (%zu byte), ignored\n", s, size);
|
|
return -1;
|
|
} else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
|
|
/* Frame matches individual address. */
|
|
/* TODO: check configuration byte 15/4 (ignore U/L). */
|
|
TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
|
|
} else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
|
|
/* Broadcast frame. */
|
|
TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
|
|
rfd_status |= 0x0002;
|
|
} else if (buf[0] & 0x01) {
|
|
/* Multicast frame. */
|
|
TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
|
|
if (s->configuration[21] & BIT(3)) {
|
|
/* Multicast all bit is set, receive all multicast frames. */
|
|
} else {
|
|
unsigned mcast_idx = compute_mcast_idx(buf);
|
|
assert(mcast_idx < 64);
|
|
if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
|
|
/* Multicast frame is allowed in hash table. */
|
|
} else if (s->configuration[15] & BIT(0)) {
|
|
/* Promiscuous: receive all. */
|
|
rfd_status |= 0x0004;
|
|
} else {
|
|
TRACE(RXTX, logout("%p multicast ignored\n", s));
|
|
return -1;
|
|
}
|
|
}
|
|
/* TODO: Next not for promiscuous mode? */
|
|
rfd_status |= 0x0002;
|
|
} else if (s->configuration[15] & BIT(0)) {
|
|
/* Promiscuous: receive all. */
|
|
TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
|
|
rfd_status |= 0x0004;
|
|
} else if (s->configuration[20] & BIT(6)) {
|
|
/* Multiple IA bit set. */
|
|
unsigned mcast_idx = compute_mcast_idx(buf);
|
|
assert(mcast_idx < 64);
|
|
if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
|
|
TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
|
|
} else {
|
|
TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
|
|
return -1;
|
|
}
|
|
} else {
|
|
TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
|
|
nic_dump(buf, size)));
|
|
return size;
|
|
}
|
|
|
|
if (get_ru_state(s) != ru_ready) {
|
|
/* No resources available. */
|
|
logout("no resources, state=%u\n", get_ru_state(s));
|
|
/* TODO: RNR interrupt only at first failed frame? */
|
|
eepro100_rnr_interrupt(s);
|
|
s->statistics.rx_resource_errors++;
|
|
#if 0
|
|
assert(!"no resources");
|
|
#endif
|
|
return -1;
|
|
}
|
|
/* !!! */
|
|
eepro100_rx_t rx;
|
|
cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
|
|
offsetof(eepro100_rx_t, packet));
|
|
uint16_t rfd_command = le16_to_cpu(rx.command);
|
|
uint16_t rfd_size = le16_to_cpu(rx.size);
|
|
|
|
if (size > rfd_size) {
|
|
logout("Receive buffer (%" PRId16 " bytes) too small for data "
|
|
"(%zu bytes); data truncated\n", rfd_size, size);
|
|
size = rfd_size;
|
|
}
|
|
if (size < 64) {
|
|
rfd_status |= 0x0080;
|
|
}
|
|
TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
|
|
rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
|
|
stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
|
|
rfd_status);
|
|
stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
|
|
/* Early receive interrupt not supported. */
|
|
#if 0
|
|
eepro100_er_interrupt(s);
|
|
#endif
|
|
/* Receive CRC Transfer not supported. */
|
|
if (s->configuration[18] & BIT(2)) {
|
|
missing("Receive CRC Transfer");
|
|
return -1;
|
|
}
|
|
/* TODO: check stripping enable bit. */
|
|
#if 0
|
|
assert(!(s->configuration[17] & BIT(0)));
|
|
#endif
|
|
cpu_physical_memory_write(s->ru_base + s->ru_offset +
|
|
offsetof(eepro100_rx_t, packet), buf, size);
|
|
s->statistics.rx_good_frames++;
|
|
eepro100_fr_interrupt(s);
|
|
s->ru_offset = le32_to_cpu(rx.link);
|
|
if (rfd_command & COMMAND_EL) {
|
|
/* EL bit is set, so this was the last frame. */
|
|
logout("receive: Running out of frames\n");
|
|
set_ru_state(s, ru_suspended);
|
|
}
|
|
if (rfd_command & COMMAND_S) {
|
|
/* S bit is set. */
|
|
set_ru_state(s, ru_suspended);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_eepro100 = {
|
|
.version_id = 3,
|
|
.minimum_version_id = 2,
|
|
.minimum_version_id_old = 2,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_PCI_DEVICE(dev, EEPRO100State),
|
|
VMSTATE_UNUSED(32),
|
|
VMSTATE_BUFFER(mult, EEPRO100State),
|
|
VMSTATE_BUFFER(mem, EEPRO100State),
|
|
/* Save all members of struct between scb_stat and mem. */
|
|
VMSTATE_UINT8(scb_stat, EEPRO100State),
|
|
VMSTATE_UINT8(int_stat, EEPRO100State),
|
|
VMSTATE_UNUSED(3*4),
|
|
VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
|
|
VMSTATE_UNUSED(19*4),
|
|
VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
|
|
/* The eeprom should be saved and restored by its own routines. */
|
|
VMSTATE_UINT32(device, EEPRO100State),
|
|
/* TODO check device. */
|
|
VMSTATE_UINT32(pointer, EEPRO100State),
|
|
VMSTATE_UINT32(cu_base, EEPRO100State),
|
|
VMSTATE_UINT32(cu_offset, EEPRO100State),
|
|
VMSTATE_UINT32(ru_base, EEPRO100State),
|
|
VMSTATE_UINT32(ru_offset, EEPRO100State),
|
|
VMSTATE_UINT32(statsaddr, EEPRO100State),
|
|
/* Save eepro100_stats_t statistics. */
|
|
VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
|
|
VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
|
|
VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
|
|
VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
|
|
/* Configuration bytes. */
|
|
VMSTATE_BUFFER(configuration, EEPRO100State),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void nic_cleanup(VLANClientState *nc)
|
|
{
|
|
EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
|
|
|
|
s->nic = NULL;
|
|
}
|
|
|
|
static int pci_nic_uninit(PCIDevice *pci_dev)
|
|
{
|
|
EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
|
|
|
|
cpu_unregister_io_memory(s->mmio_index);
|
|
vmstate_unregister(&pci_dev->qdev, s->vmstate, s);
|
|
eeprom93xx_free(&pci_dev->qdev, s->eeprom);
|
|
qemu_del_vlan_client(&s->nic->nc);
|
|
return 0;
|
|
}
|
|
|
|
static NetClientInfo net_eepro100_info = {
|
|
.type = NET_CLIENT_TYPE_NIC,
|
|
.size = sizeof(NICState),
|
|
.can_receive = nic_can_receive,
|
|
.receive = nic_receive,
|
|
.cleanup = nic_cleanup,
|
|
};
|
|
|
|
static int e100_nic_init(PCIDevice *pci_dev)
|
|
{
|
|
EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
|
|
E100PCIDeviceInfo *e100_device = DO_UPCAST(E100PCIDeviceInfo, pci.qdev,
|
|
pci_dev->qdev.info);
|
|
|
|
TRACE(OTHER, logout("\n"));
|
|
|
|
s->device = e100_device->device;
|
|
|
|
e100_pci_reset(s, e100_device);
|
|
|
|
/* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
|
|
* i82559 and later support 64 or 256 word EEPROM. */
|
|
s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
|
|
|
|
/* Handler for memory-mapped I/O */
|
|
s->mmio_index =
|
|
cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s,
|
|
DEVICE_NATIVE_ENDIAN);
|
|
|
|
pci_register_bar(&s->dev, 0, PCI_MEM_SIZE,
|
|
PCI_BASE_ADDRESS_SPACE_MEMORY |
|
|
PCI_BASE_ADDRESS_MEM_PREFETCH, pci_mmio_map);
|
|
pci_register_bar(&s->dev, 1, PCI_IO_SIZE, PCI_BASE_ADDRESS_SPACE_IO,
|
|
pci_map);
|
|
pci_register_bar(&s->dev, 2, PCI_FLASH_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
|
|
pci_mmio_map);
|
|
|
|
qemu_macaddr_default_if_unset(&s->conf.macaddr);
|
|
logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
|
|
assert(s->region[1] == 0);
|
|
|
|
nic_reset(s);
|
|
|
|
s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
|
|
pci_dev->qdev.info->name, pci_dev->qdev.id, s);
|
|
|
|
qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
|
|
TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
|
|
|
|
qemu_register_reset(nic_reset, s);
|
|
|
|
s->vmstate = qemu_malloc(sizeof(vmstate_eepro100));
|
|
memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
|
|
s->vmstate->name = s->nic->nc.model;
|
|
vmstate_register(&pci_dev->qdev, -1, s->vmstate, s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static E100PCIDeviceInfo e100_devices[] = {
|
|
{
|
|
.pci.qdev.name = "i82550",
|
|
.pci.qdev.desc = "Intel i82550 Ethernet",
|
|
.device = i82550,
|
|
/* TODO: check device id. */
|
|
.device_id = PCI_DEVICE_ID_INTEL_82551IT,
|
|
/* Revision ID: 0x0c, 0x0d, 0x0e. */
|
|
.revision = 0x0e,
|
|
/* TODO: check size of statistical counters. */
|
|
.stats_size = 80,
|
|
/* TODO: check extended tcb support. */
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
.pci.qdev.name = "i82551",
|
|
.pci.qdev.desc = "Intel i82551 Ethernet",
|
|
.device = i82551,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82551IT,
|
|
/* Revision ID: 0x0f, 0x10. */
|
|
.revision = 0x0f,
|
|
/* TODO: check size of statistical counters. */
|
|
.stats_size = 80,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
.pci.qdev.name = "i82557a",
|
|
.pci.qdev.desc = "Intel i82557A Ethernet",
|
|
.device = i82557A,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82557,
|
|
.revision = 0x01,
|
|
.power_management = false,
|
|
},{
|
|
.pci.qdev.name = "i82557b",
|
|
.pci.qdev.desc = "Intel i82557B Ethernet",
|
|
.device = i82557B,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82557,
|
|
.revision = 0x02,
|
|
.power_management = false,
|
|
},{
|
|
.pci.qdev.name = "i82557c",
|
|
.pci.qdev.desc = "Intel i82557C Ethernet",
|
|
.device = i82557C,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82557,
|
|
.revision = 0x03,
|
|
.power_management = false,
|
|
},{
|
|
.pci.qdev.name = "i82558a",
|
|
.pci.qdev.desc = "Intel i82558A Ethernet",
|
|
.device = i82558A,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82557,
|
|
.revision = 0x04,
|
|
.stats_size = 76,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
.pci.qdev.name = "i82558b",
|
|
.pci.qdev.desc = "Intel i82558B Ethernet",
|
|
.device = i82558B,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82557,
|
|
.revision = 0x05,
|
|
.stats_size = 76,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
.pci.qdev.name = "i82559a",
|
|
.pci.qdev.desc = "Intel i82559A Ethernet",
|
|
.device = i82559A,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82557,
|
|
.revision = 0x06,
|
|
.stats_size = 80,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
.pci.qdev.name = "i82559b",
|
|
.pci.qdev.desc = "Intel i82559B Ethernet",
|
|
.device = i82559B,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82557,
|
|
.revision = 0x07,
|
|
.stats_size = 80,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
.pci.qdev.name = "i82559c",
|
|
.pci.qdev.desc = "Intel i82559C Ethernet",
|
|
.device = i82559C,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82557,
|
|
#if 0
|
|
.revision = 0x08,
|
|
#endif
|
|
/* TODO: Windows wants revision id 0x0c. */
|
|
.revision = 0x0c,
|
|
.stats_size = 80,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
.pci.qdev.name = "i82559er",
|
|
.pci.qdev.desc = "Intel i82559ER Ethernet",
|
|
.device = i82559ER,
|
|
.device_id = PCI_DEVICE_ID_INTEL_82551IT,
|
|
.revision = 0x09,
|
|
.stats_size = 80,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
.pci.qdev.name = "i82562",
|
|
.pci.qdev.desc = "Intel i82562 Ethernet",
|
|
.device = i82562,
|
|
/* TODO: check device id. */
|
|
.device_id = PCI_DEVICE_ID_INTEL_82551IT,
|
|
/* TODO: wrong revision id. */
|
|
.revision = 0x0e,
|
|
.stats_size = 80,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
},{
|
|
/* Toshiba Tecra 8200. */
|
|
.pci.qdev.name = "i82801",
|
|
.pci.qdev.desc = "Intel i82801 Ethernet",
|
|
.device = i82801,
|
|
.device_id = 0x2449,
|
|
.revision = 0x03,
|
|
.stats_size = 80,
|
|
.has_extended_tcb_support = true,
|
|
.power_management = true,
|
|
}
|
|
};
|
|
|
|
static Property e100_properties[] = {
|
|
DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void eepro100_register_devices(void)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
|
|
PCIDeviceInfo *pci_dev = &e100_devices[i].pci;
|
|
/* We use the same rom file for all device ids.
|
|
QEMU fixes the device id during rom load. */
|
|
pci_dev->romfile = "gpxe-eepro100-80861209.rom";
|
|
pci_dev->init = e100_nic_init;
|
|
pci_dev->exit = pci_nic_uninit;
|
|
pci_dev->qdev.props = e100_properties;
|
|
pci_dev->qdev.size = sizeof(EEPRO100State);
|
|
pci_qdev_register(pci_dev);
|
|
}
|
|
}
|
|
|
|
device_init(eepro100_register_devices)
|