xemu/hw/xilinx_timer.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

236 lines
6.2 KiB
C

/*
* QEMU model of the Xilinx timer block.
*
* Copyright (c) 2009 Edgar E. Iglesias.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "sysbus.h"
#include "sysemu.h"
#include "qemu-timer.h"
#define D(x)
#define R_TCSR 0
#define R_TLR 1
#define R_TCR 2
#define R_MAX 4
#define TCSR_MDT (1<<0)
#define TCSR_UDT (1<<1)
#define TCSR_GENT (1<<2)
#define TCSR_CAPT (1<<3)
#define TCSR_ARHT (1<<4)
#define TCSR_LOAD (1<<5)
#define TCSR_ENIT (1<<6)
#define TCSR_ENT (1<<7)
#define TCSR_TINT (1<<8)
#define TCSR_PWMA (1<<9)
#define TCSR_ENALL (1<<10)
struct xlx_timer
{
QEMUBH *bh;
ptimer_state *ptimer;
void *parent;
int nr; /* for debug. */
unsigned long timer_div;
uint32_t regs[R_MAX];
};
struct timerblock
{
SysBusDevice busdev;
qemu_irq irq;
uint32_t nr_timers;
uint32_t freq_hz;
struct xlx_timer *timers;
};
static inline unsigned int timer_from_addr(target_phys_addr_t addr)
{
/* Timers get a 4x32bit control reg area each. */
return addr >> 2;
}
static void timer_update_irq(struct timerblock *t)
{
unsigned int i, irq = 0;
uint32_t csr;
for (i = 0; i < t->nr_timers; i++) {
csr = t->timers[i].regs[R_TCSR];
irq |= (csr & TCSR_TINT) && (csr & TCSR_ENIT);
}
/* All timers within the same slave share a single IRQ line. */
qemu_set_irq(t->irq, !!irq);
}
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
{
struct timerblock *t = opaque;
struct xlx_timer *xt;
uint32_t r = 0;
unsigned int timer;
addr >>= 2;
timer = timer_from_addr(addr);
xt = &t->timers[timer];
/* Further decoding to address a specific timers reg. */
addr &= 0x3;
switch (addr)
{
case R_TCR:
r = ptimer_get_count(xt->ptimer);
if (!(xt->regs[R_TCSR] & TCSR_UDT))
r = ~r;
D(qemu_log("xlx_timer t=%d read counter=%x udt=%d\n",
timer, r, xt->regs[R_TCSR] & TCSR_UDT));
break;
default:
if (addr < ARRAY_SIZE(xt->regs))
r = xt->regs[addr];
break;
}
D(printf("%s timer=%d %x=%x\n", __func__, timer, addr * 4, r));
return r;
}
static void timer_enable(struct xlx_timer *xt)
{
uint64_t count;
D(printf("%s timer=%d down=%d\n", __func__,
xt->nr, xt->regs[R_TCSR] & TCSR_UDT));
ptimer_stop(xt->ptimer);
if (xt->regs[R_TCSR] & TCSR_UDT)
count = xt->regs[R_TLR];
else
count = ~0 - xt->regs[R_TLR];
ptimer_set_count(xt->ptimer, count);
ptimer_run(xt->ptimer, 1);
}
static void
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct timerblock *t = opaque;
struct xlx_timer *xt;
unsigned int timer;
addr >>= 2;
timer = timer_from_addr(addr);
xt = &t->timers[timer];
D(printf("%s addr=%x val=%x (timer=%d off=%d)\n",
__func__, addr * 4, value, timer, addr & 3));
/* Further decoding to address a specific timers reg. */
addr &= 3;
switch (addr)
{
case R_TCSR:
if (value & TCSR_TINT)
value &= ~TCSR_TINT;
xt->regs[addr] = value;
if (value & TCSR_ENT)
timer_enable(xt);
break;
default:
if (addr < ARRAY_SIZE(xt->regs))
xt->regs[addr] = value;
break;
}
timer_update_irq(t);
}
static CPUReadMemoryFunc * const timer_read[] = {
NULL, NULL,
&timer_readl,
};
static CPUWriteMemoryFunc * const timer_write[] = {
NULL, NULL,
&timer_writel,
};
static void timer_hit(void *opaque)
{
struct xlx_timer *xt = opaque;
struct timerblock *t = xt->parent;
D(printf("%s %d\n", __func__, timer));
xt->regs[R_TCSR] |= TCSR_TINT;
if (xt->regs[R_TCSR] & TCSR_ARHT)
timer_enable(xt);
timer_update_irq(t);
}
static int xilinx_timer_init(SysBusDevice *dev)
{
struct timerblock *t = FROM_SYSBUS(typeof (*t), dev);
unsigned int i;
int timer_regs;
/* All timers share a single irq line. */
sysbus_init_irq(dev, &t->irq);
/* Init all the ptimers. */
t->timers = qemu_mallocz(sizeof t->timers[0] * t->nr_timers);
for (i = 0; i < t->nr_timers; i++) {
struct xlx_timer *xt = &t->timers[i];
xt->parent = t;
xt->nr = i;
xt->bh = qemu_bh_new(timer_hit, xt);
xt->ptimer = ptimer_init(xt->bh);
ptimer_set_freq(xt->ptimer, t->freq_hz);
}
timer_regs = cpu_register_io_memory(timer_read, timer_write, t,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, R_MAX * 4 * t->nr_timers, timer_regs);
return 0;
}
static SysBusDeviceInfo xilinx_timer_info = {
.init = xilinx_timer_init,
.qdev.name = "xilinx,timer",
.qdev.size = sizeof(struct timerblock),
.qdev.props = (Property[]) {
DEFINE_PROP_UINT32("frequency", struct timerblock, freq_hz, 0),
DEFINE_PROP_UINT32("nr-timers", struct timerblock, nr_timers, 0),
DEFINE_PROP_END_OF_LIST(),
}
};
static void xilinx_timer_register(void)
{
sysbus_register_withprop(&xilinx_timer_info);
}
device_init(xilinx_timer_register)