xemu/hw/arm/armv7m.c
Jamie Iles af9751316e hw/core/loader: return image sizes as ssize_t
Various loader functions return an int which limits images to 2GB which
is fine for things like a BIOS/kernel image, but if we want to be able
to load memory images or large ramdisks then any file over 2GB would
silently fail to load.

Cc: Luc Michel <lmichel@kalray.eu>
Signed-off-by: Jamie Iles <jamie@nuviainc.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Luc Michel <lmichel@kalray.eu>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20211111141141.3295094-2-jamie@nuviainc.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2022-06-10 09:31:42 +10:00

648 lines
22 KiB
C

/*
* ARMV7M System emulation.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "hw/arm/armv7m.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "hw/arm/boot.h"
#include "hw/loader.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "elf.h"
#include "sysemu/reset.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "qemu/log.h"
#include "target/arm/idau.h"
#include "migration/vmstate.h"
/* Bitbanded IO. Each word corresponds to a single bit. */
/* Get the byte address of the real memory for a bitband access. */
static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
{
return s->base | (offset & 0x1ffffff) >> 5;
}
static MemTxResult bitband_read(void *opaque, hwaddr offset,
uint64_t *data, unsigned size, MemTxAttrs attrs)
{
BitBandState *s = opaque;
uint8_t buf[4];
MemTxResult res;
int bitpos, bit;
hwaddr addr;
assert(size <= 4);
/* Find address in underlying memory and round down to multiple of size */
addr = bitband_addr(s, offset) & (-size);
res = address_space_read(&s->source_as, addr, attrs, buf, size);
if (res) {
return res;
}
/* Bit position in the N bytes read... */
bitpos = (offset >> 2) & ((size * 8) - 1);
/* ...converted to byte in buffer and bit in byte */
bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
*data = bit;
return MEMTX_OK;
}
static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size, MemTxAttrs attrs)
{
BitBandState *s = opaque;
uint8_t buf[4];
MemTxResult res;
int bitpos, bit;
hwaddr addr;
assert(size <= 4);
/* Find address in underlying memory and round down to multiple of size */
addr = bitband_addr(s, offset) & (-size);
res = address_space_read(&s->source_as, addr, attrs, buf, size);
if (res) {
return res;
}
/* Bit position in the N bytes read... */
bitpos = (offset >> 2) & ((size * 8) - 1);
/* ...converted to byte in buffer and bit in byte */
bit = 1 << (bitpos & 7);
if (value & 1) {
buf[bitpos >> 3] |= bit;
} else {
buf[bitpos >> 3] &= ~bit;
}
return address_space_write(&s->source_as, addr, attrs, buf, size);
}
static const MemoryRegionOps bitband_ops = {
.read_with_attrs = bitband_read,
.write_with_attrs = bitband_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl.min_access_size = 1,
.impl.max_access_size = 4,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
};
static void bitband_init(Object *obj)
{
BitBandState *s = BITBAND(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
"bitband", 0x02000000);
sysbus_init_mmio(dev, &s->iomem);
}
static void bitband_realize(DeviceState *dev, Error **errp)
{
BitBandState *s = BITBAND(dev);
if (!s->source_memory) {
error_setg(errp, "source-memory property not set");
return;
}
address_space_init(&s->source_as, s->source_memory, "bitband-source");
}
/* Board init. */
static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
0x20000000, 0x40000000
};
static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
0x22000000, 0x42000000
};
static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
MemoryRegion *mr = opaque;
if (attrs.secure) {
/* S accesses to the alias act like NS accesses to the real region */
attrs.secure = 0;
return memory_region_dispatch_write(mr, addr, value,
size_memop(size) | MO_TE, attrs);
} else {
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
if (attrs.user) {
return MEMTX_ERROR;
}
return MEMTX_OK;
}
}
static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
MemoryRegion *mr = opaque;
if (attrs.secure) {
/* S accesses to the alias act like NS accesses to the real region */
attrs.secure = 0;
return memory_region_dispatch_read(mr, addr, data,
size_memop(size) | MO_TE, attrs);
} else {
/* NS attrs are RAZ/WI for privileged, and BusFault for user */
if (attrs.user) {
return MEMTX_ERROR;
}
*data = 0;
return MEMTX_OK;
}
}
static const MemoryRegionOps v7m_sysreg_ns_ops = {
.read_with_attrs = v7m_sysreg_ns_read,
.write_with_attrs = v7m_sysreg_ns_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
ARMv7MState *s = opaque;
MemoryRegion *mr;
/* Direct the access to the correct systick */
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
return memory_region_dispatch_write(mr, addr, value,
size_memop(size) | MO_TE, attrs);
}
static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
ARMv7MState *s = opaque;
MemoryRegion *mr;
/* Direct the access to the correct systick */
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
attrs);
}
static const MemoryRegionOps v7m_systick_ops = {
.read_with_attrs = v7m_systick_read,
.write_with_attrs = v7m_systick_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/*
* Unassigned portions of the PPB space are RAZ/WI for privileged
* accesses, and fault for non-privileged accesses.
*/
static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
(uint32_t)addr);
if (attrs.user) {
return MEMTX_ERROR;
}
*data = 0;
return MEMTX_OK;
}
static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
(uint32_t)addr);
if (attrs.user) {
return MEMTX_ERROR;
}
return MEMTX_OK;
}
static const MemoryRegionOps ppb_default_ops = {
.read_with_attrs = ppb_default_read,
.write_with_attrs = ppb_default_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
};
static void armv7m_instance_init(Object *obj)
{
ARMv7MState *s = ARMV7M(obj);
int i;
/* Can't init the cpu here, we don't yet know which model to use */
memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
object_property_add_alias(obj, "num-irq",
OBJECT(&s->nvic), "num-irq");
object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
TYPE_SYSTICK);
/*
* We can't initialize the secure systick here, as we don't know
* yet if we need it.
*/
for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
object_initialize_child(obj, "bitband[*]", &s->bitband[i],
TYPE_BITBAND);
}
s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
}
static void armv7m_realize(DeviceState *dev, Error **errp)
{
ARMv7MState *s = ARMV7M(dev);
SysBusDevice *sbd;
Error *err = NULL;
int i;
if (!s->board_memory) {
error_setg(errp, "memory property was not set");
return;
}
/* cpuclk must be connected; refclk is optional */
if (!clock_has_source(s->cpuclk)) {
error_setg(errp, "armv7m: cpuclk must be connected");
return;
}
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
&err, NULL));
if (err != NULL) {
error_propagate(errp, err);
return;
}
object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
&error_abort);
if (object_property_find(OBJECT(s->cpu), "idau")) {
object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
&error_abort);
}
if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
s->init_svtor, errp)) {
return;
}
}
if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
s->init_nsvtor, errp)) {
return;
}
}
if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
s->start_powered_off, errp)) {
return;
}
}
if (object_property_find(OBJECT(s->cpu), "vfp")) {
if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
return;
}
}
if (object_property_find(OBJECT(s->cpu), "dsp")) {
if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
return;
}
}
/*
* Tell the CPU where the NVIC is; it will fail realize if it doesn't
* have one. Similarly, tell the NVIC where its CPU is.
*/
s->cpu->env.nvic = &s->nvic;
s->nvic.cpu = s->cpu;
if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
return;
}
/* Note that we must realize the NVIC after the CPU */
if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
return;
}
/* Alias the NVIC's input and output GPIOs as our own so the board
* code can wire them up. (We do this in realize because the
* NVIC doesn't create the input GPIO array until realize.)
*/
qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
/*
* We map various devices into the container MR at their architected
* addresses. In particular, we map everything corresponding to the
* "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
* and includes the NVIC, the System Control Space (system registers),
* the systick timer, and for CPUs with the Security extension an NS
* banked version of all of these.
*
* The default behaviour for unimplemented registers/ranges
* (for instance the Data Watchpoint and Trace unit at 0xe0001000)
* is to RAZ/WI for privileged access and BusFault for non-privileged
* access.
*
* The NVIC and System Control Space (SCS) starts at 0xe000e000
* and looks like this:
* 0x004 - ICTR
* 0x010 - 0xff - systick
* 0x100..0x7ec - NVIC
* 0x7f0..0xcff - Reserved
* 0xd00..0xd3c - SCS registers
* 0xd40..0xeff - Reserved or Not implemented
* 0xf00 - STIR
*
* Some registers within this space are banked between security states.
* In v8M there is a second range 0xe002e000..0xe002efff which is the
* NonSecure alias SCS; secure accesses to this behave like NS accesses
* to the main SCS range, and non-secure accesses (including when
* the security extension is not implemented) are RAZ/WI.
* Note that both the main SCS range and the alias range are defined
* to be exempt from memory attribution (R_BLJT) and so the memory
* transaction attribute always matches the current CPU security
* state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
* wrappers we change attrs.secure to indicate the NS access; so
* generally code determining which banked register to use should
* use attrs.secure; code determining actual behaviour of the system
* should use env->v7m.secure.
*
* Within the PPB space, some MRs overlap, and the priority
* of overlapping regions is:
* - default region (for RAZ/WI and BusFault) : -1
* - system register regions (provided by the NVIC) : 0
* - systick : 1
* This is because the systick device is a small block of registers
* in the middle of the other system control registers.
*/
memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
"nvic-default", 0x100000);
memory_region_add_subregion_overlap(&s->container, 0xe0000000,
&s->defaultmem, -1);
/* Wire the NVIC up to the CPU */
sbd = SYS_BUS_DEVICE(&s->nvic);
sysbus_connect_irq(sbd, 0,
qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
memory_region_add_subregion(&s->container, 0xe000e000,
sysbus_mmio_get_region(sbd, 0));
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
/* Create the NS alias region for the NVIC sysregs */
memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
&v7m_sysreg_ns_ops,
sysbus_mmio_get_region(sbd, 0),
"nvic_sysregs_ns", 0x1000);
memory_region_add_subregion(&s->container, 0xe002e000,
&s->sysreg_ns_mem);
}
/*
* Create and map the systick devices. Note that we only connect
* refclk if it has been connected to us; otherwise the systick
* device gets the wrong answer for clock_has_source(refclk), because
* it has an immediate source (the ARMv7M's clock object) but not
* an ultimate source, and then it won't correctly auto-select the
* CPU clock as its only possible clock source.
*/
if (clock_has_source(s->refclk)) {
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk",
s->refclk);
}
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
qdev_get_gpio_in_named(DEVICE(&s->nvic),
"systick-trigger", M_REG_NS));
if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
/*
* We couldn't init the secure systick device in instance_init
* as we didn't know then if the CPU had the security extensions;
* so we have to do it here.
*/
object_initialize_child(OBJECT(dev), "systick-reg-s",
&s->systick[M_REG_S], TYPE_SYSTICK);
if (clock_has_source(s->refclk)) {
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
s->refclk);
}
qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
s->cpuclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
qdev_get_gpio_in_named(DEVICE(&s->nvic),
"systick-trigger", M_REG_S));
}
memory_region_init_io(&s->systickmem, OBJECT(s),
&v7m_systick_ops, s,
"v7m_systick", 0xe0);
memory_region_add_subregion_overlap(&s->container, 0xe000e010,
&s->systickmem, 1);
if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
&v7m_sysreg_ns_ops, &s->systickmem,
"v7m_systick_ns", 0xe0);
memory_region_add_subregion_overlap(&s->container, 0xe002e010,
&s->systick_ns_mem, 1);
}
/* If the CPU has RAS support, create the RAS register block */
if (cpu_isar_feature(aa32_ras, s->cpu)) {
object_initialize_child(OBJECT(dev), "armv7m-ras",
&s->ras, TYPE_ARMV7M_RAS);
sbd = SYS_BUS_DEVICE(&s->ras);
if (!sysbus_realize(sbd, errp)) {
return;
}
memory_region_add_subregion_overlap(&s->container, 0xe0005000,
sysbus_mmio_get_region(sbd, 0), 1);
}
for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
if (s->enable_bitband) {
Object *obj = OBJECT(&s->bitband[i]);
SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
if (!object_property_set_int(obj, "base",
bitband_input_addr[i], errp)) {
return;
}
object_property_set_link(obj, "source-memory",
OBJECT(s->board_memory), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
return;
}
memory_region_add_subregion(&s->container, bitband_output_addr[i],
sysbus_mmio_get_region(sbd, 0));
} else {
object_unparent(OBJECT(&s->bitband[i]));
}
}
}
static Property armv7m_properties[] = {
DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
false),
DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_armv7m = {
.name = "armv7m",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(refclk, ARMv7MState),
VMSTATE_CLOCK(cpuclk, ARMv7MState),
VMSTATE_END_OF_LIST()
}
};
static void armv7m_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = armv7m_realize;
dc->vmsd = &vmstate_armv7m;
device_class_set_props(dc, armv7m_properties);
}
static const TypeInfo armv7m_info = {
.name = TYPE_ARMV7M,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ARMv7MState),
.instance_init = armv7m_instance_init,
.class_init = armv7m_class_init,
};
static void armv7m_reset(void *opaque)
{
ARMCPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size)
{
ssize_t image_size;
uint64_t entry;
int big_endian;
AddressSpace *as;
int asidx;
CPUState *cs = CPU(cpu);
#if TARGET_BIG_ENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
asidx = ARMASIdx_S;
} else {
asidx = ARMASIdx_NS;
}
as = cpu_get_address_space(cs, asidx);
if (kernel_filename) {
image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
&entry, NULL, NULL,
NULL, big_endian, EM_ARM, 1, 0, as);
if (image_size < 0) {
image_size = load_image_targphys_as(kernel_filename, 0,
mem_size, as);
}
if (image_size < 0) {
error_report("Could not load kernel '%s'", kernel_filename);
exit(1);
}
}
/* CPU objects (unlike devices) are not automatically reset on system
* reset, so we must always register a handler to do so. Unlike
* A-profile CPUs, we don't need to do anything special in the
* handler to arrange that it starts correctly.
* This is arguably the wrong place to do this, but it matches the
* way A-profile does it. Note that this means that every M profile
* board must call this function!
*/
qemu_register_reset(armv7m_reset, cpu);
}
static Property bitband_properties[] = {
DEFINE_PROP_UINT32("base", BitBandState, base, 0),
DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void bitband_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = bitband_realize;
device_class_set_props(dc, bitband_properties);
}
static const TypeInfo bitband_info = {
.name = TYPE_BITBAND,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(BitBandState),
.instance_init = bitband_init,
.class_init = bitband_class_init,
};
static void armv7m_register_types(void)
{
type_register_static(&bitband_info);
type_register_static(&armv7m_info);
}
type_init(armv7m_register_types)