mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-25 12:40:08 +00:00
33c11879fd
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
694 lines
18 KiB
C
694 lines
18 KiB
C
/*
|
|
* Test Server
|
|
*
|
|
* Copyright IBM, Corp. 2011
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "hw/qdev.h"
|
|
#include "sysemu/char.h"
|
|
#include "exec/ioport.h"
|
|
#include "exec/memory.h"
|
|
#include "hw/irq.h"
|
|
#include "sysemu/accel.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/option.h"
|
|
#include "qemu/error-report.h"
|
|
|
|
#define MAX_IRQ 256
|
|
|
|
bool qtest_allowed;
|
|
|
|
static DeviceState *irq_intercept_dev;
|
|
static FILE *qtest_log_fp;
|
|
static CharDriverState *qtest_chr;
|
|
static GString *inbuf;
|
|
static int irq_levels[MAX_IRQ];
|
|
static qemu_timeval start_time;
|
|
static bool qtest_opened;
|
|
|
|
#define FMT_timeval "%ld.%06ld"
|
|
|
|
/**
|
|
* QTest Protocol
|
|
*
|
|
* Line based protocol, request/response based. Server can send async messages
|
|
* so clients should always handle many async messages before the response
|
|
* comes in.
|
|
*
|
|
* Valid requests
|
|
*
|
|
* Clock management:
|
|
*
|
|
* The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands
|
|
* let you adjust the value of the clock (monotonically). All the commands
|
|
* return the current value of the clock in nanoseconds.
|
|
*
|
|
* > clock_step
|
|
* < OK VALUE
|
|
*
|
|
* Advance the clock to the next deadline. Useful when waiting for
|
|
* asynchronous events.
|
|
*
|
|
* > clock_step NS
|
|
* < OK VALUE
|
|
*
|
|
* Advance the clock by NS nanoseconds.
|
|
*
|
|
* > clock_set NS
|
|
* < OK VALUE
|
|
*
|
|
* Advance the clock to NS nanoseconds (do nothing if it's already past).
|
|
*
|
|
* PIO and memory access:
|
|
*
|
|
* > outb ADDR VALUE
|
|
* < OK
|
|
*
|
|
* > outw ADDR VALUE
|
|
* < OK
|
|
*
|
|
* > outl ADDR VALUE
|
|
* < OK
|
|
*
|
|
* > inb ADDR
|
|
* < OK VALUE
|
|
*
|
|
* > inw ADDR
|
|
* < OK VALUE
|
|
*
|
|
* > inl ADDR
|
|
* < OK VALUE
|
|
*
|
|
* > writeb ADDR VALUE
|
|
* < OK
|
|
*
|
|
* > writew ADDR VALUE
|
|
* < OK
|
|
*
|
|
* > writel ADDR VALUE
|
|
* < OK
|
|
*
|
|
* > writeq ADDR VALUE
|
|
* < OK
|
|
*
|
|
* > readb ADDR
|
|
* < OK VALUE
|
|
*
|
|
* > readw ADDR
|
|
* < OK VALUE
|
|
*
|
|
* > readl ADDR
|
|
* < OK VALUE
|
|
*
|
|
* > readq ADDR
|
|
* < OK VALUE
|
|
*
|
|
* > read ADDR SIZE
|
|
* < OK DATA
|
|
*
|
|
* > write ADDR SIZE DATA
|
|
* < OK
|
|
*
|
|
* > b64read ADDR SIZE
|
|
* < OK B64_DATA
|
|
*
|
|
* > b64write ADDR SIZE B64_DATA
|
|
* < OK
|
|
*
|
|
* > memset ADDR SIZE VALUE
|
|
* < OK
|
|
*
|
|
* ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0.
|
|
*
|
|
* DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller
|
|
* than the expected size, the value will be zero filled at the end of the data
|
|
* sequence.
|
|
*
|
|
* B64_DATA is an arbitrarily long base64 encoded string.
|
|
* If the sizes do not match, the data will be truncated.
|
|
*
|
|
* IRQ management:
|
|
*
|
|
* > irq_intercept_in QOM-PATH
|
|
* < OK
|
|
*
|
|
* > irq_intercept_out QOM-PATH
|
|
* < OK
|
|
*
|
|
* Attach to the gpio-in (resp. gpio-out) pins exported by the device at
|
|
* QOM-PATH. When the pin is triggered, one of the following async messages
|
|
* will be printed to the qtest stream:
|
|
*
|
|
* IRQ raise NUM
|
|
* IRQ lower NUM
|
|
*
|
|
* where NUM is an IRQ number. For the PC, interrupts can be intercepted
|
|
* simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with
|
|
* NUM=0 even though it is remapped to GSI 2).
|
|
*/
|
|
|
|
static int hex2nib(char ch)
|
|
{
|
|
if (ch >= '0' && ch <= '9') {
|
|
return ch - '0';
|
|
} else if (ch >= 'a' && ch <= 'f') {
|
|
return 10 + (ch - 'a');
|
|
} else if (ch >= 'A' && ch <= 'F') {
|
|
return 10 + (ch - 'A');
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static void qtest_get_time(qemu_timeval *tv)
|
|
{
|
|
qemu_gettimeofday(tv);
|
|
tv->tv_sec -= start_time.tv_sec;
|
|
tv->tv_usec -= start_time.tv_usec;
|
|
if (tv->tv_usec < 0) {
|
|
tv->tv_usec += 1000000;
|
|
tv->tv_sec -= 1;
|
|
}
|
|
}
|
|
|
|
static void qtest_send_prefix(CharDriverState *chr)
|
|
{
|
|
qemu_timeval tv;
|
|
|
|
if (!qtest_log_fp || !qtest_opened) {
|
|
return;
|
|
}
|
|
|
|
qtest_get_time(&tv);
|
|
fprintf(qtest_log_fp, "[S +" FMT_timeval "] ",
|
|
(long) tv.tv_sec, (long) tv.tv_usec);
|
|
}
|
|
|
|
static void GCC_FMT_ATTR(1, 2) qtest_log_send(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
if (!qtest_log_fp || !qtest_opened) {
|
|
return;
|
|
}
|
|
|
|
qtest_send_prefix(NULL);
|
|
|
|
va_start(ap, fmt);
|
|
vfprintf(qtest_log_fp, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
static void do_qtest_send(CharDriverState *chr, const char *str, size_t len)
|
|
{
|
|
qemu_chr_fe_write_all(chr, (uint8_t *)str, len);
|
|
if (qtest_log_fp && qtest_opened) {
|
|
fprintf(qtest_log_fp, "%s", str);
|
|
}
|
|
}
|
|
|
|
static void qtest_send(CharDriverState *chr, const char *str)
|
|
{
|
|
do_qtest_send(chr, str, strlen(str));
|
|
}
|
|
|
|
static void GCC_FMT_ATTR(2, 3) qtest_sendf(CharDriverState *chr,
|
|
const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
gchar *buffer;
|
|
|
|
va_start(ap, fmt);
|
|
buffer = g_strdup_vprintf(fmt, ap);
|
|
qtest_send(chr, buffer);
|
|
va_end(ap);
|
|
}
|
|
|
|
static void qtest_irq_handler(void *opaque, int n, int level)
|
|
{
|
|
qemu_irq old_irq = *(qemu_irq *)opaque;
|
|
qemu_set_irq(old_irq, level);
|
|
|
|
if (irq_levels[n] != level) {
|
|
CharDriverState *chr = qtest_chr;
|
|
irq_levels[n] = level;
|
|
qtest_send_prefix(chr);
|
|
qtest_sendf(chr, "IRQ %s %d\n",
|
|
level ? "raise" : "lower", n);
|
|
}
|
|
}
|
|
|
|
static void qtest_process_command(CharDriverState *chr, gchar **words)
|
|
{
|
|
const gchar *command;
|
|
|
|
g_assert(words);
|
|
|
|
command = words[0];
|
|
|
|
if (qtest_log_fp) {
|
|
qemu_timeval tv;
|
|
int i;
|
|
|
|
qtest_get_time(&tv);
|
|
fprintf(qtest_log_fp, "[R +" FMT_timeval "]",
|
|
(long) tv.tv_sec, (long) tv.tv_usec);
|
|
for (i = 0; words[i]; i++) {
|
|
fprintf(qtest_log_fp, " %s", words[i]);
|
|
}
|
|
fprintf(qtest_log_fp, "\n");
|
|
}
|
|
|
|
g_assert(command);
|
|
if (strcmp(words[0], "irq_intercept_out") == 0
|
|
|| strcmp(words[0], "irq_intercept_in") == 0) {
|
|
DeviceState *dev;
|
|
NamedGPIOList *ngl;
|
|
|
|
g_assert(words[1]);
|
|
dev = DEVICE(object_resolve_path(words[1], NULL));
|
|
if (!dev) {
|
|
qtest_send_prefix(chr);
|
|
qtest_send(chr, "FAIL Unknown device\n");
|
|
return;
|
|
}
|
|
|
|
if (irq_intercept_dev) {
|
|
qtest_send_prefix(chr);
|
|
if (irq_intercept_dev != dev) {
|
|
qtest_send(chr, "FAIL IRQ intercept already enabled\n");
|
|
} else {
|
|
qtest_send(chr, "OK\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
QLIST_FOREACH(ngl, &dev->gpios, node) {
|
|
/* We don't support intercept of named GPIOs yet */
|
|
if (ngl->name) {
|
|
continue;
|
|
}
|
|
if (words[0][14] == 'o') {
|
|
int i;
|
|
for (i = 0; i < ngl->num_out; ++i) {
|
|
qemu_irq *disconnected = g_new0(qemu_irq, 1);
|
|
qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler,
|
|
disconnected, i);
|
|
|
|
*disconnected = qdev_intercept_gpio_out(dev, icpt,
|
|
ngl->name, i);
|
|
}
|
|
} else {
|
|
qemu_irq_intercept_in(ngl->in, qtest_irq_handler,
|
|
ngl->num_in);
|
|
}
|
|
}
|
|
irq_intercept_dev = dev;
|
|
qtest_send_prefix(chr);
|
|
qtest_send(chr, "OK\n");
|
|
|
|
} else if (strcmp(words[0], "outb") == 0 ||
|
|
strcmp(words[0], "outw") == 0 ||
|
|
strcmp(words[0], "outl") == 0) {
|
|
uint16_t addr;
|
|
uint32_t value;
|
|
|
|
g_assert(words[1] && words[2]);
|
|
addr = strtoul(words[1], NULL, 0);
|
|
value = strtoul(words[2], NULL, 0);
|
|
|
|
if (words[0][3] == 'b') {
|
|
cpu_outb(addr, value);
|
|
} else if (words[0][3] == 'w') {
|
|
cpu_outw(addr, value);
|
|
} else if (words[0][3] == 'l') {
|
|
cpu_outl(addr, value);
|
|
}
|
|
qtest_send_prefix(chr);
|
|
qtest_send(chr, "OK\n");
|
|
} else if (strcmp(words[0], "inb") == 0 ||
|
|
strcmp(words[0], "inw") == 0 ||
|
|
strcmp(words[0], "inl") == 0) {
|
|
uint16_t addr;
|
|
uint32_t value = -1U;
|
|
|
|
g_assert(words[1]);
|
|
addr = strtoul(words[1], NULL, 0);
|
|
|
|
if (words[0][2] == 'b') {
|
|
value = cpu_inb(addr);
|
|
} else if (words[0][2] == 'w') {
|
|
value = cpu_inw(addr);
|
|
} else if (words[0][2] == 'l') {
|
|
value = cpu_inl(addr);
|
|
}
|
|
qtest_send_prefix(chr);
|
|
qtest_sendf(chr, "OK 0x%04x\n", value);
|
|
} else if (strcmp(words[0], "writeb") == 0 ||
|
|
strcmp(words[0], "writew") == 0 ||
|
|
strcmp(words[0], "writel") == 0 ||
|
|
strcmp(words[0], "writeq") == 0) {
|
|
uint64_t addr;
|
|
uint64_t value;
|
|
|
|
g_assert(words[1] && words[2]);
|
|
addr = strtoull(words[1], NULL, 0);
|
|
value = strtoull(words[2], NULL, 0);
|
|
|
|
if (words[0][5] == 'b') {
|
|
uint8_t data = value;
|
|
cpu_physical_memory_write(addr, &data, 1);
|
|
} else if (words[0][5] == 'w') {
|
|
uint16_t data = value;
|
|
tswap16s(&data);
|
|
cpu_physical_memory_write(addr, &data, 2);
|
|
} else if (words[0][5] == 'l') {
|
|
uint32_t data = value;
|
|
tswap32s(&data);
|
|
cpu_physical_memory_write(addr, &data, 4);
|
|
} else if (words[0][5] == 'q') {
|
|
uint64_t data = value;
|
|
tswap64s(&data);
|
|
cpu_physical_memory_write(addr, &data, 8);
|
|
}
|
|
qtest_send_prefix(chr);
|
|
qtest_send(chr, "OK\n");
|
|
} else if (strcmp(words[0], "readb") == 0 ||
|
|
strcmp(words[0], "readw") == 0 ||
|
|
strcmp(words[0], "readl") == 0 ||
|
|
strcmp(words[0], "readq") == 0) {
|
|
uint64_t addr;
|
|
uint64_t value = UINT64_C(-1);
|
|
|
|
g_assert(words[1]);
|
|
addr = strtoull(words[1], NULL, 0);
|
|
|
|
if (words[0][4] == 'b') {
|
|
uint8_t data;
|
|
cpu_physical_memory_read(addr, &data, 1);
|
|
value = data;
|
|
} else if (words[0][4] == 'w') {
|
|
uint16_t data;
|
|
cpu_physical_memory_read(addr, &data, 2);
|
|
value = tswap16(data);
|
|
} else if (words[0][4] == 'l') {
|
|
uint32_t data;
|
|
cpu_physical_memory_read(addr, &data, 4);
|
|
value = tswap32(data);
|
|
} else if (words[0][4] == 'q') {
|
|
cpu_physical_memory_read(addr, &value, 8);
|
|
tswap64s(&value);
|
|
}
|
|
qtest_send_prefix(chr);
|
|
qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value);
|
|
} else if (strcmp(words[0], "read") == 0) {
|
|
uint64_t addr, len, i;
|
|
uint8_t *data;
|
|
char *enc;
|
|
|
|
g_assert(words[1] && words[2]);
|
|
addr = strtoull(words[1], NULL, 0);
|
|
len = strtoull(words[2], NULL, 0);
|
|
|
|
data = g_malloc(len);
|
|
cpu_physical_memory_read(addr, data, len);
|
|
|
|
enc = g_malloc(2 * len + 1);
|
|
for (i = 0; i < len; i++) {
|
|
sprintf(&enc[i * 2], "%02x", data[i]);
|
|
}
|
|
|
|
qtest_send_prefix(chr);
|
|
qtest_sendf(chr, "OK 0x%s\n", enc);
|
|
|
|
g_free(data);
|
|
g_free(enc);
|
|
} else if (strcmp(words[0], "b64read") == 0) {
|
|
uint64_t addr, len;
|
|
uint8_t *data;
|
|
gchar *b64_data;
|
|
|
|
g_assert(words[1] && words[2]);
|
|
addr = strtoull(words[1], NULL, 0);
|
|
len = strtoull(words[2], NULL, 0);
|
|
|
|
data = g_malloc(len);
|
|
cpu_physical_memory_read(addr, data, len);
|
|
b64_data = g_base64_encode(data, len);
|
|
qtest_send_prefix(chr);
|
|
qtest_sendf(chr, "OK %s\n", b64_data);
|
|
|
|
g_free(data);
|
|
g_free(b64_data);
|
|
} else if (strcmp(words[0], "write") == 0) {
|
|
uint64_t addr, len, i;
|
|
uint8_t *data;
|
|
size_t data_len;
|
|
|
|
g_assert(words[1] && words[2] && words[3]);
|
|
addr = strtoull(words[1], NULL, 0);
|
|
len = strtoull(words[2], NULL, 0);
|
|
|
|
data_len = strlen(words[3]);
|
|
if (data_len < 3) {
|
|
qtest_send(chr, "ERR invalid argument size\n");
|
|
return;
|
|
}
|
|
|
|
data = g_malloc(len);
|
|
for (i = 0; i < len; i++) {
|
|
if ((i * 2 + 4) <= data_len) {
|
|
data[i] = hex2nib(words[3][i * 2 + 2]) << 4;
|
|
data[i] |= hex2nib(words[3][i * 2 + 3]);
|
|
} else {
|
|
data[i] = 0;
|
|
}
|
|
}
|
|
cpu_physical_memory_write(addr, data, len);
|
|
g_free(data);
|
|
|
|
qtest_send_prefix(chr);
|
|
qtest_send(chr, "OK\n");
|
|
} else if (strcmp(words[0], "memset") == 0) {
|
|
uint64_t addr, len;
|
|
uint8_t *data;
|
|
uint8_t pattern;
|
|
|
|
g_assert(words[1] && words[2] && words[3]);
|
|
addr = strtoull(words[1], NULL, 0);
|
|
len = strtoull(words[2], NULL, 0);
|
|
pattern = strtoull(words[3], NULL, 0);
|
|
|
|
data = g_malloc(len);
|
|
memset(data, pattern, len);
|
|
cpu_physical_memory_write(addr, data, len);
|
|
g_free(data);
|
|
|
|
qtest_send_prefix(chr);
|
|
qtest_send(chr, "OK\n");
|
|
} else if (strcmp(words[0], "b64write") == 0) {
|
|
uint64_t addr, len;
|
|
uint8_t *data;
|
|
size_t data_len;
|
|
gsize out_len;
|
|
|
|
g_assert(words[1] && words[2] && words[3]);
|
|
addr = strtoull(words[1], NULL, 0);
|
|
len = strtoull(words[2], NULL, 0);
|
|
|
|
data_len = strlen(words[3]);
|
|
if (data_len < 3) {
|
|
qtest_send(chr, "ERR invalid argument size\n");
|
|
return;
|
|
}
|
|
|
|
data = g_base64_decode_inplace(words[3], &out_len);
|
|
if (out_len != len) {
|
|
qtest_log_send("b64write: data length mismatch (told %"PRIu64", "
|
|
"found %zu)\n",
|
|
len, out_len);
|
|
out_len = MIN(out_len, len);
|
|
}
|
|
|
|
cpu_physical_memory_write(addr, data, out_len);
|
|
|
|
qtest_send_prefix(chr);
|
|
qtest_send(chr, "OK\n");
|
|
} else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) {
|
|
int64_t ns;
|
|
|
|
if (words[1]) {
|
|
ns = strtoll(words[1], NULL, 0);
|
|
} else {
|
|
ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns);
|
|
qtest_send_prefix(chr);
|
|
qtest_sendf(chr, "OK %"PRIi64"\n",
|
|
(int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
|
|
} else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) {
|
|
int64_t ns;
|
|
|
|
g_assert(words[1]);
|
|
ns = strtoll(words[1], NULL, 0);
|
|
qtest_clock_warp(ns);
|
|
qtest_send_prefix(chr);
|
|
qtest_sendf(chr, "OK %"PRIi64"\n",
|
|
(int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
|
|
} else {
|
|
qtest_send_prefix(chr);
|
|
qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]);
|
|
}
|
|
}
|
|
|
|
static void qtest_process_inbuf(CharDriverState *chr, GString *inbuf)
|
|
{
|
|
char *end;
|
|
|
|
while ((end = strchr(inbuf->str, '\n')) != NULL) {
|
|
size_t offset;
|
|
GString *cmd;
|
|
gchar **words;
|
|
|
|
offset = end - inbuf->str;
|
|
|
|
cmd = g_string_new_len(inbuf->str, offset);
|
|
g_string_erase(inbuf, 0, offset + 1);
|
|
|
|
words = g_strsplit(cmd->str, " ", 0);
|
|
qtest_process_command(chr, words);
|
|
g_strfreev(words);
|
|
|
|
g_string_free(cmd, TRUE);
|
|
}
|
|
}
|
|
|
|
static void qtest_read(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
CharDriverState *chr = opaque;
|
|
|
|
g_string_append_len(inbuf, (const gchar *)buf, size);
|
|
qtest_process_inbuf(chr, inbuf);
|
|
}
|
|
|
|
static int qtest_can_read(void *opaque)
|
|
{
|
|
return 1024;
|
|
}
|
|
|
|
static void qtest_event(void *opaque, int event)
|
|
{
|
|
int i;
|
|
|
|
switch (event) {
|
|
case CHR_EVENT_OPENED:
|
|
/*
|
|
* We used to call qemu_system_reset() here, hoping we could
|
|
* use the same process for multiple tests that way. Never
|
|
* used. Injects an extra reset even when it's not used, and
|
|
* that can mess up tests, e.g. -boot once.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(irq_levels); i++) {
|
|
irq_levels[i] = 0;
|
|
}
|
|
qemu_gettimeofday(&start_time);
|
|
qtest_opened = true;
|
|
if (qtest_log_fp) {
|
|
fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n",
|
|
(long) start_time.tv_sec, (long) start_time.tv_usec);
|
|
}
|
|
break;
|
|
case CHR_EVENT_CLOSED:
|
|
qtest_opened = false;
|
|
if (qtest_log_fp) {
|
|
qemu_timeval tv;
|
|
qtest_get_time(&tv);
|
|
fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n",
|
|
(long) tv.tv_sec, (long) tv.tv_usec);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int qtest_init_accel(MachineState *ms)
|
|
{
|
|
QemuOpts *opts = qemu_opts_create(qemu_find_opts("icount"), NULL, 0,
|
|
&error_abort);
|
|
qemu_opt_set(opts, "shift", "0", &error_abort);
|
|
configure_icount(opts, &error_abort);
|
|
qemu_opts_del(opts);
|
|
return 0;
|
|
}
|
|
|
|
void qtest_init(const char *qtest_chrdev, const char *qtest_log, Error **errp)
|
|
{
|
|
CharDriverState *chr;
|
|
|
|
chr = qemu_chr_new("qtest", qtest_chrdev, NULL);
|
|
|
|
if (chr == NULL) {
|
|
error_setg(errp, "Failed to initialize device for qtest: \"%s\"",
|
|
qtest_chrdev);
|
|
return;
|
|
}
|
|
|
|
if (qtest_log) {
|
|
if (strcmp(qtest_log, "none") != 0) {
|
|
qtest_log_fp = fopen(qtest_log, "w+");
|
|
}
|
|
} else {
|
|
qtest_log_fp = stderr;
|
|
}
|
|
|
|
qemu_chr_add_handlers(chr, qtest_can_read, qtest_read, qtest_event, chr);
|
|
qemu_chr_fe_set_echo(chr, true);
|
|
|
|
inbuf = g_string_new("");
|
|
qtest_chr = chr;
|
|
}
|
|
|
|
bool qtest_driver(void)
|
|
{
|
|
return qtest_chr;
|
|
}
|
|
|
|
static void qtest_accel_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
AccelClass *ac = ACCEL_CLASS(oc);
|
|
ac->name = "QTest";
|
|
ac->available = qtest_available;
|
|
ac->init_machine = qtest_init_accel;
|
|
ac->allowed = &qtest_allowed;
|
|
}
|
|
|
|
#define TYPE_QTEST_ACCEL ACCEL_CLASS_NAME("qtest")
|
|
|
|
static const TypeInfo qtest_accel_type = {
|
|
.name = TYPE_QTEST_ACCEL,
|
|
.parent = TYPE_ACCEL,
|
|
.class_init = qtest_accel_class_init,
|
|
};
|
|
|
|
static void qtest_type_init(void)
|
|
{
|
|
type_register_static(&qtest_accel_type);
|
|
}
|
|
|
|
type_init(qtest_type_init);
|