xemu/hw/arm/boot.c
Ard Biesheuvel 68115ed5fc hw/arm/boot: take Linux/arm64 TEXT_OFFSET header field into account
The arm64 boot protocol stipulates that the kernel must be loaded
TEXT_OFFSET bytes beyond a 2 MB aligned base address, where TEXT_OFFSET
could be any 4 KB multiple between 0 and 2 MB, and whose value can be
found in the header of the Image file.

So after attempts to load the arm64 kernel image as an ELF file or as a
U-Boot image have failed (both of which have their own way of specifying
the load offset), try to determine the TEXT_OFFSET from the image after
loading it but before mapping it as a ROM mapping into the guest address
space.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1489414630-21609-1-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2017-04-20 17:39:17 +01:00

1085 lines
36 KiB
C

/*
* ARM kernel loader.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include <libfdt.h>
#include "hw/hw.h"
#include "hw/arm/arm.h"
#include "hw/arm/linux-boot-if.h"
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "elf.h"
#include "sysemu/device_tree.h"
#include "qemu/config-file.h"
#include "exec/address-spaces.h"
/* Kernel boot protocol is specified in the kernel docs
* Documentation/arm/Booting and Documentation/arm64/booting.txt
* They have different preferred image load offsets from system RAM base.
*/
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_LOAD_ADDR 0x00010000
#define KERNEL64_LOAD_ADDR 0x00080000
#define ARM64_TEXT_OFFSET_OFFSET 8
#define ARM64_MAGIC_OFFSET 56
typedef enum {
FIXUP_NONE = 0, /* do nothing */
FIXUP_TERMINATOR, /* end of insns */
FIXUP_BOARDID, /* overwrite with board ID number */
FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
FIXUP_BOOTREG, /* overwrite with boot register address */
FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
FIXUP_MAX,
} FixupType;
typedef struct ARMInsnFixup {
uint32_t insn;
FixupType fixup;
} ARMInsnFixup;
static const ARMInsnFixup bootloader_aarch64[] = {
{ 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
{ 0xaa1f03e1 }, /* mov x1, xzr */
{ 0xaa1f03e2 }, /* mov x2, xzr */
{ 0xaa1f03e3 }, /* mov x3, xzr */
{ 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
{ 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
{ 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
{ 0 }, /* .word @DTB Higher 32-bits */
{ 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
{ 0 }, /* .word @Kernel Entry Higher 32-bits */
{ 0, FIXUP_TERMINATOR }
};
/* A very small bootloader: call the board-setup code (if needed),
* set r0-r2, then jump to the kernel.
* If we're not calling boot setup code then we don't copy across
* the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
*/
static const ARMInsnFixup bootloader[] = {
{ 0xe28fe004 }, /* add lr, pc, #4 */
{ 0xe51ff004 }, /* ldr pc, [pc, #-4] */
{ 0, FIXUP_BOARD_SETUP },
#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
{ 0xe3a00000 }, /* mov r0, #0 */
{ 0xe59f1004 }, /* ldr r1, [pc, #4] */
{ 0xe59f2004 }, /* ldr r2, [pc, #4] */
{ 0xe59ff004 }, /* ldr pc, [pc, #4] */
{ 0, FIXUP_BOARDID },
{ 0, FIXUP_ARGPTR },
{ 0, FIXUP_ENTRYPOINT },
{ 0, FIXUP_TERMINATOR }
};
/* Handling for secondary CPU boot in a multicore system.
* Unlike the uniprocessor/primary CPU boot, this is platform
* dependent. The default code here is based on the secondary
* CPU boot protocol used on realview/vexpress boards, with
* some parameterisation to increase its flexibility.
* QEMU platform models for which this code is not appropriate
* should override write_secondary_boot and secondary_cpu_reset_hook
* instead.
*
* This code enables the interrupt controllers for the secondary
* CPUs and then puts all the secondary CPUs into a loop waiting
* for an interprocessor interrupt and polling a configurable
* location for the kernel secondary CPU entry point.
*/
#define DSB_INSN 0xf57ff04f
#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
static const ARMInsnFixup smpboot[] = {
{ 0xe59f2028 }, /* ldr r2, gic_cpu_if */
{ 0xe59f0028 }, /* ldr r0, bootreg_addr */
{ 0xe3a01001 }, /* mov r1, #1 */
{ 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
{ 0xe3a010ff }, /* mov r1, #0xff */
{ 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
{ 0, FIXUP_DSB }, /* dsb */
{ 0xe320f003 }, /* wfi */
{ 0xe5901000 }, /* ldr r1, [r0] */
{ 0xe1110001 }, /* tst r1, r1 */
{ 0x0afffffb }, /* beq <wfi> */
{ 0xe12fff11 }, /* bx r1 */
{ 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
{ 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
{ 0, FIXUP_TERMINATOR }
};
static void write_bootloader(const char *name, hwaddr addr,
const ARMInsnFixup *insns, uint32_t *fixupcontext)
{
/* Fix up the specified bootloader fragment and write it into
* guest memory using rom_add_blob_fixed(). fixupcontext is
* an array giving the values to write in for the fixup types
* which write a value into the code array.
*/
int i, len;
uint32_t *code;
len = 0;
while (insns[len].fixup != FIXUP_TERMINATOR) {
len++;
}
code = g_new0(uint32_t, len);
for (i = 0; i < len; i++) {
uint32_t insn = insns[i].insn;
FixupType fixup = insns[i].fixup;
switch (fixup) {
case FIXUP_NONE:
break;
case FIXUP_BOARDID:
case FIXUP_BOARD_SETUP:
case FIXUP_ARGPTR:
case FIXUP_ENTRYPOINT:
case FIXUP_GIC_CPU_IF:
case FIXUP_BOOTREG:
case FIXUP_DSB:
insn = fixupcontext[fixup];
break;
default:
abort();
}
code[i] = tswap32(insn);
}
rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
g_free(code);
}
static void default_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
uint32_t fixupcontext[FIXUP_MAX];
fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
fixupcontext[FIXUP_DSB] = DSB_INSN;
} else {
fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
}
write_bootloader("smpboot", info->smp_loader_start,
smpboot, fixupcontext);
}
void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
const struct arm_boot_info *info,
hwaddr mvbar_addr)
{
int n;
uint32_t mvbar_blob[] = {
/* mvbar_addr: secure monitor vectors
* Default unimplemented and unused vectors to spin. Makes it
* easier to debug (as opposed to the CPU running away).
*/
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
0xe1b0f00e, /* movs pc, lr ;SMC exception return */
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
};
uint32_t board_setup_blob[] = {
/* board setup addr */
0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
0xe1a0100e, /* mov r1, lr ;save LR across SMC */
0xe1600070, /* smc #0 ;call monitor to flush SCR */
0xe1a0f001, /* mov pc, r1 ;return */
};
/* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
/* check that these blobs don't overlap */
assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
|| (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
mvbar_blob[n] = tswap32(mvbar_blob[n]);
}
rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
mvbar_addr);
for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
board_setup_blob[n] = tswap32(board_setup_blob[n]);
}
rom_add_blob_fixed("board-setup", board_setup_blob,
sizeof(board_setup_blob), info->board_setup_addr);
}
static void default_reset_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
CPUState *cs = CPU(cpu);
address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
0, MEMTXATTRS_UNSPECIFIED, NULL);
cpu_set_pc(cs, info->smp_loader_start);
}
static inline bool have_dtb(const struct arm_boot_info *info)
{
return info->dtb_filename || info->get_dtb;
}
#define WRITE_WORD(p, value) do { \
address_space_stl_notdirty(&address_space_memory, p, value, \
MEMTXATTRS_UNSPECIFIED, NULL); \
p += 4; \
} while (0)
static void set_kernel_args(const struct arm_boot_info *info)
{
int initrd_size = info->initrd_size;
hwaddr base = info->loader_start;
hwaddr p;
p = base + KERNEL_ARGS_ADDR;
/* ATAG_CORE */
WRITE_WORD(p, 5);
WRITE_WORD(p, 0x54410001);
WRITE_WORD(p, 1);
WRITE_WORD(p, 0x1000);
WRITE_WORD(p, 0);
/* ATAG_MEM */
/* TODO: handle multiple chips on one ATAG list */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54410002);
WRITE_WORD(p, info->ram_size);
WRITE_WORD(p, info->loader_start);
if (initrd_size) {
/* ATAG_INITRD2 */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54420005);
WRITE_WORD(p, info->initrd_start);
WRITE_WORD(p, initrd_size);
}
if (info->kernel_cmdline && *info->kernel_cmdline) {
/* ATAG_CMDLINE */
int cmdline_size;
cmdline_size = strlen(info->kernel_cmdline);
cpu_physical_memory_write(p + 8, info->kernel_cmdline,
cmdline_size + 1);
cmdline_size = (cmdline_size >> 2) + 1;
WRITE_WORD(p, cmdline_size + 2);
WRITE_WORD(p, 0x54410009);
p += cmdline_size * 4;
}
if (info->atag_board) {
/* ATAG_BOARD */
int atag_board_len;
uint8_t atag_board_buf[0x1000];
atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
WRITE_WORD(p, (atag_board_len + 8) >> 2);
WRITE_WORD(p, 0x414f4d50);
cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
p += atag_board_len;
}
/* ATAG_END */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
}
static void set_kernel_args_old(const struct arm_boot_info *info)
{
hwaddr p;
const char *s;
int initrd_size = info->initrd_size;
hwaddr base = info->loader_start;
/* see linux/include/asm-arm/setup.h */
p = base + KERNEL_ARGS_ADDR;
/* page_size */
WRITE_WORD(p, 4096);
/* nr_pages */
WRITE_WORD(p, info->ram_size / 4096);
/* ramdisk_size */
WRITE_WORD(p, 0);
#define FLAG_READONLY 1
#define FLAG_RDLOAD 4
#define FLAG_RDPROMPT 8
/* flags */
WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
/* rootdev */
WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
/* video_num_cols */
WRITE_WORD(p, 0);
/* video_num_rows */
WRITE_WORD(p, 0);
/* video_x */
WRITE_WORD(p, 0);
/* video_y */
WRITE_WORD(p, 0);
/* memc_control_reg */
WRITE_WORD(p, 0);
/* unsigned char sounddefault */
/* unsigned char adfsdrives */
/* unsigned char bytes_per_char_h */
/* unsigned char bytes_per_char_v */
WRITE_WORD(p, 0);
/* pages_in_bank[4] */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
/* pages_in_vram */
WRITE_WORD(p, 0);
/* initrd_start */
if (initrd_size) {
WRITE_WORD(p, info->initrd_start);
} else {
WRITE_WORD(p, 0);
}
/* initrd_size */
WRITE_WORD(p, initrd_size);
/* rd_start */
WRITE_WORD(p, 0);
/* system_rev */
WRITE_WORD(p, 0);
/* system_serial_low */
WRITE_WORD(p, 0);
/* system_serial_high */
WRITE_WORD(p, 0);
/* mem_fclk_21285 */
WRITE_WORD(p, 0);
/* zero unused fields */
while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
WRITE_WORD(p, 0);
}
s = info->kernel_cmdline;
if (s) {
cpu_physical_memory_write(p, s, strlen(s) + 1);
} else {
WRITE_WORD(p, 0);
}
}
/**
* load_dtb() - load a device tree binary image into memory
* @addr: the address to load the image at
* @binfo: struct describing the boot environment
* @addr_limit: upper limit of the available memory area at @addr
*
* Load a device tree supplied by the machine or by the user with the
* '-dtb' command line option, and put it at offset @addr in target
* memory.
*
* If @addr_limit contains a meaningful value (i.e., it is strictly greater
* than @addr), the device tree is only loaded if its size does not exceed
* the limit.
*
* Returns: the size of the device tree image on success,
* 0 if the image size exceeds the limit,
* -1 on errors.
*
* Note: Must not be called unless have_dtb(binfo) is true.
*/
static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
hwaddr addr_limit)
{
void *fdt = NULL;
int size, rc;
uint32_t acells, scells;
char *nodename;
unsigned int i;
hwaddr mem_base, mem_len;
if (binfo->dtb_filename) {
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
if (!filename) {
fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
goto fail;
}
fdt = load_device_tree(filename, &size);
if (!fdt) {
fprintf(stderr, "Couldn't open dtb file %s\n", filename);
g_free(filename);
goto fail;
}
g_free(filename);
} else {
fdt = binfo->get_dtb(binfo, &size);
if (!fdt) {
fprintf(stderr, "Board was unable to create a dtb blob\n");
goto fail;
}
}
if (addr_limit > addr && size > (addr_limit - addr)) {
/* Installing the device tree blob at addr would exceed addr_limit.
* Whether this constitutes failure is up to the caller to decide,
* so just return 0 as size, i.e., no error.
*/
g_free(fdt);
return 0;
}
acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
NULL, &error_fatal);
scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
NULL, &error_fatal);
if (acells == 0 || scells == 0) {
fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
goto fail;
}
if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
/* This is user error so deserves a friendlier error message
* than the failure of setprop_sized_cells would provide
*/
fprintf(stderr, "qemu: dtb file not compatible with "
"RAM size > 4GB\n");
goto fail;
}
if (nb_numa_nodes > 0) {
/*
* Turn the /memory node created before into a NOP node, then create
* /memory@addr nodes for all numa nodes respectively.
*/
qemu_fdt_nop_node(fdt, "/memory");
mem_base = binfo->loader_start;
for (i = 0; i < nb_numa_nodes; i++) {
mem_len = numa_info[i].node_mem;
nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
acells, mem_base,
scells, mem_len);
if (rc < 0) {
fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
i);
goto fail;
}
qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
mem_base += mem_len;
g_free(nodename);
}
} else {
Error *err = NULL;
rc = fdt_path_offset(fdt, "/memory");
if (rc < 0) {
qemu_fdt_add_subnode(fdt, "/memory");
}
if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
}
rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
acells, binfo->loader_start,
scells, binfo->ram_size);
if (rc < 0) {
fprintf(stderr, "couldn't set /memory/reg\n");
goto fail;
}
}
rc = fdt_path_offset(fdt, "/chosen");
if (rc < 0) {
qemu_fdt_add_subnode(fdt, "/chosen");
}
if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
binfo->kernel_cmdline);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/bootargs\n");
goto fail;
}
}
if (binfo->initrd_size) {
rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
binfo->initrd_start);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
goto fail;
}
rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
binfo->initrd_start + binfo->initrd_size);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
goto fail;
}
}
if (binfo->modify_dtb) {
binfo->modify_dtb(binfo, fdt);
}
qemu_fdt_dumpdtb(fdt, size);
/* Put the DTB into the memory map as a ROM image: this will ensure
* the DTB is copied again upon reset, even if addr points into RAM.
*/
rom_add_blob_fixed("dtb", fdt, size, addr);
g_free(fdt);
return size;
fail:
g_free(fdt);
return -1;
}
static void do_cpu_reset(void *opaque)
{
ARMCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUARMState *env = &cpu->env;
const struct arm_boot_info *info = env->boot_info;
cpu_reset(cs);
if (info) {
if (!info->is_linux) {
int i;
/* Jump to the entry point. */
uint64_t entry = info->entry;
switch (info->endianness) {
case ARM_ENDIANNESS_LE:
env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
for (i = 1; i < 4; ++i) {
env->cp15.sctlr_el[i] &= ~SCTLR_EE;
}
env->uncached_cpsr &= ~CPSR_E;
break;
case ARM_ENDIANNESS_BE8:
env->cp15.sctlr_el[1] |= SCTLR_E0E;
for (i = 1; i < 4; ++i) {
env->cp15.sctlr_el[i] |= SCTLR_EE;
}
env->uncached_cpsr |= CPSR_E;
break;
case ARM_ENDIANNESS_BE32:
env->cp15.sctlr_el[1] |= SCTLR_B;
break;
case ARM_ENDIANNESS_UNKNOWN:
break; /* Board's decision */
default:
g_assert_not_reached();
}
if (!env->aarch64) {
env->thumb = info->entry & 1;
entry &= 0xfffffffe;
}
cpu_set_pc(cs, entry);
} else {
/* If we are booting Linux then we need to check whether we are
* booting into secure or non-secure state and adjust the state
* accordingly. Out of reset, ARM is defined to be in secure state
* (SCR.NS = 0), we change that here if non-secure boot has been
* requested.
*/
if (arm_feature(env, ARM_FEATURE_EL3)) {
/* AArch64 is defined to come out of reset into EL3 if enabled.
* If we are booting Linux then we need to adjust our EL as
* Linux expects us to be in EL2 or EL1. AArch32 resets into
* SVC, which Linux expects, so no privilege/exception level to
* adjust.
*/
if (env->aarch64) {
env->cp15.scr_el3 |= SCR_RW;
if (arm_feature(env, ARM_FEATURE_EL2)) {
env->cp15.hcr_el2 |= HCR_RW;
env->pstate = PSTATE_MODE_EL2h;
} else {
env->pstate = PSTATE_MODE_EL1h;
}
}
/* Set to non-secure if not a secure boot */
if (!info->secure_boot &&
(cs != first_cpu || !info->secure_board_setup)) {
/* Linux expects non-secure state */
env->cp15.scr_el3 |= SCR_NS;
}
}
if (cs == first_cpu) {
cpu_set_pc(cs, info->loader_start);
if (!have_dtb(info)) {
if (old_param) {
set_kernel_args_old(info);
} else {
set_kernel_args(info);
}
}
} else {
info->secondary_cpu_reset_hook(cpu, info);
}
}
}
}
/**
* load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
* by key.
* @fw_cfg: The firmware config instance to store the data in.
* @size_key: The firmware config key to store the size of the loaded
* data under, with fw_cfg_add_i32().
* @data_key: The firmware config key to store the loaded data under,
* with fw_cfg_add_bytes().
* @image_name: The name of the image file to load. If it is NULL, the
* function returns without doing anything.
* @try_decompress: Whether the image should be decompressed (gunzipped) before
* adding it to fw_cfg. If decompression fails, the image is
* loaded as-is.
*
* In case of failure, the function prints an error message to stderr and the
* process exits with status 1.
*/
static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
uint16_t data_key, const char *image_name,
bool try_decompress)
{
size_t size = -1;
uint8_t *data;
if (image_name == NULL) {
return;
}
if (try_decompress) {
size = load_image_gzipped_buffer(image_name,
LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
}
if (size == (size_t)-1) {
gchar *contents;
gsize length;
if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
fprintf(stderr, "failed to load \"%s\"\n", image_name);
exit(1);
}
size = length;
data = (uint8_t *)contents;
}
fw_cfg_add_i32(fw_cfg, size_key, size);
fw_cfg_add_bytes(fw_cfg, data_key, data, size);
}
static int do_arm_linux_init(Object *obj, void *opaque)
{
if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
struct arm_boot_info *info = opaque;
if (albifc->arm_linux_init) {
albifc->arm_linux_init(albif, info->secure_boot);
}
}
return 0;
}
static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
uint64_t *lowaddr, uint64_t *highaddr,
int elf_machine)
{
bool elf_is64;
union {
Elf32_Ehdr h32;
Elf64_Ehdr h64;
} elf_header;
int data_swab = 0;
bool big_endian;
uint64_t ret = -1;
Error *err = NULL;
load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
if (err) {
return ret;
}
if (elf_is64) {
big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
info->endianness = big_endian ? ARM_ENDIANNESS_BE8
: ARM_ENDIANNESS_LE;
} else {
big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
if (big_endian) {
if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
info->endianness = ARM_ENDIANNESS_BE8;
} else {
info->endianness = ARM_ENDIANNESS_BE32;
/* In BE32, the CPU has a different view of the per-byte
* address map than the rest of the system. BE32 ELF files
* are organised such that they can be programmed through
* the CPU's per-word byte-reversed view of the world. QEMU
* however loads ELF files independently of the CPU. So
* tell the ELF loader to byte reverse the data for us.
*/
data_swab = 2;
}
} else {
info->endianness = ARM_ENDIANNESS_LE;
}
}
ret = load_elf(info->kernel_filename, NULL, NULL,
pentry, lowaddr, highaddr, big_endian, elf_machine,
1, data_swab);
if (ret <= 0) {
/* The header loaded but the image didn't */
exit(1);
}
return ret;
}
static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
hwaddr *entry)
{
hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
uint8_t *buffer;
int size;
/* On aarch64, it's the bootloader's job to uncompress the kernel. */
size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
&buffer);
if (size < 0) {
gsize len;
/* Load as raw file otherwise */
if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
return -1;
}
size = len;
}
/* check the arm64 magic header value -- very old kernels may not have it */
if (memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
uint64_t hdrvals[2];
/* The arm64 Image header has text_offset and image_size fields at 8 and
* 16 bytes into the Image header, respectively. The text_offset field
* is only valid if the image_size is non-zero.
*/
memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
if (hdrvals[1] != 0) {
kernel_load_offset = le64_to_cpu(hdrvals[0]);
}
}
*entry = mem_base + kernel_load_offset;
rom_add_blob_fixed(filename, buffer, size, *entry);
g_free(buffer);
return size;
}
static void arm_load_kernel_notify(Notifier *notifier, void *data)
{
CPUState *cs;
int kernel_size;
int initrd_size;
int is_linux = 0;
uint64_t elf_entry, elf_low_addr, elf_high_addr;
int elf_machine;
hwaddr entry;
static const ARMInsnFixup *primary_loader;
ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
notifier, notifier);
ARMCPU *cpu = n->cpu;
struct arm_boot_info *info =
container_of(n, struct arm_boot_info, load_kernel_notifier);
/* The board code is not supposed to set secure_board_setup unless
* running its code in secure mode is actually possible, and KVM
* doesn't support secure.
*/
assert(!(info->secure_board_setup && kvm_enabled()));
info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
/* Load the kernel. */
if (!info->kernel_filename || info->firmware_loaded) {
if (have_dtb(info)) {
/* If we have a device tree blob, but no kernel to supply it to (or
* the kernel is supposed to be loaded by the bootloader), copy the
* DTB to the base of RAM for the bootloader to pick up.
*/
if (load_dtb(info->loader_start, info, 0) < 0) {
exit(1);
}
}
if (info->kernel_filename) {
FWCfgState *fw_cfg;
bool try_decompressing_kernel;
fw_cfg = fw_cfg_find();
try_decompressing_kernel = arm_feature(&cpu->env,
ARM_FEATURE_AARCH64);
/* Expose the kernel, the command line, and the initrd in fw_cfg.
* We don't process them here at all, it's all left to the
* firmware.
*/
load_image_to_fw_cfg(fw_cfg,
FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
info->kernel_filename,
try_decompressing_kernel);
load_image_to_fw_cfg(fw_cfg,
FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
info->initrd_filename, false);
if (info->kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(info->kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
info->kernel_cmdline);
}
}
/* We will start from address 0 (typically a boot ROM image) in the
* same way as hardware.
*/
return;
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
primary_loader = bootloader_aarch64;
elf_machine = EM_AARCH64;
} else {
primary_loader = bootloader;
if (!info->write_board_setup) {
primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
}
elf_machine = EM_ARM;
}
if (!info->secondary_cpu_reset_hook) {
info->secondary_cpu_reset_hook = default_reset_secondary;
}
if (!info->write_secondary_boot) {
info->write_secondary_boot = default_write_secondary;
}
if (info->nb_cpus == 0)
info->nb_cpus = 1;
/* We want to put the initrd far enough into RAM that when the
* kernel is uncompressed it will not clobber the initrd. However
* on boards without much RAM we must ensure that we still leave
* enough room for a decent sized initrd, and on boards with large
* amounts of RAM we must avoid the initrd being so far up in RAM
* that it is outside lowmem and inaccessible to the kernel.
* So for boards with less than 256MB of RAM we put the initrd
* halfway into RAM, and for boards with 256MB of RAM or more we put
* the initrd at 128MB.
*/
info->initrd_start = info->loader_start +
MIN(info->ram_size / 2, 128 * 1024 * 1024);
/* Assume that raw images are linux kernels, and ELF images are not. */
kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
&elf_high_addr, elf_machine);
if (kernel_size > 0 && have_dtb(info)) {
/* If there is still some room left at the base of RAM, try and put
* the DTB there like we do for images loaded with -bios or -pflash.
*/
if (elf_low_addr > info->loader_start
|| elf_high_addr < info->loader_start) {
/* Pass elf_low_addr as address limit to load_dtb if it may be
* pointing into RAM, otherwise pass '0' (no limit)
*/
if (elf_low_addr < info->loader_start) {
elf_low_addr = 0;
}
if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
exit(1);
}
}
}
entry = elf_entry;
if (kernel_size < 0) {
kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
&is_linux, NULL, NULL);
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
kernel_size = load_aarch64_image(info->kernel_filename,
info->loader_start, &entry);
is_linux = 1;
} else if (kernel_size < 0) {
/* 32-bit ARM */
entry = info->loader_start + KERNEL_LOAD_ADDR;
kernel_size = load_image_targphys(info->kernel_filename, entry,
info->ram_size - KERNEL_LOAD_ADDR);
is_linux = 1;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
info->kernel_filename);
exit(1);
}
info->entry = entry;
if (is_linux) {
uint32_t fixupcontext[FIXUP_MAX];
if (info->initrd_filename) {
initrd_size = load_ramdisk(info->initrd_filename,
info->initrd_start,
info->ram_size -
info->initrd_start);
if (initrd_size < 0) {
initrd_size = load_image_targphys(info->initrd_filename,
info->initrd_start,
info->ram_size -
info->initrd_start);
}
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initrd '%s'\n",
info->initrd_filename);
exit(1);
}
} else {
initrd_size = 0;
}
info->initrd_size = initrd_size;
fixupcontext[FIXUP_BOARDID] = info->board_id;
fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
/* for device tree boot, we pass the DTB directly in r2. Otherwise
* we point to the kernel args.
*/
if (have_dtb(info)) {
hwaddr align;
hwaddr dtb_start;
if (elf_machine == EM_AARCH64) {
/*
* Some AArch64 kernels on early bootup map the fdt region as
*
* [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
*
* Let's play safe and prealign it to 2MB to give us some space.
*/
align = 2 * 1024 * 1024;
} else {
/*
* Some 32bit kernels will trash anything in the 4K page the
* initrd ends in, so make sure the DTB isn't caught up in that.
*/
align = 4096;
}
/* Place the DTB after the initrd in memory with alignment. */
dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
if (load_dtb(dtb_start, info, 0) < 0) {
exit(1);
}
fixupcontext[FIXUP_ARGPTR] = dtb_start;
} else {
fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
if (info->ram_size >= (1ULL << 32)) {
fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
" Linux kernel using ATAGS (try passing a device tree"
" using -dtb)\n");
exit(1);
}
}
fixupcontext[FIXUP_ENTRYPOINT] = entry;
write_bootloader("bootloader", info->loader_start,
primary_loader, fixupcontext);
if (info->nb_cpus > 1) {
info->write_secondary_boot(cpu, info);
}
if (info->write_board_setup) {
info->write_board_setup(cpu, info);
}
/* Notify devices which need to fake up firmware initialization
* that we're doing a direct kernel boot.
*/
object_child_foreach_recursive(object_get_root(),
do_arm_linux_init, info);
}
info->is_linux = is_linux;
for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
ARM_CPU(cs)->env.boot_info = info;
}
}
void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
{
CPUState *cs;
info->load_kernel_notifier.cpu = cpu;
info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
/* CPU objects (unlike devices) are not automatically reset on system
* reset, so we must always register a handler to do so. If we're
* actually loading a kernel, the handler is also responsible for
* arranging that we start it correctly.
*/
for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
}
}
static const TypeInfo arm_linux_boot_if_info = {
.name = TYPE_ARM_LINUX_BOOT_IF,
.parent = TYPE_INTERFACE,
.class_size = sizeof(ARMLinuxBootIfClass),
};
static void arm_linux_boot_register_types(void)
{
type_register_static(&arm_linux_boot_if_info);
}
type_init(arm_linux_boot_register_types)