mirror of
https://github.com/xemu-project/xemu.git
synced 2024-12-22 11:59:10 +00:00
135b03cb9d
We should avoid including the whole of softfloat headers in cpu.h and explicitly include it only where we will be calling softfloat functions. We can use the -types.h and -helpers.h in cpu.h for the few bits that are global. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Acked-by: Palmer Dabbelt <palmer@sifive.com>
372 lines
10 KiB
C
372 lines
10 KiB
C
/*
|
|
* RISC-V FPU Emulation Helpers for QEMU.
|
|
*
|
|
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
|
|
{
|
|
int soft = get_float_exception_flags(&env->fp_status);
|
|
target_ulong hard = 0;
|
|
|
|
hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
|
|
hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
|
|
hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
|
|
hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
|
|
hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
|
|
|
|
return hard;
|
|
}
|
|
|
|
void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
|
|
{
|
|
int soft = 0;
|
|
|
|
soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
|
|
soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
|
|
soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
|
|
soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
|
|
soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
|
|
|
|
set_float_exception_flags(soft, &env->fp_status);
|
|
}
|
|
|
|
void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
|
|
{
|
|
int softrm;
|
|
|
|
if (rm == 7) {
|
|
rm = env->frm;
|
|
}
|
|
switch (rm) {
|
|
case 0:
|
|
softrm = float_round_nearest_even;
|
|
break;
|
|
case 1:
|
|
softrm = float_round_to_zero;
|
|
break;
|
|
case 2:
|
|
softrm = float_round_down;
|
|
break;
|
|
case 3:
|
|
softrm = float_round_up;
|
|
break;
|
|
case 4:
|
|
softrm = float_round_ties_away;
|
|
break;
|
|
default:
|
|
riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
|
|
}
|
|
|
|
set_float_rounding_mode(softrm, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
|
|
uint64_t frs3)
|
|
{
|
|
return float32_muladd(frs1, frs2, frs3, 0, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
|
|
uint64_t frs3)
|
|
{
|
|
return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
|
|
uint64_t frs3)
|
|
{
|
|
return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c,
|
|
&env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
|
|
uint64_t frs3)
|
|
{
|
|
return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
|
|
&env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
|
|
uint64_t frs3)
|
|
{
|
|
return float32_muladd(frs1, frs2, frs3, float_muladd_negate_product,
|
|
&env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
|
|
uint64_t frs3)
|
|
{
|
|
return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
|
|
&env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
|
|
uint64_t frs3)
|
|
{
|
|
return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c |
|
|
float_muladd_negate_product, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
|
|
uint64_t frs3)
|
|
{
|
|
return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
|
|
float_muladd_negate_product, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_add(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_sub(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_mul(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_div(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_minnum(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_maxnum(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return float32_sqrt(frs1, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_le(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_lt(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float32_eq_quiet(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return float32_to_int32(frs1, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return (int32_t)float32_to_uint32(frs1, &env->fp_status);
|
|
}
|
|
|
|
#if defined(TARGET_RISCV64)
|
|
uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return float32_to_int64(frs1, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return float32_to_uint64(frs1, &env->fp_status);
|
|
}
|
|
#endif
|
|
|
|
uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
|
|
{
|
|
return int32_to_float32((int32_t)rs1, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
|
|
{
|
|
return uint32_to_float32((uint32_t)rs1, &env->fp_status);
|
|
}
|
|
|
|
#if defined(TARGET_RISCV64)
|
|
uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1)
|
|
{
|
|
return int64_to_float32(rs1, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1)
|
|
{
|
|
return uint64_to_float32(rs1, &env->fp_status);
|
|
}
|
|
#endif
|
|
|
|
target_ulong helper_fclass_s(uint64_t frs1)
|
|
{
|
|
float32 f = frs1;
|
|
bool sign = float32_is_neg(f);
|
|
|
|
if (float32_is_infinity(f)) {
|
|
return sign ? 1 << 0 : 1 << 7;
|
|
} else if (float32_is_zero(f)) {
|
|
return sign ? 1 << 3 : 1 << 4;
|
|
} else if (float32_is_zero_or_denormal(f)) {
|
|
return sign ? 1 << 2 : 1 << 5;
|
|
} else if (float32_is_any_nan(f)) {
|
|
float_status s = { }; /* for snan_bit_is_one */
|
|
return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
|
|
} else {
|
|
return sign ? 1 << 1 : 1 << 6;
|
|
}
|
|
}
|
|
|
|
uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_add(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_sub(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_mul(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_div(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_minnum(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_maxnum(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
|
|
{
|
|
return float64_to_float32(rs1, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
|
|
{
|
|
return float32_to_float64(rs1, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return float64_sqrt(frs1, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_le(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_lt(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
|
|
{
|
|
return float64_eq_quiet(frs1, frs2, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return float64_to_int32(frs1, &env->fp_status);
|
|
}
|
|
|
|
target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return (int32_t)float64_to_uint32(frs1, &env->fp_status);
|
|
}
|
|
|
|
#if defined(TARGET_RISCV64)
|
|
uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return float64_to_int64(frs1, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
|
|
{
|
|
return float64_to_uint64(frs1, &env->fp_status);
|
|
}
|
|
#endif
|
|
|
|
uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
|
|
{
|
|
return int32_to_float64((int32_t)rs1, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
|
|
{
|
|
return uint32_to_float64((uint32_t)rs1, &env->fp_status);
|
|
}
|
|
|
|
#if defined(TARGET_RISCV64)
|
|
uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1)
|
|
{
|
|
return int64_to_float64(rs1, &env->fp_status);
|
|
}
|
|
|
|
uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1)
|
|
{
|
|
return uint64_to_float64(rs1, &env->fp_status);
|
|
}
|
|
#endif
|
|
|
|
target_ulong helper_fclass_d(uint64_t frs1)
|
|
{
|
|
float64 f = frs1;
|
|
bool sign = float64_is_neg(f);
|
|
|
|
if (float64_is_infinity(f)) {
|
|
return sign ? 1 << 0 : 1 << 7;
|
|
} else if (float64_is_zero(f)) {
|
|
return sign ? 1 << 3 : 1 << 4;
|
|
} else if (float64_is_zero_or_denormal(f)) {
|
|
return sign ? 1 << 2 : 1 << 5;
|
|
} else if (float64_is_any_nan(f)) {
|
|
float_status s = { }; /* for snan_bit_is_one */
|
|
return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
|
|
} else {
|
|
return sign ? 1 << 1 : 1 << 6;
|
|
}
|
|
}
|