xemu/tests/vhost-user-bridge.c
Victor Kaplansky 3595e2eb0a tests/vhost-user-bridge: add vhost-user bridge application
The test existing in QEMU for vhost-user feature is good for
testing the management protocol, but does not allow actual
traffic. This patch proposes Vhost-User Bridge application, which
can serve the QEMU community as a comprehensive test by running
real internet traffic by means of vhost-user interface.

Essentially the Vhost-User Bridge is a very basic vhost-user
backend for QEMU. It runs as a standalone user-level process.
For packet processing Vhost-User Bridge uses an additional QEMU
instance with a backend configured by "-net socket" as a shared
VLAN.  This way another QEMU virtual machine can effectively
serve as a shared bus by means of UDP communication.

For a more simple setup, the another QEMU instance running the
SLiRP backend can be the same QEMU instance running vhost-user
client.

This Vhost-User Bridge implementation is very preliminary.  It is
missing many features. I has been studying vhost-user protocol
internals, so I've written vhost-user-bridge bit by bit as I
progressed through the protocol.  Most probably its internal
architecture will change significantly.

To run Vhost-User Bridge application:

1. Build vhost-user-bridge with a regular procedure. This will
create a vhost-user-bridge executable under tests directory:

    $ configure; make tests/vhost-user-bridge

2. Ensure the machine has hugepages enabled in kernel with
command line like:

    default_hugepagesz=2M hugepagesz=2M hugepages=2048

3. Run Vhost-User Bridge with:

    $ tests/vhost-user-bridge

The above will run vhost-user server listening for connections
on UNIX domain socket /tmp/vubr.sock, and will try to connect
by UDP to VLAN bridge to localhost:5555, while listening on
localhost:4444

Run qemu with a virtio-net backed by vhost-user:

    $ qemu \
        -enable-kvm -m 512 -smp 2 \
        -object memory-backend-file,id=mem,size=512M,mem-path=/dev/hugepages,share=on \
        -numa node,memdev=mem -mem-prealloc \
        -chardev socket,id=char0,path=/tmp/vubr.sock \
        -netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \
        -device virtio-net-pci,netdev=mynet1 \
        -net none \
        -net socket,vlan=0,udp=localhost:4444,localaddr=localhost:5555 \
        -net user,vlan=0 \
        disk.img

vhost-user-bridge was tested very lightly: it's able to bringup a
linux on client VM with the virtio-net driver, and execute transmits
and receives to the internet. I tested with "wget redhat.com",
"dig redhat.com".

PS. I've consulted DPDK's code for vhost-user during Vhost-User
Bridge implementation.

Signed-off-by: Victor Kaplansky <victork@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2015-10-29 11:11:07 +02:00

1111 lines
30 KiB
C

/*
* Vhost User Bridge
*
* Copyright (c) 2015 Red Hat, Inc.
*
* Authors:
* Victor Kaplansky <victork@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*/
/*
* TODO:
* - main should get parameters from the command line.
* - implement all request handlers.
* - test for broken requests and virtqueue.
* - implement features defined by Virtio 1.0 spec.
* - support mergeable buffers and indirect descriptors.
* - implement RESET_DEVICE request.
* - implement clean shutdown.
* - implement non-blocking writes to UDP backend.
* - implement polling strategy.
*/
#include <stddef.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/unistd.h>
#include <sys/mman.h>
#include <sys/eventfd.h>
#include <arpa/inet.h>
#include <linux/vhost.h>
#include "qemu/atomic.h"
#include "standard-headers/linux/virtio_net.h"
#include "standard-headers/linux/virtio_ring.h"
#define VHOST_USER_BRIDGE_DEBUG 1
#define DPRINT(...) \
do { \
if (VHOST_USER_BRIDGE_DEBUG) { \
printf(__VA_ARGS__); \
} \
} while (0)
typedef void (*CallbackFunc)(int sock, void *ctx);
typedef struct Event {
void *ctx;
CallbackFunc callback;
} Event;
typedef struct Dispatcher {
int max_sock;
fd_set fdset;
Event events[FD_SETSIZE];
} Dispatcher;
static void
vubr_die(const char *s)
{
perror(s);
exit(1);
}
static int
dispatcher_init(Dispatcher *dispr)
{
FD_ZERO(&dispr->fdset);
dispr->max_sock = -1;
return 0;
}
static int
dispatcher_add(Dispatcher *dispr, int sock, void *ctx, CallbackFunc cb)
{
if (sock >= FD_SETSIZE) {
fprintf(stderr,
"Error: Failed to add new event. sock %d should be less than %d\n",
sock, FD_SETSIZE);
return -1;
}
dispr->events[sock].ctx = ctx;
dispr->events[sock].callback = cb;
FD_SET(sock, &dispr->fdset);
if (sock > dispr->max_sock) {
dispr->max_sock = sock;
}
DPRINT("Added sock %d for watching. max_sock: %d\n",
sock, dispr->max_sock);
return 0;
}
#if 0
/* dispatcher_remove() is not currently in use but may be useful
* in the future. */
static int
dispatcher_remove(Dispatcher *dispr, int sock)
{
if (sock >= FD_SETSIZE) {
fprintf(stderr,
"Error: Failed to remove event. sock %d should be less than %d\n",
sock, FD_SETSIZE);
return -1;
}
FD_CLR(sock, &dispr->fdset);
return 0;
}
#endif
/* timeout in us */
static int
dispatcher_wait(Dispatcher *dispr, uint32_t timeout)
{
struct timeval tv;
tv.tv_sec = timeout / 1000000;
tv.tv_usec = timeout % 1000000;
fd_set fdset = dispr->fdset;
/* wait until some of sockets become readable. */
int rc = select(dispr->max_sock + 1, &fdset, 0, 0, &tv);
if (rc == -1) {
vubr_die("select");
}
/* Timeout */
if (rc == 0) {
return 0;
}
/* Now call callback for every ready socket. */
int sock;
for (sock = 0; sock < dispr->max_sock + 1; sock++)
if (FD_ISSET(sock, &fdset)) {
Event *e = &dispr->events[sock];
e->callback(sock, e->ctx);
}
return 0;
}
typedef struct VubrVirtq {
int call_fd;
int kick_fd;
uint32_t size;
uint16_t last_avail_index;
uint16_t last_used_index;
struct vring_desc *desc;
struct vring_avail *avail;
struct vring_used *used;
} VubrVirtq;
/* Based on qemu/hw/virtio/vhost-user.c */
#define VHOST_MEMORY_MAX_NREGIONS 8
#define VHOST_USER_F_PROTOCOL_FEATURES 30
enum VhostUserProtocolFeature {
VHOST_USER_PROTOCOL_F_MQ = 0,
VHOST_USER_PROTOCOL_F_LOG_SHMFD = 1,
VHOST_USER_PROTOCOL_F_RARP = 2,
VHOST_USER_PROTOCOL_F_MAX
};
#define VHOST_USER_PROTOCOL_FEATURE_MASK ((1 << VHOST_USER_PROTOCOL_F_MAX) - 1)
typedef enum VhostUserRequest {
VHOST_USER_NONE = 0,
VHOST_USER_GET_FEATURES = 1,
VHOST_USER_SET_FEATURES = 2,
VHOST_USER_SET_OWNER = 3,
VHOST_USER_RESET_DEVICE = 4,
VHOST_USER_SET_MEM_TABLE = 5,
VHOST_USER_SET_LOG_BASE = 6,
VHOST_USER_SET_LOG_FD = 7,
VHOST_USER_SET_VRING_NUM = 8,
VHOST_USER_SET_VRING_ADDR = 9,
VHOST_USER_SET_VRING_BASE = 10,
VHOST_USER_GET_VRING_BASE = 11,
VHOST_USER_SET_VRING_KICK = 12,
VHOST_USER_SET_VRING_CALL = 13,
VHOST_USER_SET_VRING_ERR = 14,
VHOST_USER_GET_PROTOCOL_FEATURES = 15,
VHOST_USER_SET_PROTOCOL_FEATURES = 16,
VHOST_USER_GET_QUEUE_NUM = 17,
VHOST_USER_SET_VRING_ENABLE = 18,
VHOST_USER_SEND_RARP = 19,
VHOST_USER_MAX
} VhostUserRequest;
typedef struct VhostUserMemoryRegion {
uint64_t guest_phys_addr;
uint64_t memory_size;
uint64_t userspace_addr;
uint64_t mmap_offset;
} VhostUserMemoryRegion;
typedef struct VhostUserMemory {
uint32_t nregions;
uint32_t padding;
VhostUserMemoryRegion regions[VHOST_MEMORY_MAX_NREGIONS];
} VhostUserMemory;
typedef struct VhostUserMsg {
VhostUserRequest request;
#define VHOST_USER_VERSION_MASK (0x3)
#define VHOST_USER_REPLY_MASK (0x1<<2)
uint32_t flags;
uint32_t size; /* the following payload size */
union {
#define VHOST_USER_VRING_IDX_MASK (0xff)
#define VHOST_USER_VRING_NOFD_MASK (0x1<<8)
uint64_t u64;
struct vhost_vring_state state;
struct vhost_vring_addr addr;
VhostUserMemory memory;
} payload;
int fds[VHOST_MEMORY_MAX_NREGIONS];
int fd_num;
} QEMU_PACKED VhostUserMsg;
#define VHOST_USER_HDR_SIZE offsetof(VhostUserMsg, payload.u64)
/* The version of the protocol we support */
#define VHOST_USER_VERSION (0x1)
#define MAX_NR_VIRTQUEUE (8)
typedef struct VubrDevRegion {
/* Guest Physical address. */
uint64_t gpa;
/* Memory region size. */
uint64_t size;
/* QEMU virtual address (userspace). */
uint64_t qva;
/* Starting offset in our mmaped space. */
uint64_t mmap_offset;
/* Start address of mmaped space. */
uint64_t mmap_addr;
} VubrDevRegion;
typedef struct VubrDev {
int sock;
Dispatcher dispatcher;
uint32_t nregions;
VubrDevRegion regions[VHOST_MEMORY_MAX_NREGIONS];
VubrVirtq vq[MAX_NR_VIRTQUEUE];
int backend_udp_sock;
struct sockaddr_in backend_udp_dest;
} VubrDev;
static const char *vubr_request_str[] = {
[VHOST_USER_NONE] = "VHOST_USER_NONE",
[VHOST_USER_GET_FEATURES] = "VHOST_USER_GET_FEATURES",
[VHOST_USER_SET_FEATURES] = "VHOST_USER_SET_FEATURES",
[VHOST_USER_SET_OWNER] = "VHOST_USER_SET_OWNER",
[VHOST_USER_RESET_DEVICE] = "VHOST_USER_RESET_DEVICE",
[VHOST_USER_SET_MEM_TABLE] = "VHOST_USER_SET_MEM_TABLE",
[VHOST_USER_SET_LOG_BASE] = "VHOST_USER_SET_LOG_BASE",
[VHOST_USER_SET_LOG_FD] = "VHOST_USER_SET_LOG_FD",
[VHOST_USER_SET_VRING_NUM] = "VHOST_USER_SET_VRING_NUM",
[VHOST_USER_SET_VRING_ADDR] = "VHOST_USER_SET_VRING_ADDR",
[VHOST_USER_SET_VRING_BASE] = "VHOST_USER_SET_VRING_BASE",
[VHOST_USER_GET_VRING_BASE] = "VHOST_USER_GET_VRING_BASE",
[VHOST_USER_SET_VRING_KICK] = "VHOST_USER_SET_VRING_KICK",
[VHOST_USER_SET_VRING_CALL] = "VHOST_USER_SET_VRING_CALL",
[VHOST_USER_SET_VRING_ERR] = "VHOST_USER_SET_VRING_ERR",
[VHOST_USER_GET_PROTOCOL_FEATURES] = "VHOST_USER_GET_PROTOCOL_FEATURES",
[VHOST_USER_SET_PROTOCOL_FEATURES] = "VHOST_USER_SET_PROTOCOL_FEATURES",
[VHOST_USER_GET_QUEUE_NUM] = "VHOST_USER_GET_QUEUE_NUM",
[VHOST_USER_SET_VRING_ENABLE] = "VHOST_USER_SET_VRING_ENABLE",
[VHOST_USER_SEND_RARP] = "VHOST_USER_SEND_RARP",
[VHOST_USER_MAX] = "VHOST_USER_MAX",
};
static void
print_buffer(uint8_t *buf, size_t len)
{
int i;
printf("Raw buffer:\n");
for (i = 0; i < len; i++) {
if (i % 16 == 0) {
printf("\n");
}
if (i % 4 == 0) {
printf(" ");
}
printf("%02x ", buf[i]);
}
printf("\n............................................................\n");
}
/* Translate guest physical address to our virtual address. */
static uint64_t
gpa_to_va(VubrDev *dev, uint64_t guest_addr)
{
int i;
/* Find matching memory region. */
for (i = 0; i < dev->nregions; i++) {
VubrDevRegion *r = &dev->regions[i];
if ((guest_addr >= r->gpa) && (guest_addr < (r->gpa + r->size))) {
return guest_addr - r->gpa + r->mmap_addr + r->mmap_offset;
}
}
assert(!"address not found in regions");
return 0;
}
/* Translate qemu virtual address to our virtual address. */
static uint64_t
qva_to_va(VubrDev *dev, uint64_t qemu_addr)
{
int i;
/* Find matching memory region. */
for (i = 0; i < dev->nregions; i++) {
VubrDevRegion *r = &dev->regions[i];
if ((qemu_addr >= r->qva) && (qemu_addr < (r->qva + r->size))) {
return qemu_addr - r->qva + r->mmap_addr + r->mmap_offset;
}
}
assert(!"address not found in regions");
return 0;
}
static void
vubr_message_read(int conn_fd, VhostUserMsg *vmsg)
{
char control[CMSG_SPACE(VHOST_MEMORY_MAX_NREGIONS * sizeof(int))] = { };
struct iovec iov = {
.iov_base = (char *)vmsg,
.iov_len = VHOST_USER_HDR_SIZE,
};
struct msghdr msg = {
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = control,
.msg_controllen = sizeof(control),
};
size_t fd_size;
struct cmsghdr *cmsg;
int rc;
rc = recvmsg(conn_fd, &msg, 0);
if (rc <= 0) {
vubr_die("recvmsg");
}
vmsg->fd_num = 0;
for (cmsg = CMSG_FIRSTHDR(&msg);
cmsg != NULL;
cmsg = CMSG_NXTHDR(&msg, cmsg))
{
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
fd_size = cmsg->cmsg_len - CMSG_LEN(0);
vmsg->fd_num = fd_size / sizeof(int);
memcpy(vmsg->fds, CMSG_DATA(cmsg), fd_size);
break;
}
}
if (vmsg->size > sizeof(vmsg->payload)) {
fprintf(stderr,
"Error: too big message request: %d, size: vmsg->size: %u, "
"while sizeof(vmsg->payload) = %lu\n",
vmsg->request, vmsg->size, sizeof(vmsg->payload));
exit(1);
}
if (vmsg->size) {
rc = read(conn_fd, &vmsg->payload, vmsg->size);
if (rc <= 0) {
vubr_die("recvmsg");
}
assert(rc == vmsg->size);
}
}
static void
vubr_message_write(int conn_fd, VhostUserMsg *vmsg)
{
int rc;
do {
rc = write(conn_fd, vmsg, VHOST_USER_HDR_SIZE + vmsg->size);
} while (rc < 0 && errno == EINTR);
if (rc < 0) {
vubr_die("write");
}
}
static void
vubr_backend_udp_sendbuf(VubrDev *dev, uint8_t *buf, size_t len)
{
int slen = sizeof(struct sockaddr_in);
if (sendto(dev->backend_udp_sock, buf, len, 0,
(struct sockaddr *) &dev->backend_udp_dest, slen) == -1) {
vubr_die("sendto()");
}
}
static int
vubr_backend_udp_recvbuf(VubrDev *dev, uint8_t *buf, size_t buflen)
{
int slen = sizeof(struct sockaddr_in);
int rc;
rc = recvfrom(dev->backend_udp_sock, buf, buflen, 0,
(struct sockaddr *) &dev->backend_udp_dest,
(socklen_t *)&slen);
if (rc == -1) {
vubr_die("recvfrom()");
}
return rc;
}
static void
vubr_consume_raw_packet(VubrDev *dev, uint8_t *buf, uint32_t len)
{
int hdrlen = sizeof(struct virtio_net_hdr_v1);
if (VHOST_USER_BRIDGE_DEBUG) {
print_buffer(buf, len);
}
vubr_backend_udp_sendbuf(dev, buf + hdrlen, len - hdrlen);
}
/* Kick the guest if necessary. */
static void
vubr_virtqueue_kick(VubrVirtq *vq)
{
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)) {
DPRINT("Kicking the guest...\n");
eventfd_write(vq->call_fd, 1);
}
}
static void
vubr_post_buffer(VubrDev *dev, VubrVirtq *vq, uint8_t *buf, int32_t len)
{
struct vring_desc *desc = vq->desc;
struct vring_avail *avail = vq->avail;
struct vring_used *used = vq->used;
unsigned int size = vq->size;
uint16_t avail_index = atomic_mb_read(&avail->idx);
/* We check the available descriptors before posting the
* buffer, so here we assume that enough available
* descriptors. */
assert(vq->last_avail_index != avail_index);
uint16_t a_index = vq->last_avail_index % size;
uint16_t u_index = vq->last_used_index % size;
uint16_t d_index = avail->ring[a_index];
int i = d_index;
DPRINT("Post packet to guest on vq:\n");
DPRINT(" size = %d\n", vq->size);
DPRINT(" last_avail_index = %d\n", vq->last_avail_index);
DPRINT(" last_used_index = %d\n", vq->last_used_index);
DPRINT(" a_index = %d\n", a_index);
DPRINT(" u_index = %d\n", u_index);
DPRINT(" d_index = %d\n", d_index);
DPRINT(" desc[%d].addr = 0x%016"PRIx64"\n", i, desc[i].addr);
DPRINT(" desc[%d].len = %d\n", i, desc[i].len);
DPRINT(" desc[%d].flags = %d\n", i, desc[i].flags);
DPRINT(" avail->idx = %d\n", avail_index);
DPRINT(" used->idx = %d\n", used->idx);
if (!(desc[i].flags & VRING_DESC_F_WRITE)) {
/* FIXME: we should find writable descriptor. */
fprintf(stderr, "Error: descriptor is not writable. Exiting.\n");
exit(1);
}
void *chunk_start = (void *)gpa_to_va(dev, desc[i].addr);
uint32_t chunk_len = desc[i].len;
if (len <= chunk_len) {
memcpy(chunk_start, buf, len);
} else {
fprintf(stderr,
"Received too long packet from the backend. Dropping...\n");
return;
}
/* Add descriptor to the used ring. */
used->ring[u_index].id = d_index;
used->ring[u_index].len = len;
vq->last_avail_index++;
vq->last_used_index++;
atomic_mb_set(&used->idx, vq->last_used_index);
/* Kick the guest if necessary. */
vubr_virtqueue_kick(vq);
}
static int
vubr_process_desc(VubrDev *dev, VubrVirtq *vq)
{
struct vring_desc *desc = vq->desc;
struct vring_avail *avail = vq->avail;
struct vring_used *used = vq->used;
unsigned int size = vq->size;
uint16_t a_index = vq->last_avail_index % size;
uint16_t u_index = vq->last_used_index % size;
uint16_t d_index = avail->ring[a_index];
uint32_t i, len = 0;
size_t buf_size = 4096;
uint8_t buf[4096];
DPRINT("Chunks: ");
i = d_index;
do {
void *chunk_start = (void *)gpa_to_va(dev, desc[i].addr);
uint32_t chunk_len = desc[i].len;
if (len + chunk_len < buf_size) {
memcpy(buf + len, chunk_start, chunk_len);
DPRINT("%d ", chunk_len);
} else {
fprintf(stderr, "Error: too long packet. Dropping...\n");
break;
}
len += chunk_len;
if (!(desc[i].flags & VRING_DESC_F_NEXT)) {
break;
}
i = desc[i].next;
} while (1);
DPRINT("\n");
if (!len) {
return -1;
}
/* Add descriptor to the used ring. */
used->ring[u_index].id = d_index;
used->ring[u_index].len = len;
vubr_consume_raw_packet(dev, buf, len);
return 0;
}
static void
vubr_process_avail(VubrDev *dev, VubrVirtq *vq)
{
struct vring_avail *avail = vq->avail;
struct vring_used *used = vq->used;
while (vq->last_avail_index != atomic_mb_read(&avail->idx)) {
vubr_process_desc(dev, vq);
vq->last_avail_index++;
vq->last_used_index++;
}
atomic_mb_set(&used->idx, vq->last_used_index);
}
static void
vubr_backend_recv_cb(int sock, void *ctx)
{
VubrDev *dev = (VubrDev *) ctx;
VubrVirtq *rx_vq = &dev->vq[0];
uint8_t buf[4096];
struct virtio_net_hdr_v1 *hdr = (struct virtio_net_hdr_v1 *)buf;
int hdrlen = sizeof(struct virtio_net_hdr_v1);
int buflen = sizeof(buf);
int len;
DPRINT("\n\n *** IN UDP RECEIVE CALLBACK ***\n\n");
uint16_t avail_index = atomic_mb_read(&rx_vq->avail->idx);
/* If there is no available descriptors, just do nothing.
* The buffer will be handled by next arrived UDP packet,
* or next kick on receive virtq. */
if (rx_vq->last_avail_index == avail_index) {
DPRINT("Got UDP packet, but no available descriptors on RX virtq.\n");
return;
}
len = vubr_backend_udp_recvbuf(dev, buf + hdrlen, buflen - hdrlen);
*hdr = (struct virtio_net_hdr_v1) { };
hdr->num_buffers = 1;
vubr_post_buffer(dev, rx_vq, buf, len + hdrlen);
}
static void
vubr_kick_cb(int sock, void *ctx)
{
VubrDev *dev = (VubrDev *) ctx;
eventfd_t kick_data;
ssize_t rc;
rc = eventfd_read(sock, &kick_data);
if (rc == -1) {
vubr_die("eventfd_read()");
} else {
DPRINT("Got kick_data: %016"PRIx64"\n", kick_data);
vubr_process_avail(dev, &dev->vq[1]);
}
}
static int
vubr_none_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("Function %s() not implemented yet.\n", __func__);
return 0;
}
static int
vubr_get_features_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
vmsg->payload.u64 =
((1ULL << VIRTIO_NET_F_MRG_RXBUF) |
(1ULL << VIRTIO_NET_F_CTRL_VQ) |
(1ULL << VIRTIO_NET_F_CTRL_RX) |
(1ULL << VHOST_F_LOG_ALL));
vmsg->size = sizeof(vmsg->payload.u64);
DPRINT("Sending back to guest u64: 0x%016"PRIx64"\n", vmsg->payload.u64);
/* reply */
return 1;
}
static int
vubr_set_features_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("u64: 0x%016"PRIx64"\n", vmsg->payload.u64);
return 0;
}
static int
vubr_set_owner_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
return 0;
}
static int
vubr_reset_device_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("Function %s() not implemented yet.\n", __func__);
return 0;
}
static int
vubr_set_mem_table_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
int i;
VhostUserMemory *memory = &vmsg->payload.memory;
dev->nregions = memory->nregions;
DPRINT("Nregions: %d\n", memory->nregions);
for (i = 0; i < dev->nregions; i++) {
void *mmap_addr;
VhostUserMemoryRegion *msg_region = &memory->regions[i];
VubrDevRegion *dev_region = &dev->regions[i];
DPRINT("Region %d\n", i);
DPRINT(" guest_phys_addr: 0x%016"PRIx64"\n",
msg_region->guest_phys_addr);
DPRINT(" memory_size: 0x%016"PRIx64"\n",
msg_region->memory_size);
DPRINT(" userspace_addr 0x%016"PRIx64"\n",
msg_region->userspace_addr);
DPRINT(" mmap_offset 0x%016"PRIx64"\n",
msg_region->mmap_offset);
dev_region->gpa = msg_region->guest_phys_addr;
dev_region->size = msg_region->memory_size;
dev_region->qva = msg_region->userspace_addr;
dev_region->mmap_offset = msg_region->mmap_offset;
/* We don't use offset argument of mmap() since the
* mapped address has to be page aligned, and we use huge
* pages. */
mmap_addr = mmap(0, dev_region->size + dev_region->mmap_offset,
PROT_READ | PROT_WRITE, MAP_SHARED,
vmsg->fds[i], 0);
if (mmap_addr == MAP_FAILED) {
vubr_die("mmap");
}
dev_region->mmap_addr = (uint64_t) mmap_addr;
DPRINT(" mmap_addr: 0x%016"PRIx64"\n", dev_region->mmap_addr);
}
return 0;
}
static int
vubr_set_log_base_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("Function %s() not implemented yet.\n", __func__);
return 0;
}
static int
vubr_set_log_fd_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("Function %s() not implemented yet.\n", __func__);
return 0;
}
static int
vubr_set_vring_num_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
unsigned int index = vmsg->payload.state.index;
unsigned int num = vmsg->payload.state.num;
DPRINT("State.index: %d\n", index);
DPRINT("State.num: %d\n", num);
dev->vq[index].size = num;
return 0;
}
static int
vubr_set_vring_addr_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
struct vhost_vring_addr *vra = &vmsg->payload.addr;
unsigned int index = vra->index;
VubrVirtq *vq = &dev->vq[index];
DPRINT("vhost_vring_addr:\n");
DPRINT(" index: %d\n", vra->index);
DPRINT(" flags: %d\n", vra->flags);
DPRINT(" desc_user_addr: 0x%016llx\n", vra->desc_user_addr);
DPRINT(" used_user_addr: 0x%016llx\n", vra->used_user_addr);
DPRINT(" avail_user_addr: 0x%016llx\n", vra->avail_user_addr);
DPRINT(" log_guest_addr: 0x%016llx\n", vra->log_guest_addr);
vq->desc = (struct vring_desc *)qva_to_va(dev, vra->desc_user_addr);
vq->used = (struct vring_used *)qva_to_va(dev, vra->used_user_addr);
vq->avail = (struct vring_avail *)qva_to_va(dev, vra->avail_user_addr);
DPRINT("Setting virtq addresses:\n");
DPRINT(" vring_desc at %p\n", vq->desc);
DPRINT(" vring_used at %p\n", vq->used);
DPRINT(" vring_avail at %p\n", vq->avail);
vq->last_used_index = vq->used->idx;
return 0;
}
static int
vubr_set_vring_base_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
unsigned int index = vmsg->payload.state.index;
unsigned int num = vmsg->payload.state.num;
DPRINT("State.index: %d\n", index);
DPRINT("State.num: %d\n", num);
dev->vq[index].last_avail_index = num;
return 0;
}
static int
vubr_get_vring_base_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("Function %s() not implemented yet.\n", __func__);
return 0;
}
static int
vubr_set_vring_kick_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
uint64_t u64_arg = vmsg->payload.u64;
int index = u64_arg & VHOST_USER_VRING_IDX_MASK;
DPRINT("u64: 0x%016"PRIx64"\n", vmsg->payload.u64);
assert((u64_arg & VHOST_USER_VRING_NOFD_MASK) == 0);
assert(vmsg->fd_num == 1);
dev->vq[index].kick_fd = vmsg->fds[0];
DPRINT("Got kick_fd: %d for vq: %d\n", vmsg->fds[0], index);
if (index % 2 == 1) {
/* TX queue. */
dispatcher_add(&dev->dispatcher, dev->vq[index].kick_fd,
dev, vubr_kick_cb);
DPRINT("Waiting for kicks on fd: %d for vq: %d\n",
dev->vq[index].kick_fd, index);
}
return 0;
}
static int
vubr_set_vring_call_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
uint64_t u64_arg = vmsg->payload.u64;
int index = u64_arg & VHOST_USER_VRING_IDX_MASK;
DPRINT("u64: 0x%016"PRIx64"\n", vmsg->payload.u64);
assert((u64_arg & VHOST_USER_VRING_NOFD_MASK) == 0);
assert(vmsg->fd_num == 1);
dev->vq[index].call_fd = vmsg->fds[0];
DPRINT("Got call_fd: %d for vq: %d\n", vmsg->fds[0], index);
return 0;
}
static int
vubr_set_vring_err_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("u64: 0x%016"PRIx64"\n", vmsg->payload.u64);
return 0;
}
static int
vubr_get_protocol_features_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
/* FIXME: unimplented */
DPRINT("u64: 0x%016"PRIx64"\n", vmsg->payload.u64);
return 0;
}
static int
vubr_set_protocol_features_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
/* FIXME: unimplented */
DPRINT("u64: 0x%016"PRIx64"\n", vmsg->payload.u64);
return 0;
}
static int
vubr_get_queue_num_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("Function %s() not implemented yet.\n", __func__);
return 0;
}
static int
vubr_set_vring_enable_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("Function %s() not implemented yet.\n", __func__);
return 0;
}
static int
vubr_send_rarp_exec(VubrDev *dev, VhostUserMsg *vmsg)
{
DPRINT("Function %s() not implemented yet.\n", __func__);
return 0;
}
static int
vubr_execute_request(VubrDev *dev, VhostUserMsg *vmsg)
{
/* Print out generic part of the request. */
DPRINT(
"================== Vhost user message from QEMU ==================\n");
DPRINT("Request: %s (%d)\n", vubr_request_str[vmsg->request],
vmsg->request);
DPRINT("Flags: 0x%x\n", vmsg->flags);
DPRINT("Size: %d\n", vmsg->size);
if (vmsg->fd_num) {
int i;
DPRINT("Fds:");
for (i = 0; i < vmsg->fd_num; i++) {
DPRINT(" %d", vmsg->fds[i]);
}
DPRINT("\n");
}
switch (vmsg->request) {
case VHOST_USER_NONE:
return vubr_none_exec(dev, vmsg);
case VHOST_USER_GET_FEATURES:
return vubr_get_features_exec(dev, vmsg);
case VHOST_USER_SET_FEATURES:
return vubr_set_features_exec(dev, vmsg);
case VHOST_USER_SET_OWNER:
return vubr_set_owner_exec(dev, vmsg);
case VHOST_USER_RESET_DEVICE:
return vubr_reset_device_exec(dev, vmsg);
case VHOST_USER_SET_MEM_TABLE:
return vubr_set_mem_table_exec(dev, vmsg);
case VHOST_USER_SET_LOG_BASE:
return vubr_set_log_base_exec(dev, vmsg);
case VHOST_USER_SET_LOG_FD:
return vubr_set_log_fd_exec(dev, vmsg);
case VHOST_USER_SET_VRING_NUM:
return vubr_set_vring_num_exec(dev, vmsg);
case VHOST_USER_SET_VRING_ADDR:
return vubr_set_vring_addr_exec(dev, vmsg);
case VHOST_USER_SET_VRING_BASE:
return vubr_set_vring_base_exec(dev, vmsg);
case VHOST_USER_GET_VRING_BASE:
return vubr_get_vring_base_exec(dev, vmsg);
case VHOST_USER_SET_VRING_KICK:
return vubr_set_vring_kick_exec(dev, vmsg);
case VHOST_USER_SET_VRING_CALL:
return vubr_set_vring_call_exec(dev, vmsg);
case VHOST_USER_SET_VRING_ERR:
return vubr_set_vring_err_exec(dev, vmsg);
case VHOST_USER_GET_PROTOCOL_FEATURES:
return vubr_get_protocol_features_exec(dev, vmsg);
case VHOST_USER_SET_PROTOCOL_FEATURES:
return vubr_set_protocol_features_exec(dev, vmsg);
case VHOST_USER_GET_QUEUE_NUM:
return vubr_get_queue_num_exec(dev, vmsg);
case VHOST_USER_SET_VRING_ENABLE:
return vubr_set_vring_enable_exec(dev, vmsg);
case VHOST_USER_SEND_RARP:
return vubr_send_rarp_exec(dev, vmsg);
case VHOST_USER_MAX:
assert(vmsg->request != VHOST_USER_MAX);
}
return 0;
}
static void
vubr_receive_cb(int sock, void *ctx)
{
VubrDev *dev = (VubrDev *) ctx;
VhostUserMsg vmsg;
int reply_requested;
vubr_message_read(sock, &vmsg);
reply_requested = vubr_execute_request(dev, &vmsg);
if (reply_requested) {
/* Set the version in the flags when sending the reply */
vmsg.flags &= ~VHOST_USER_VERSION_MASK;
vmsg.flags |= VHOST_USER_VERSION;
vmsg.flags |= VHOST_USER_REPLY_MASK;
vubr_message_write(sock, &vmsg);
}
}
static void
vubr_accept_cb(int sock, void *ctx)
{
VubrDev *dev = (VubrDev *)ctx;
int conn_fd;
struct sockaddr_un un;
socklen_t len = sizeof(un);
conn_fd = accept(sock, (struct sockaddr *) &un, &len);
if (conn_fd == -1) {
vubr_die("accept()");
}
DPRINT("Got connection from remote peer on sock %d\n", conn_fd);
dispatcher_add(&dev->dispatcher, conn_fd, ctx, vubr_receive_cb);
}
static VubrDev *
vubr_new(const char *path)
{
VubrDev *dev = (VubrDev *) calloc(1, sizeof(VubrDev));
dev->nregions = 0;
int i;
struct sockaddr_un un;
size_t len;
for (i = 0; i < MAX_NR_VIRTQUEUE; i++) {
dev->vq[i] = (VubrVirtq) {
.call_fd = -1, .kick_fd = -1,
.size = 0,
.last_avail_index = 0, .last_used_index = 0,
.desc = 0, .avail = 0, .used = 0,
};
}
/* Get a UNIX socket. */
dev->sock = socket(AF_UNIX, SOCK_STREAM, 0);
if (dev->sock == -1) {
vubr_die("socket");
}
un.sun_family = AF_UNIX;
strcpy(un.sun_path, path);
len = sizeof(un.sun_family) + strlen(path);
unlink(path);
if (bind(dev->sock, (struct sockaddr *) &un, len) == -1) {
vubr_die("bind");
}
if (listen(dev->sock, 1) == -1) {
vubr_die("listen");
}
dispatcher_init(&dev->dispatcher);
dispatcher_add(&dev->dispatcher, dev->sock, (void *)dev,
vubr_accept_cb);
DPRINT("Waiting for connections on UNIX socket %s ...\n", path);
return dev;
}
static void
vubr_backend_udp_setup(VubrDev *dev,
const char *local_host,
uint16_t local_port,
const char *dest_host,
uint16_t dest_port)
{
int sock;
struct sockaddr_in si_local = {
.sin_family = AF_INET,
.sin_port = htons(local_port),
};
if (inet_aton(local_host, &si_local.sin_addr) == 0) {
fprintf(stderr, "inet_aton() failed.\n");
exit(1);
}
/* setup destination for sends */
dev->backend_udp_dest = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_port = htons(dest_port),
};
if (inet_aton(dest_host, &dev->backend_udp_dest.sin_addr) == 0) {
fprintf(stderr, "inet_aton() failed.\n");
exit(1);
}
sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sock == -1) {
vubr_die("socket");
}
if (bind(sock, (struct sockaddr *)&si_local, sizeof(si_local)) == -1) {
vubr_die("bind");
}
dev->backend_udp_sock = sock;
dispatcher_add(&dev->dispatcher, sock, dev, vubr_backend_recv_cb);
DPRINT("Waiting for data from udp backend on %s:%d...\n",
local_host, local_port);
}
static void
vubr_run(VubrDev *dev)
{
while (1) {
/* timeout 200ms */
dispatcher_wait(&dev->dispatcher, 200000);
/* Here one can try polling strategy. */
}
}
int
main(int argc, char *argv[])
{
VubrDev *dev;
dev = vubr_new("/tmp/vubr.sock");
if (!dev) {
return 1;
}
vubr_backend_udp_setup(dev,
"127.0.0.1", 4444,
"127.0.0.1", 5555);
vubr_run(dev);
return 0;
}