xemu/exec.c
bellard 36bdbe5479 fixed TB linking in case of code invalidation (fixes random segfaults)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@469 c046a42c-6fe2-441c-8c8c-71466251a162
2003-11-19 22:12:02 +00:00

964 lines
26 KiB
C

/*
* virtual page mapping and translated block handling
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/mman.h>
#include "config.h"
#include "cpu.h"
#include "exec-all.h"
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
/* threshold to flush the translated code buffer */
#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
#define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / 64)
TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
int nb_tbs;
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
uint8_t *code_gen_ptr;
/* XXX: pack the flags in the low bits of the pointer ? */
typedef struct PageDesc {
unsigned long flags;
TranslationBlock *first_tb;
} PageDesc;
#define L2_BITS 10
#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
#define L1_SIZE (1 << L1_BITS)
#define L2_SIZE (1 << L2_BITS)
static void tb_invalidate_page(unsigned long address);
static void io_mem_init(void);
unsigned long real_host_page_size;
unsigned long host_page_bits;
unsigned long host_page_size;
unsigned long host_page_mask;
static PageDesc *l1_map[L1_SIZE];
/* io memory support */
static unsigned long *l1_physmap[L1_SIZE];
CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
static int io_mem_nb;
/* log support */
char *logfilename = "/tmp/qemu.log";
FILE *logfile;
int loglevel;
static void page_init(void)
{
/* NOTE: we can always suppose that host_page_size >=
TARGET_PAGE_SIZE */
real_host_page_size = getpagesize();
if (host_page_size == 0)
host_page_size = real_host_page_size;
if (host_page_size < TARGET_PAGE_SIZE)
host_page_size = TARGET_PAGE_SIZE;
host_page_bits = 0;
while ((1 << host_page_bits) < host_page_size)
host_page_bits++;
host_page_mask = ~(host_page_size - 1);
}
/* dump memory mappings */
void page_dump(FILE *f)
{
unsigned long start, end;
int i, j, prot, prot1;
PageDesc *p;
fprintf(f, "%-8s %-8s %-8s %s\n",
"start", "end", "size", "prot");
start = -1;
end = -1;
prot = 0;
for(i = 0; i <= L1_SIZE; i++) {
if (i < L1_SIZE)
p = l1_map[i];
else
p = NULL;
for(j = 0;j < L2_SIZE; j++) {
if (!p)
prot1 = 0;
else
prot1 = p[j].flags;
if (prot1 != prot) {
end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
if (start != -1) {
fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
start, end, end - start,
prot & PAGE_READ ? 'r' : '-',
prot & PAGE_WRITE ? 'w' : '-',
prot & PAGE_EXEC ? 'x' : '-');
}
if (prot1 != 0)
start = end;
else
start = -1;
prot = prot1;
}
if (!p)
break;
}
}
}
static inline PageDesc *page_find_alloc(unsigned int index)
{
PageDesc **lp, *p;
lp = &l1_map[index >> L2_BITS];
p = *lp;
if (!p) {
/* allocate if not found */
p = malloc(sizeof(PageDesc) * L2_SIZE);
memset(p, 0, sizeof(PageDesc) * L2_SIZE);
*lp = p;
}
return p + (index & (L2_SIZE - 1));
}
static inline PageDesc *page_find(unsigned int index)
{
PageDesc *p;
p = l1_map[index >> L2_BITS];
if (!p)
return 0;
return p + (index & (L2_SIZE - 1));
}
int page_get_flags(unsigned long address)
{
PageDesc *p;
p = page_find(address >> TARGET_PAGE_BITS);
if (!p)
return 0;
return p->flags;
}
/* modify the flags of a page and invalidate the code if
necessary. The flag PAGE_WRITE_ORG is positionned automatically
depending on PAGE_WRITE */
void page_set_flags(unsigned long start, unsigned long end, int flags)
{
PageDesc *p;
unsigned long addr;
start = start & TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
if (flags & PAGE_WRITE)
flags |= PAGE_WRITE_ORG;
spin_lock(&tb_lock);
for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
p = page_find_alloc(addr >> TARGET_PAGE_BITS);
/* if the write protection is set, then we invalidate the code
inside */
if (!(p->flags & PAGE_WRITE) &&
(flags & PAGE_WRITE) &&
p->first_tb) {
tb_invalidate_page(addr);
}
p->flags = flags;
}
spin_unlock(&tb_lock);
}
void cpu_exec_init(void)
{
if (!code_gen_ptr) {
code_gen_ptr = code_gen_buffer;
page_init();
io_mem_init();
}
}
/* set to NULL all the 'first_tb' fields in all PageDescs */
static void page_flush_tb(void)
{
int i, j;
PageDesc *p;
for(i = 0; i < L1_SIZE; i++) {
p = l1_map[i];
if (p) {
for(j = 0; j < L2_SIZE; j++)
p[j].first_tb = NULL;
}
}
}
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
void tb_flush(void)
{
int i;
#ifdef DEBUG_FLUSH
printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
code_gen_ptr - code_gen_buffer,
nb_tbs,
(code_gen_ptr - code_gen_buffer) / nb_tbs);
#endif
nb_tbs = 0;
for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
tb_hash[i] = NULL;
page_flush_tb();
code_gen_ptr = code_gen_buffer;
/* XXX: flush processor icache at this point if cache flush is
expensive */
}
#ifdef DEBUG_TB_CHECK
static void tb_invalidate_check(unsigned long address)
{
TranslationBlock *tb;
int i;
address &= TARGET_PAGE_MASK;
for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
address >= tb->pc + tb->size)) {
printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
address, tb->pc, tb->size);
}
}
}
}
/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
TranslationBlock *tb;
int i, flags1, flags2;
for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
flags1 = page_get_flags(tb->pc);
flags2 = page_get_flags(tb->pc + tb->size - 1);
if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
tb->pc, tb->size, flags1, flags2);
}
}
}
}
void tb_jmp_check(TranslationBlock *tb)
{
TranslationBlock *tb1;
unsigned int n1;
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
}
/* check end of list */
if (tb1 != tb) {
printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
}
}
#endif
/* invalidate one TB */
static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
int next_offset)
{
TranslationBlock *tb1;
for(;;) {
tb1 = *ptb;
if (tb1 == tb) {
*ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
break;
}
ptb = (TranslationBlock **)((char *)tb1 + next_offset);
}
}
static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
TranslationBlock *tb1, **ptb;
unsigned int n1;
ptb = &tb->jmp_next[n];
tb1 = *ptb;
if (tb1) {
/* find tb(n) in circular list */
for(;;) {
tb1 = *ptb;
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
if (n1 == 2) {
ptb = &tb1->jmp_first;
} else {
ptb = &tb1->jmp_next[n1];
}
}
/* now we can suppress tb(n) from the list */
*ptb = tb->jmp_next[n];
tb->jmp_next[n] = NULL;
}
}
/* reset the jump entry 'n' of a TB so that it is not chained to
another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}
static inline void tb_invalidate(TranslationBlock *tb, int parity)
{
PageDesc *p;
unsigned int page_index1, page_index2;
unsigned int h, n1;
TranslationBlock *tb1, *tb2;
tb_invalidated_flag = 1;
/* remove the TB from the hash list */
h = tb_hash_func(tb->pc);
tb_remove(&tb_hash[h], tb,
offsetof(TranslationBlock, hash_next));
/* remove the TB from the page list */
page_index1 = tb->pc >> TARGET_PAGE_BITS;
if ((page_index1 & 1) == parity) {
p = page_find(page_index1);
tb_remove(&p->first_tb, tb,
offsetof(TranslationBlock, page_next[page_index1 & 1]));
}
page_index2 = (tb->pc + tb->size - 1) >> TARGET_PAGE_BITS;
if ((page_index2 & 1) == parity) {
p = page_find(page_index2);
tb_remove(&p->first_tb, tb,
offsetof(TranslationBlock, page_next[page_index2 & 1]));
}
/* suppress this TB from the two jump lists */
tb_jmp_remove(tb, 0);
tb_jmp_remove(tb, 1);
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
n1 = (long)tb1 & 3;
if (n1 == 2)
break;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
tb2 = tb1->jmp_next[n1];
tb_reset_jump(tb1, n1);
tb1->jmp_next[n1] = NULL;
tb1 = tb2;
}
tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
}
/* invalidate all TBs which intersect with the target page starting at addr */
static void tb_invalidate_page(unsigned long address)
{
TranslationBlock *tb_next, *tb;
unsigned int page_index;
int parity1, parity2;
PageDesc *p;
#ifdef DEBUG_TB_INVALIDATE
printf("tb_invalidate_page: %lx\n", address);
#endif
page_index = address >> TARGET_PAGE_BITS;
p = page_find(page_index);
if (!p)
return;
tb = p->first_tb;
parity1 = page_index & 1;
parity2 = parity1 ^ 1;
while (tb != NULL) {
tb_next = tb->page_next[parity1];
tb_invalidate(tb, parity2);
tb = tb_next;
}
p->first_tb = NULL;
}
/* add the tb in the target page and protect it if necessary */
static inline void tb_alloc_page(TranslationBlock *tb, unsigned int page_index)
{
PageDesc *p;
unsigned long host_start, host_end, addr, page_addr;
int prot;
p = page_find_alloc(page_index);
tb->page_next[page_index & 1] = p->first_tb;
p->first_tb = tb;
if (p->flags & PAGE_WRITE) {
/* force the host page as non writable (writes will have a
page fault + mprotect overhead) */
page_addr = (page_index << TARGET_PAGE_BITS);
host_start = page_addr & host_page_mask;
host_end = host_start + host_page_size;
prot = 0;
for(addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE)
prot |= page_get_flags(addr);
#if !defined(CONFIG_SOFTMMU)
mprotect((void *)host_start, host_page_size,
(prot & PAGE_BITS) & ~PAGE_WRITE);
#endif
#if !defined(CONFIG_USER_ONLY)
/* suppress soft TLB */
/* XXX: must flush on all processor with same address space */
tlb_flush_page_write(cpu_single_env, host_start);
#endif
#ifdef DEBUG_TB_INVALIDATE
printf("protecting code page: 0x%08lx\n",
host_start);
#endif
p->flags &= ~PAGE_WRITE;
}
}
/* Allocate a new translation block. Flush the translation buffer if
too many translation blocks or too much generated code. */
TranslationBlock *tb_alloc(unsigned long pc)
{
TranslationBlock *tb;
if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
(code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
return NULL;
tb = &tbs[nb_tbs++];
tb->pc = pc;
return tb;
}
/* link the tb with the other TBs */
void tb_link(TranslationBlock *tb)
{
unsigned int page_index1, page_index2;
/* add in the page list */
page_index1 = tb->pc >> TARGET_PAGE_BITS;
tb_alloc_page(tb, page_index1);
page_index2 = (tb->pc + tb->size - 1) >> TARGET_PAGE_BITS;
if (page_index2 != page_index1) {
tb_alloc_page(tb, page_index2);
}
#ifdef DEBUG_TB_CHECK
tb_page_check();
#endif
tb->jmp_first = (TranslationBlock *)((long)tb | 2);
tb->jmp_next[0] = NULL;
tb->jmp_next[1] = NULL;
/* init original jump addresses */
if (tb->tb_next_offset[0] != 0xffff)
tb_reset_jump(tb, 0);
if (tb->tb_next_offset[1] != 0xffff)
tb_reset_jump(tb, 1);
}
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was succesfully handled. */
int page_unprotect(unsigned long address)
{
unsigned int page_index, prot, pindex;
PageDesc *p, *p1;
unsigned long host_start, host_end, addr;
host_start = address & host_page_mask;
page_index = host_start >> TARGET_PAGE_BITS;
p1 = page_find(page_index);
if (!p1)
return 0;
host_end = host_start + host_page_size;
p = p1;
prot = 0;
for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
prot |= p->flags;
p++;
}
/* if the page was really writable, then we change its
protection back to writable */
if (prot & PAGE_WRITE_ORG) {
pindex = (address - host_start) >> TARGET_PAGE_BITS;
if (!(p1[pindex].flags & PAGE_WRITE)) {
#if !defined(CONFIG_SOFTMMU)
mprotect((void *)host_start, host_page_size,
(prot & PAGE_BITS) | PAGE_WRITE);
#endif
p1[pindex].flags |= PAGE_WRITE;
/* and since the content will be modified, we must invalidate
the corresponding translated code. */
tb_invalidate_page(address);
#ifdef DEBUG_TB_CHECK
tb_invalidate_check(address);
#endif
return 1;
}
}
return 0;
}
/* call this function when system calls directly modify a memory area */
void page_unprotect_range(uint8_t *data, unsigned long data_size)
{
unsigned long start, end, addr;
start = (unsigned long)data;
end = start + data_size;
start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
page_unprotect(addr);
}
}
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
tb[1].tc_ptr. Return NULL if not found */
TranslationBlock *tb_find_pc(unsigned long tc_ptr)
{
int m_min, m_max, m;
unsigned long v;
TranslationBlock *tb;
if (nb_tbs <= 0)
return NULL;
if (tc_ptr < (unsigned long)code_gen_buffer ||
tc_ptr >= (unsigned long)code_gen_ptr)
return NULL;
/* binary search (cf Knuth) */
m_min = 0;
m_max = nb_tbs - 1;
while (m_min <= m_max) {
m = (m_min + m_max) >> 1;
tb = &tbs[m];
v = (unsigned long)tb->tc_ptr;
if (v == tc_ptr)
return tb;
else if (tc_ptr < v) {
m_max = m - 1;
} else {
m_min = m + 1;
}
}
return &tbs[m_max];
}
static void tb_reset_jump_recursive(TranslationBlock *tb);
static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
{
TranslationBlock *tb1, *tb_next, **ptb;
unsigned int n1;
tb1 = tb->jmp_next[n];
if (tb1 != NULL) {
/* find head of list */
for(;;) {
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
}
/* we are now sure now that tb jumps to tb1 */
tb_next = tb1;
/* remove tb from the jmp_first list */
ptb = &tb_next->jmp_first;
for(;;) {
tb1 = *ptb;
n1 = (long)tb1 & 3;
tb1 = (TranslationBlock *)((long)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
ptb = &tb1->jmp_next[n1];
}
*ptb = tb->jmp_next[n];
tb->jmp_next[n] = NULL;
/* suppress the jump to next tb in generated code */
tb_reset_jump(tb, n);
/* suppress jumps in the tb on which we could have jump */
tb_reset_jump_recursive(tb_next);
}
}
static void tb_reset_jump_recursive(TranslationBlock *tb)
{
tb_reset_jump_recursive2(tb, 0);
tb_reset_jump_recursive2(tb, 1);
}
/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
breakpoint is reached */
int cpu_breakpoint_insert(CPUState *env, uint32_t pc)
{
#if defined(TARGET_I386)
int i;
for(i = 0; i < env->nb_breakpoints; i++) {
if (env->breakpoints[i] == pc)
return 0;
}
if (env->nb_breakpoints >= MAX_BREAKPOINTS)
return -1;
env->breakpoints[env->nb_breakpoints++] = pc;
tb_invalidate_page(pc);
return 0;
#else
return -1;
#endif
}
/* remove a breakpoint */
int cpu_breakpoint_remove(CPUState *env, uint32_t pc)
{
#if defined(TARGET_I386)
int i;
for(i = 0; i < env->nb_breakpoints; i++) {
if (env->breakpoints[i] == pc)
goto found;
}
return -1;
found:
memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
(env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
env->nb_breakpoints--;
tb_invalidate_page(pc);
return 0;
#else
return -1;
#endif
}
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
void cpu_single_step(CPUState *env, int enabled)
{
#if defined(TARGET_I386)
if (env->singlestep_enabled != enabled) {
env->singlestep_enabled = enabled;
/* must flush all the translated code to avoid inconsistancies */
tb_flush();
}
#endif
}
/* enable or disable low levels log */
void cpu_set_log(int log_flags)
{
loglevel = log_flags;
if (loglevel && !logfile) {
logfile = fopen(logfilename, "w");
if (!logfile) {
perror(logfilename);
_exit(1);
}
setvbuf(logfile, NULL, _IOLBF, 0);
}
}
void cpu_set_log_filename(const char *filename)
{
logfilename = strdup(filename);
}
/* mask must never be zero */
void cpu_interrupt(CPUState *env, int mask)
{
TranslationBlock *tb;
env->interrupt_request |= mask;
/* if the cpu is currently executing code, we must unlink it and
all the potentially executing TB */
tb = env->current_tb;
if (tb) {
tb_reset_jump_recursive(tb);
}
}
void cpu_abort(CPUState *env, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "qemu: fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
#ifdef TARGET_I386
cpu_x86_dump_state(env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
#endif
va_end(ap);
abort();
}
#ifdef TARGET_I386
/* unmap all maped pages and flush all associated code */
void page_unmap(void)
{
PageDesc *pmap;
int i;
for(i = 0; i < L1_SIZE; i++) {
pmap = l1_map[i];
if (pmap) {
#if !defined(CONFIG_SOFTMMU)
PageDesc *p;
unsigned long addr;
int j, ret, j1;
p = pmap;
for(j = 0;j < L2_SIZE;) {
if (p->flags & PAGE_VALID) {
addr = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
/* we try to find a range to make less syscalls */
j1 = j;
p++;
j++;
while (j < L2_SIZE && (p->flags & PAGE_VALID)) {
p++;
j++;
}
ret = munmap((void *)addr, (j - j1) << TARGET_PAGE_BITS);
if (ret != 0) {
fprintf(stderr, "Could not unmap page 0x%08lx\n", addr);
exit(1);
}
} else {
p++;
j++;
}
}
#endif
free(pmap);
l1_map[i] = NULL;
}
}
tb_flush();
}
#endif
void tlb_flush(CPUState *env)
{
#if !defined(CONFIG_USER_ONLY)
int i;
for(i = 0; i < CPU_TLB_SIZE; i++) {
env->tlb_read[0][i].address = -1;
env->tlb_write[0][i].address = -1;
env->tlb_read[1][i].address = -1;
env->tlb_write[1][i].address = -1;
}
#endif
}
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, uint32_t addr)
{
if (addr == (tlb_entry->address &
(TARGET_PAGE_MASK | TLB_INVALID_MASK)))
tlb_entry->address = -1;
}
void tlb_flush_page(CPUState *env, uint32_t addr)
{
#if !defined(CONFIG_USER_ONLY)
int i;
addr &= TARGET_PAGE_MASK;
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_flush_entry(&env->tlb_read[0][i], addr);
tlb_flush_entry(&env->tlb_write[0][i], addr);
tlb_flush_entry(&env->tlb_read[1][i], addr);
tlb_flush_entry(&env->tlb_write[1][i], addr);
#endif
}
/* make all write to page 'addr' trigger a TLB exception to detect
self modifying code */
void tlb_flush_page_write(CPUState *env, uint32_t addr)
{
#if !defined(CONFIG_USER_ONLY)
int i;
addr &= TARGET_PAGE_MASK;
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_flush_entry(&env->tlb_write[0][i], addr);
tlb_flush_entry(&env->tlb_write[1][i], addr);
#endif
}
static inline unsigned long *physpage_find_alloc(unsigned int page)
{
unsigned long **lp, *p;
unsigned int index, i;
index = page >> TARGET_PAGE_BITS;
lp = &l1_physmap[index >> L2_BITS];
p = *lp;
if (!p) {
/* allocate if not found */
p = malloc(sizeof(unsigned long) * L2_SIZE);
for(i = 0; i < L2_SIZE; i++)
p[i] = IO_MEM_UNASSIGNED;
*lp = p;
}
return p + (index & (L2_SIZE - 1));
}
/* return NULL if no page defined (unused memory) */
unsigned long physpage_find(unsigned long page)
{
unsigned long *p;
unsigned int index;
index = page >> TARGET_PAGE_BITS;
p = l1_physmap[index >> L2_BITS];
if (!p)
return IO_MEM_UNASSIGNED;
return p[index & (L2_SIZE - 1)];
}
/* register physical memory. 'size' must be a multiple of the target
page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
io memory page */
void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
long phys_offset)
{
unsigned long addr, end_addr;
unsigned long *p;
end_addr = start_addr + size;
for(addr = start_addr; addr < end_addr; addr += TARGET_PAGE_SIZE) {
p = physpage_find_alloc(addr);
*p = phys_offset;
if ((phys_offset & ~TARGET_PAGE_MASK) == 0)
phys_offset += TARGET_PAGE_SIZE;
}
}
static uint32_t unassigned_mem_readb(uint32_t addr)
{
return 0;
}
static void unassigned_mem_writeb(uint32_t addr, uint32_t val)
{
}
static CPUReadMemoryFunc *unassigned_mem_read[3] = {
unassigned_mem_readb,
unassigned_mem_readb,
unassigned_mem_readb,
};
static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
unassigned_mem_writeb,
unassigned_mem_writeb,
unassigned_mem_writeb,
};
static void io_mem_init(void)
{
io_mem_nb = 1;
cpu_register_io_memory(0, unassigned_mem_read, unassigned_mem_write);
}
/* mem_read and mem_write are arrays of functions containing the
function to access byte (index 0), word (index 1) and dword (index
2). All functions must be supplied. If io_index is non zero, the
corresponding io zone is modified. If it is zero, a new io zone is
allocated. The return value can be used with
cpu_register_physical_memory(). (-1) is returned if error. */
int cpu_register_io_memory(int io_index,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write)
{
int i;
if (io_index <= 0) {
if (io_index >= IO_MEM_NB_ENTRIES)
return -1;
io_index = io_mem_nb++;
} else {
if (io_index >= IO_MEM_NB_ENTRIES)
return -1;
}
for(i = 0;i < 3; i++) {
io_mem_read[io_index][i] = mem_read[i];
io_mem_write[io_index][i] = mem_write[i];
}
return io_index << IO_MEM_SHIFT;
}
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _cmmu
#define GETPC() NULL
#define env cpu_single_env
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
#undef env
#endif