xemu/hw/core/loader.c
Catherine Ho 355477f8c7 migration: do not rom_reset() during incoming migration
Commit 18269069c310 ("migration: Introduce ignore-shared capability")
addes ignore-shared capability to bypass the shared ramblock (e,g,
membackend + numa node). It does good to live migration.

As told by Yury,this commit expectes that QEMU doesn't write to guest RAM
until VM starts, but it does on aarch64 qemu:
Backtrace:
1  0x000055f4a296dd84 in address_space_write_rom_internal () at
exec.c:3458
2  0x000055f4a296de3a in address_space_write_rom () at exec.c:3479
3  0x000055f4a2d519ff in rom_reset () at hw/core/loader.c:1101
4  0x000055f4a2d475ec in qemu_devices_reset () at hw/core/reset.c:69
5  0x000055f4a2c90a28 in qemu_system_reset () at vl.c:1675
6  0x000055f4a2c9851d in main () at vl.c:4552

Actually, on arm64 virt marchine, ramblock "dtb" will be filled into ram
druing rom_reset. In ignore-shared incoming case, this rom filling
is not required since all the data has been stored in memory backend
file.

Further more, as suggested by Peter Xu, if we do rom_reset() now with
these ROMs then the RAM data should be re-filled again too with the
migration stream coming in.

Fixes: commit 18269069c310 ("migration: Introduce ignore-shared
capability")
Suggested-by: Yury Kotov <yury-kotov@yandex-team.ru>
Suggested-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Catherine Ho <catherine.hecx@gmail.com>
Acked-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-20 20:00:51 +02:00

1605 lines
44 KiB
C

/*
* QEMU Executable loader
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* Gunzip functionality in this file is derived from u-boot:
*
* (C) Copyright 2008 Semihalf
*
* (C) Copyright 2000-2005
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "hw/hw.h"
#include "disas/disas.h"
#include "migration/vmstate.h"
#include "monitor/monitor.h"
#include "sysemu/reset.h"
#include "sysemu/sysemu.h"
#include "uboot_image.h"
#include "hw/loader.h"
#include "hw/nvram/fw_cfg.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "qemu/cutils.h"
#include "sysemu/runstate.h"
#include <zlib.h>
static int roms_loaded;
/* return the size or -1 if error */
int64_t get_image_size(const char *filename)
{
int fd;
int64_t size;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = lseek(fd, 0, SEEK_END);
close(fd);
return size;
}
/* return the size or -1 if error */
ssize_t load_image_size(const char *filename, void *addr, size_t size)
{
int fd;
ssize_t actsize, l = 0;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0) {
return -1;
}
while ((actsize = read(fd, addr + l, size - l)) > 0) {
l += actsize;
}
close(fd);
return actsize < 0 ? -1 : l;
}
/* read()-like version */
ssize_t read_targphys(const char *name,
int fd, hwaddr dst_addr, size_t nbytes)
{
uint8_t *buf;
ssize_t did;
buf = g_malloc(nbytes);
did = read(fd, buf, nbytes);
if (did > 0)
rom_add_blob_fixed("read", buf, did, dst_addr);
g_free(buf);
return did;
}
int load_image_targphys(const char *filename,
hwaddr addr, uint64_t max_sz)
{
return load_image_targphys_as(filename, addr, max_sz, NULL);
}
/* return the size or -1 if error */
int load_image_targphys_as(const char *filename,
hwaddr addr, uint64_t max_sz, AddressSpace *as)
{
int size;
size = get_image_size(filename);
if (size < 0 || size > max_sz) {
return -1;
}
if (size > 0) {
if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
return -1;
}
}
return size;
}
int load_image_mr(const char *filename, MemoryRegion *mr)
{
int size;
if (!memory_access_is_direct(mr, false)) {
/* Can only load an image into RAM or ROM */
return -1;
}
size = get_image_size(filename);
if (size < 0 || size > memory_region_size(mr)) {
return -1;
}
if (size > 0) {
if (rom_add_file_mr(filename, mr, -1) < 0) {
return -1;
}
}
return size;
}
void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
const char *source)
{
const char *nulp;
char *ptr;
if (buf_size <= 0) return;
nulp = memchr(source, 0, buf_size);
if (nulp) {
rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
} else {
rom_add_blob_fixed(name, source, buf_size, dest);
ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
*ptr = 0;
}
}
/* A.OUT loader */
struct exec
{
uint32_t a_info; /* Use macros N_MAGIC, etc for access */
uint32_t a_text; /* length of text, in bytes */
uint32_t a_data; /* length of data, in bytes */
uint32_t a_bss; /* length of uninitialized data area, in bytes */
uint32_t a_syms; /* length of symbol table data in file, in bytes */
uint32_t a_entry; /* start address */
uint32_t a_trsize; /* length of relocation info for text, in bytes */
uint32_t a_drsize; /* length of relocation info for data, in bytes */
};
static void bswap_ahdr(struct exec *e)
{
bswap32s(&e->a_info);
bswap32s(&e->a_text);
bswap32s(&e->a_data);
bswap32s(&e->a_bss);
bswap32s(&e->a_syms);
bswap32s(&e->a_entry);
bswap32s(&e->a_trsize);
bswap32s(&e->a_drsize);
}
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413
#define QMAGIC 0314
#define _N_HDROFF(x) (1024 - sizeof (struct exec))
#define N_TXTOFF(x) \
(N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
(N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
#define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
#define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
#define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
#define N_DATADDR(x, target_page_size) \
(N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
: (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
int load_aout(const char *filename, hwaddr addr, int max_sz,
int bswap_needed, hwaddr target_page_size)
{
int fd;
ssize_t size, ret;
struct exec e;
uint32_t magic;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = read(fd, &e, sizeof(e));
if (size < 0)
goto fail;
if (bswap_needed) {
bswap_ahdr(&e);
}
magic = N_MAGIC(e);
switch (magic) {
case ZMAGIC:
case QMAGIC:
case OMAGIC:
if (e.a_text + e.a_data > max_sz)
goto fail;
lseek(fd, N_TXTOFF(e), SEEK_SET);
size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
if (size < 0)
goto fail;
break;
case NMAGIC:
if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
goto fail;
lseek(fd, N_TXTOFF(e), SEEK_SET);
size = read_targphys(filename, fd, addr, e.a_text);
if (size < 0)
goto fail;
ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
e.a_data);
if (ret < 0)
goto fail;
size += ret;
break;
default:
goto fail;
}
close(fd);
return size;
fail:
close(fd);
return -1;
}
/* ELF loader */
static void *load_at(int fd, off_t offset, size_t size)
{
void *ptr;
if (lseek(fd, offset, SEEK_SET) < 0)
return NULL;
ptr = g_malloc(size);
if (read(fd, ptr, size) != size) {
g_free(ptr);
return NULL;
}
return ptr;
}
#ifdef ELF_CLASS
#undef ELF_CLASS
#endif
#define ELF_CLASS ELFCLASS32
#include "elf.h"
#define SZ 32
#define elf_word uint32_t
#define elf_sword int32_t
#define bswapSZs bswap32s
#include "hw/elf_ops.h"
#undef elfhdr
#undef elf_phdr
#undef elf_shdr
#undef elf_sym
#undef elf_rela
#undef elf_note
#undef elf_word
#undef elf_sword
#undef bswapSZs
#undef SZ
#define elfhdr elf64_hdr
#define elf_phdr elf64_phdr
#define elf_note elf64_note
#define elf_shdr elf64_shdr
#define elf_sym elf64_sym
#define elf_rela elf64_rela
#define elf_word uint64_t
#define elf_sword int64_t
#define bswapSZs bswap64s
#define SZ 64
#include "hw/elf_ops.h"
const char *load_elf_strerror(int error)
{
switch (error) {
case 0:
return "No error";
case ELF_LOAD_FAILED:
return "Failed to load ELF";
case ELF_LOAD_NOT_ELF:
return "The image is not ELF";
case ELF_LOAD_WRONG_ARCH:
return "The image is from incompatible architecture";
case ELF_LOAD_WRONG_ENDIAN:
return "The image has incorrect endianness";
default:
return "Unknown error";
}
}
void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
{
int fd;
uint8_t e_ident_local[EI_NIDENT];
uint8_t *e_ident;
size_t hdr_size, off;
bool is64l;
if (!hdr) {
hdr = e_ident_local;
}
e_ident = hdr;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0) {
error_setg_errno(errp, errno, "Failed to open file: %s", filename);
return;
}
if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
error_setg_errno(errp, errno, "Failed to read file: %s", filename);
goto fail;
}
if (e_ident[0] != ELFMAG0 ||
e_ident[1] != ELFMAG1 ||
e_ident[2] != ELFMAG2 ||
e_ident[3] != ELFMAG3) {
error_setg(errp, "Bad ELF magic");
goto fail;
}
is64l = e_ident[EI_CLASS] == ELFCLASS64;
hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
if (is64) {
*is64 = is64l;
}
off = EI_NIDENT;
while (hdr != e_ident_local && off < hdr_size) {
size_t br = read(fd, hdr + off, hdr_size - off);
switch (br) {
case 0:
error_setg(errp, "File too short: %s", filename);
goto fail;
case -1:
error_setg_errno(errp, errno, "Failed to read file: %s",
filename);
goto fail;
}
off += br;
}
fail:
close(fd);
}
/* return < 0 if error, otherwise the number of bytes loaded in memory */
int load_elf(const char *filename,
uint64_t (*elf_note_fn)(void *, void *, bool),
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
uint64_t *highaddr, int big_endian, int elf_machine,
int clear_lsb, int data_swab)
{
return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
pentry, lowaddr, highaddr, big_endian, elf_machine,
clear_lsb, data_swab, NULL);
}
/* return < 0 if error, otherwise the number of bytes loaded in memory */
int load_elf_as(const char *filename,
uint64_t (*elf_note_fn)(void *, void *, bool),
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
uint64_t *highaddr, int big_endian, int elf_machine,
int clear_lsb, int data_swab, AddressSpace *as)
{
return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
pentry, lowaddr, highaddr, big_endian, elf_machine,
clear_lsb, data_swab, as, true);
}
/* return < 0 if error, otherwise the number of bytes loaded in memory */
int load_elf_ram(const char *filename,
uint64_t (*elf_note_fn)(void *, void *, bool),
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
uint64_t *highaddr, int big_endian, int elf_machine,
int clear_lsb, int data_swab, AddressSpace *as,
bool load_rom)
{
return load_elf_ram_sym(filename, elf_note_fn,
translate_fn, translate_opaque,
pentry, lowaddr, highaddr, big_endian,
elf_machine, clear_lsb, data_swab, as,
load_rom, NULL);
}
/* return < 0 if error, otherwise the number of bytes loaded in memory */
int load_elf_ram_sym(const char *filename,
uint64_t (*elf_note_fn)(void *, void *, bool),
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, uint64_t *pentry,
uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
int elf_machine, int clear_lsb, int data_swab,
AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
{
int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
uint8_t e_ident[EI_NIDENT];
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0) {
perror(filename);
return -1;
}
if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
goto fail;
if (e_ident[0] != ELFMAG0 ||
e_ident[1] != ELFMAG1 ||
e_ident[2] != ELFMAG2 ||
e_ident[3] != ELFMAG3) {
ret = ELF_LOAD_NOT_ELF;
goto fail;
}
#ifdef HOST_WORDS_BIGENDIAN
data_order = ELFDATA2MSB;
#else
data_order = ELFDATA2LSB;
#endif
must_swab = data_order != e_ident[EI_DATA];
if (big_endian) {
target_data_order = ELFDATA2MSB;
} else {
target_data_order = ELFDATA2LSB;
}
if (target_data_order != e_ident[EI_DATA]) {
ret = ELF_LOAD_WRONG_ENDIAN;
goto fail;
}
lseek(fd, 0, SEEK_SET);
if (e_ident[EI_CLASS] == ELFCLASS64) {
ret = load_elf64(filename, fd, elf_note_fn,
translate_fn, translate_opaque, must_swab,
pentry, lowaddr, highaddr, elf_machine, clear_lsb,
data_swab, as, load_rom, sym_cb);
} else {
ret = load_elf32(filename, fd, elf_note_fn,
translate_fn, translate_opaque, must_swab,
pentry, lowaddr, highaddr, elf_machine, clear_lsb,
data_swab, as, load_rom, sym_cb);
}
fail:
close(fd);
return ret;
}
static void bswap_uboot_header(uboot_image_header_t *hdr)
{
#ifndef HOST_WORDS_BIGENDIAN
bswap32s(&hdr->ih_magic);
bswap32s(&hdr->ih_hcrc);
bswap32s(&hdr->ih_time);
bswap32s(&hdr->ih_size);
bswap32s(&hdr->ih_load);
bswap32s(&hdr->ih_ep);
bswap32s(&hdr->ih_dcrc);
#endif
}
#define ZALLOC_ALIGNMENT 16
static void *zalloc(void *x, unsigned items, unsigned size)
{
void *p;
size *= items;
size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
p = g_malloc(size);
return (p);
}
static void zfree(void *x, void *addr)
{
g_free(addr);
}
#define HEAD_CRC 2
#define EXTRA_FIELD 4
#define ORIG_NAME 8
#define COMMENT 0x10
#define RESERVED 0xe0
#define DEFLATED 8
ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
{
z_stream s;
ssize_t dstbytes;
int r, i, flags;
/* skip header */
i = 10;
flags = src[3];
if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
puts ("Error: Bad gzipped data\n");
return -1;
}
if ((flags & EXTRA_FIELD) != 0)
i = 12 + src[10] + (src[11] << 8);
if ((flags & ORIG_NAME) != 0)
while (src[i++] != 0)
;
if ((flags & COMMENT) != 0)
while (src[i++] != 0)
;
if ((flags & HEAD_CRC) != 0)
i += 2;
if (i >= srclen) {
puts ("Error: gunzip out of data in header\n");
return -1;
}
s.zalloc = zalloc;
s.zfree = zfree;
r = inflateInit2(&s, -MAX_WBITS);
if (r != Z_OK) {
printf ("Error: inflateInit2() returned %d\n", r);
return (-1);
}
s.next_in = src + i;
s.avail_in = srclen - i;
s.next_out = dst;
s.avail_out = dstlen;
r = inflate(&s, Z_FINISH);
if (r != Z_OK && r != Z_STREAM_END) {
printf ("Error: inflate() returned %d\n", r);
return -1;
}
dstbytes = s.next_out - (unsigned char *) dst;
inflateEnd(&s);
return dstbytes;
}
/* Load a U-Boot image. */
static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
int *is_linux, uint8_t image_type,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, AddressSpace *as)
{
int fd;
int size;
hwaddr address;
uboot_image_header_t h;
uboot_image_header_t *hdr = &h;
uint8_t *data = NULL;
int ret = -1;
int do_uncompress = 0;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = read(fd, hdr, sizeof(uboot_image_header_t));
if (size < sizeof(uboot_image_header_t)) {
goto out;
}
bswap_uboot_header(hdr);
if (hdr->ih_magic != IH_MAGIC)
goto out;
if (hdr->ih_type != image_type) {
if (!(image_type == IH_TYPE_KERNEL &&
hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
image_type);
goto out;
}
}
/* TODO: Implement other image types. */
switch (hdr->ih_type) {
case IH_TYPE_KERNEL_NOLOAD:
if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
fprintf(stderr, "this image format (kernel_noload) cannot be "
"loaded on this machine type");
goto out;
}
hdr->ih_load = *loadaddr + sizeof(*hdr);
hdr->ih_ep += hdr->ih_load;
/* fall through */
case IH_TYPE_KERNEL:
address = hdr->ih_load;
if (translate_fn) {
address = translate_fn(translate_opaque, address);
}
if (loadaddr) {
*loadaddr = hdr->ih_load;
}
switch (hdr->ih_comp) {
case IH_COMP_NONE:
break;
case IH_COMP_GZIP:
do_uncompress = 1;
break;
default:
fprintf(stderr,
"Unable to load u-boot images with compression type %d\n",
hdr->ih_comp);
goto out;
}
if (ep) {
*ep = hdr->ih_ep;
}
/* TODO: Check CPU type. */
if (is_linux) {
if (hdr->ih_os == IH_OS_LINUX) {
*is_linux = 1;
} else {
*is_linux = 0;
}
}
break;
case IH_TYPE_RAMDISK:
address = *loadaddr;
break;
default:
fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
goto out;
}
data = g_malloc(hdr->ih_size);
if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
fprintf(stderr, "Error reading file\n");
goto out;
}
if (do_uncompress) {
uint8_t *compressed_data;
size_t max_bytes;
ssize_t bytes;
compressed_data = data;
max_bytes = UBOOT_MAX_GUNZIP_BYTES;
data = g_malloc(max_bytes);
bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
g_free(compressed_data);
if (bytes < 0) {
fprintf(stderr, "Unable to decompress gzipped image!\n");
goto out;
}
hdr->ih_size = bytes;
}
rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
ret = hdr->ih_size;
out:
g_free(data);
close(fd);
return ret;
}
int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
int *is_linux,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque)
{
return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
translate_fn, translate_opaque, NULL);
}
int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
int *is_linux,
uint64_t (*translate_fn)(void *, uint64_t),
void *translate_opaque, AddressSpace *as)
{
return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
translate_fn, translate_opaque, as);
}
/* Load a ramdisk. */
int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
{
return load_ramdisk_as(filename, addr, max_sz, NULL);
}
int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
AddressSpace *as)
{
return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
NULL, NULL, as);
}
/* Load a gzip-compressed kernel to a dynamically allocated buffer. */
int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
uint8_t **buffer)
{
uint8_t *compressed_data = NULL;
uint8_t *data = NULL;
gsize len;
ssize_t bytes;
int ret = -1;
if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
NULL)) {
goto out;
}
/* Is it a gzip-compressed file? */
if (len < 2 ||
compressed_data[0] != 0x1f ||
compressed_data[1] != 0x8b) {
goto out;
}
if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
}
data = g_malloc(max_sz);
bytes = gunzip(data, max_sz, compressed_data, len);
if (bytes < 0) {
fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
filename);
goto out;
}
/* trim to actual size and return to caller */
*buffer = g_realloc(data, bytes);
ret = bytes;
/* ownership has been transferred to caller */
data = NULL;
out:
g_free(compressed_data);
g_free(data);
return ret;
}
/* Load a gzip-compressed kernel. */
int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
{
int bytes;
uint8_t *data;
bytes = load_image_gzipped_buffer(filename, max_sz, &data);
if (bytes != -1) {
rom_add_blob_fixed(filename, data, bytes, addr);
g_free(data);
}
return bytes;
}
/*
* Functions for reboot-persistent memory regions.
* - used for vga bios and option roms.
* - also linux kernel (-kernel / -initrd).
*/
typedef struct Rom Rom;
struct Rom {
char *name;
char *path;
/* datasize is the amount of memory allocated in "data". If datasize is less
* than romsize, it means that the area from datasize to romsize is filled
* with zeros.
*/
size_t romsize;
size_t datasize;
uint8_t *data;
MemoryRegion *mr;
AddressSpace *as;
int isrom;
char *fw_dir;
char *fw_file;
GMappedFile *mapped_file;
bool committed;
hwaddr addr;
QTAILQ_ENTRY(Rom) next;
};
static FWCfgState *fw_cfg;
static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
/*
* rom->data can be heap-allocated or memory-mapped (e.g. when added with
* rom_add_elf_program())
*/
static void rom_free_data(Rom *rom)
{
if (rom->mapped_file) {
g_mapped_file_unref(rom->mapped_file);
rom->mapped_file = NULL;
} else {
g_free(rom->data);
}
rom->data = NULL;
}
static void rom_free(Rom *rom)
{
rom_free_data(rom);
g_free(rom->path);
g_free(rom->name);
g_free(rom->fw_dir);
g_free(rom->fw_file);
g_free(rom);
}
static inline bool rom_order_compare(Rom *rom, Rom *item)
{
return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
(rom->as == item->as && rom->addr >= item->addr);
}
static void rom_insert(Rom *rom)
{
Rom *item;
if (roms_loaded) {
hw_error ("ROM images must be loaded at startup\n");
}
/* The user didn't specify an address space, this is the default */
if (!rom->as) {
rom->as = &address_space_memory;
}
rom->committed = false;
/* List is ordered by load address in the same address space */
QTAILQ_FOREACH(item, &roms, next) {
if (rom_order_compare(rom, item)) {
continue;
}
QTAILQ_INSERT_BEFORE(item, rom, next);
return;
}
QTAILQ_INSERT_TAIL(&roms, rom, next);
}
static void fw_cfg_resized(const char *id, uint64_t length, void *host)
{
if (fw_cfg) {
fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
}
}
static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
{
void *data;
rom->mr = g_malloc(sizeof(*rom->mr));
memory_region_init_resizeable_ram(rom->mr, owner, name,
rom->datasize, rom->romsize,
fw_cfg_resized,
&error_fatal);
memory_region_set_readonly(rom->mr, ro);
vmstate_register_ram_global(rom->mr);
data = memory_region_get_ram_ptr(rom->mr);
memcpy(data, rom->data, rom->datasize);
return data;
}
int rom_add_file(const char *file, const char *fw_dir,
hwaddr addr, int32_t bootindex,
bool option_rom, MemoryRegion *mr,
AddressSpace *as)
{
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
Rom *rom;
int rc, fd = -1;
char devpath[100];
if (as && mr) {
fprintf(stderr, "Specifying an Address Space and Memory Region is " \
"not valid when loading a rom\n");
/* We haven't allocated anything so we don't need any cleanup */
return -1;
}
rom = g_malloc0(sizeof(*rom));
rom->name = g_strdup(file);
rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
rom->as = as;
if (rom->path == NULL) {
rom->path = g_strdup(file);
}
fd = open(rom->path, O_RDONLY | O_BINARY);
if (fd == -1) {
fprintf(stderr, "Could not open option rom '%s': %s\n",
rom->path, strerror(errno));
goto err;
}
if (fw_dir) {
rom->fw_dir = g_strdup(fw_dir);
rom->fw_file = g_strdup(file);
}
rom->addr = addr;
rom->romsize = lseek(fd, 0, SEEK_END);
if (rom->romsize == -1) {
fprintf(stderr, "rom: file %-20s: get size error: %s\n",
rom->name, strerror(errno));
goto err;
}
rom->datasize = rom->romsize;
rom->data = g_malloc0(rom->datasize);
lseek(fd, 0, SEEK_SET);
rc = read(fd, rom->data, rom->datasize);
if (rc != rom->datasize) {
fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
rom->name, rc, rom->datasize);
goto err;
}
close(fd);
rom_insert(rom);
if (rom->fw_file && fw_cfg) {
const char *basename;
char fw_file_name[FW_CFG_MAX_FILE_PATH];
void *data;
basename = strrchr(rom->fw_file, '/');
if (basename) {
basename++;
} else {
basename = rom->fw_file;
}
snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
basename);
snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
} else {
data = rom->data;
}
fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
} else {
if (mr) {
rom->mr = mr;
snprintf(devpath, sizeof(devpath), "/rom@%s", file);
} else {
snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
}
}
add_boot_device_path(bootindex, NULL, devpath);
return 0;
err:
if (fd != -1)
close(fd);
rom_free(rom);
return -1;
}
MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
size_t max_len, hwaddr addr, const char *fw_file_name,
FWCfgCallback fw_callback, void *callback_opaque,
AddressSpace *as, bool read_only)
{
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
Rom *rom;
MemoryRegion *mr = NULL;
rom = g_malloc0(sizeof(*rom));
rom->name = g_strdup(name);
rom->as = as;
rom->addr = addr;
rom->romsize = max_len ? max_len : len;
rom->datasize = len;
g_assert(rom->romsize >= rom->datasize);
rom->data = g_malloc0(rom->datasize);
memcpy(rom->data, blob, len);
rom_insert(rom);
if (fw_file_name && fw_cfg) {
char devpath[100];
void *data;
if (read_only) {
snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
} else {
snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
}
if (mc->rom_file_has_mr) {
data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
mr = rom->mr;
} else {
data = rom->data;
}
fw_cfg_add_file_callback(fw_cfg, fw_file_name,
fw_callback, NULL, callback_opaque,
data, rom->datasize, read_only);
}
return mr;
}
/* This function is specific for elf program because we don't need to allocate
* all the rom. We just allocate the first part and the rest is just zeros. This
* is why romsize and datasize are different. Also, this function takes its own
* reference to "mapped_file", so we don't have to allocate and copy the buffer.
*/
int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
size_t datasize, size_t romsize, hwaddr addr,
AddressSpace *as)
{
Rom *rom;
rom = g_malloc0(sizeof(*rom));
rom->name = g_strdup(name);
rom->addr = addr;
rom->datasize = datasize;
rom->romsize = romsize;
rom->data = data;
rom->as = as;
if (mapped_file && data) {
g_mapped_file_ref(mapped_file);
rom->mapped_file = mapped_file;
}
rom_insert(rom);
return 0;
}
int rom_add_vga(const char *file)
{
return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
}
int rom_add_option(const char *file, int32_t bootindex)
{
return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
}
static void rom_reset(void *unused)
{
Rom *rom;
/*
* We don't need to fill in the RAM with ROM data because we'll fill
* the data in during the next incoming migration in all cases. Note
* that some of those RAMs can actually be modified by the guest on ARM
* so this is probably the only right thing to do here.
*/
if (runstate_check(RUN_STATE_INMIGRATE))
return;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->fw_file) {
continue;
}
if (rom->data == NULL) {
continue;
}
if (rom->mr) {
void *host = memory_region_get_ram_ptr(rom->mr);
memcpy(host, rom->data, rom->datasize);
} else {
address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
rom->data, rom->datasize);
}
if (rom->isrom) {
/* rom needs to be written only once */
rom_free_data(rom);
}
/*
* The rom loader is really on the same level as firmware in the guest
* shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
* that the instruction cache for that new region is clear, so that the
* CPU definitely fetches its instructions from the just written data.
*/
cpu_flush_icache_range(rom->addr, rom->datasize);
}
}
int rom_check_and_register_reset(void)
{
hwaddr addr = 0;
MemoryRegionSection section;
Rom *rom;
AddressSpace *as = NULL;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->fw_file) {
continue;
}
if (!rom->mr) {
if ((addr > rom->addr) && (as == rom->as)) {
fprintf(stderr, "rom: requested regions overlap "
"(rom %s. free=0x" TARGET_FMT_plx
", addr=0x" TARGET_FMT_plx ")\n",
rom->name, addr, rom->addr);
return -1;
}
addr = rom->addr;
addr += rom->romsize;
as = rom->as;
}
section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
rom->addr, 1);
rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
memory_region_unref(section.mr);
}
qemu_register_reset(rom_reset, NULL);
roms_loaded = 1;
return 0;
}
void rom_set_fw(FWCfgState *f)
{
fw_cfg = f;
}
void rom_set_order_override(int order)
{
if (!fw_cfg)
return;
fw_cfg_set_order_override(fw_cfg, order);
}
void rom_reset_order_override(void)
{
if (!fw_cfg)
return;
fw_cfg_reset_order_override(fw_cfg);
}
void rom_transaction_begin(void)
{
Rom *rom;
/* Ignore ROMs added without the transaction API */
QTAILQ_FOREACH(rom, &roms, next) {
rom->committed = true;
}
}
void rom_transaction_end(bool commit)
{
Rom *rom;
Rom *tmp;
QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
if (rom->committed) {
continue;
}
if (commit) {
rom->committed = true;
} else {
QTAILQ_REMOVE(&roms, rom, next);
rom_free(rom);
}
}
}
static Rom *find_rom(hwaddr addr, size_t size)
{
Rom *rom;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->fw_file) {
continue;
}
if (rom->mr) {
continue;
}
if (rom->addr > addr) {
continue;
}
if (rom->addr + rom->romsize < addr + size) {
continue;
}
return rom;
}
return NULL;
}
/*
* Copies memory from registered ROMs to dest. Any memory that is contained in
* a ROM between addr and addr + size is copied. Note that this can involve
* multiple ROMs, which need not start at addr and need not end at addr + size.
*/
int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
{
hwaddr end = addr + size;
uint8_t *s, *d = dest;
size_t l = 0;
Rom *rom;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->fw_file) {
continue;
}
if (rom->mr) {
continue;
}
if (rom->addr + rom->romsize < addr) {
continue;
}
if (rom->addr > end) {
break;
}
d = dest + (rom->addr - addr);
s = rom->data;
l = rom->datasize;
if ((d + l) > (dest + size)) {
l = dest - d;
}
if (l > 0) {
memcpy(d, s, l);
}
if (rom->romsize > rom->datasize) {
/* If datasize is less than romsize, it means that we didn't
* allocate all the ROM because the trailing data are only zeros.
*/
d += l;
l = rom->romsize - rom->datasize;
if ((d + l) > (dest + size)) {
/* Rom size doesn't fit in the destination area. Adjust to avoid
* overflow.
*/
l = dest - d;
}
if (l > 0) {
memset(d, 0x0, l);
}
}
}
return (d + l) - dest;
}
void *rom_ptr(hwaddr addr, size_t size)
{
Rom *rom;
rom = find_rom(addr, size);
if (!rom || !rom->data)
return NULL;
return rom->data + (addr - rom->addr);
}
void hmp_info_roms(Monitor *mon, const QDict *qdict)
{
Rom *rom;
QTAILQ_FOREACH(rom, &roms, next) {
if (rom->mr) {
monitor_printf(mon, "%s"
" size=0x%06zx name=\"%s\"\n",
memory_region_name(rom->mr),
rom->romsize,
rom->name);
} else if (!rom->fw_file) {
monitor_printf(mon, "addr=" TARGET_FMT_plx
" size=0x%06zx mem=%s name=\"%s\"\n",
rom->addr, rom->romsize,
rom->isrom ? "rom" : "ram",
rom->name);
} else {
monitor_printf(mon, "fw=%s/%s"
" size=0x%06zx name=\"%s\"\n",
rom->fw_dir,
rom->fw_file,
rom->romsize,
rom->name);
}
}
}
typedef enum HexRecord HexRecord;
enum HexRecord {
DATA_RECORD = 0,
EOF_RECORD,
EXT_SEG_ADDR_RECORD,
START_SEG_ADDR_RECORD,
EXT_LINEAR_ADDR_RECORD,
START_LINEAR_ADDR_RECORD,
};
/* Each record contains a 16-bit address which is combined with the upper 16
* bits of the implicit "next address" to form a 32-bit address.
*/
#define NEXT_ADDR_MASK 0xffff0000
#define DATA_FIELD_MAX_LEN 0xff
#define LEN_EXCEPT_DATA 0x5
/* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
* sizeof(checksum) */
typedef struct {
uint8_t byte_count;
uint16_t address;
uint8_t record_type;
uint8_t data[DATA_FIELD_MAX_LEN];
uint8_t checksum;
} HexLine;
/* return 0 or -1 if error */
static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
uint32_t *index, const bool in_process)
{
/* +-------+---------------+-------+---------------------+--------+
* | byte | |record | | |
* | count | address | type | data |checksum|
* +-------+---------------+-------+---------------------+--------+
* ^ ^ ^ ^ ^ ^
* |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
*/
uint8_t value = 0;
uint32_t idx = *index;
/* ignore space */
if (g_ascii_isspace(c)) {
return true;
}
if (!g_ascii_isxdigit(c) || !in_process) {
return false;
}
value = g_ascii_xdigit_value(c);
value = (idx & 0x1) ? (value & 0xf) : (value << 4);
if (idx < 2) {
line->byte_count |= value;
} else if (2 <= idx && idx < 6) {
line->address <<= 4;
line->address += g_ascii_xdigit_value(c);
} else if (6 <= idx && idx < 8) {
line->record_type |= value;
} else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
line->data[(idx - 8) >> 1] |= value;
} else if (8 + 2 * line->byte_count <= idx &&
idx < 10 + 2 * line->byte_count) {
line->checksum |= value;
} else {
return false;
}
*our_checksum += value;
++(*index);
return true;
}
typedef struct {
const char *filename;
HexLine line;
uint8_t *bin_buf;
hwaddr *start_addr;
int total_size;
uint32_t next_address_to_write;
uint32_t current_address;
uint32_t current_rom_index;
uint32_t rom_start_address;
AddressSpace *as;
} HexParser;
/* return size or -1 if error */
static int handle_record_type(HexParser *parser)
{
HexLine *line = &(parser->line);
switch (line->record_type) {
case DATA_RECORD:
parser->current_address =
(parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
/* verify this is a contiguous block of memory */
if (parser->current_address != parser->next_address_to_write) {
if (parser->current_rom_index != 0) {
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
parser->current_rom_index,
parser->rom_start_address, parser->as);
}
parser->rom_start_address = parser->current_address;
parser->current_rom_index = 0;
}
/* copy from line buffer to output bin_buf */
memcpy(parser->bin_buf + parser->current_rom_index, line->data,
line->byte_count);
parser->current_rom_index += line->byte_count;
parser->total_size += line->byte_count;
/* save next address to write */
parser->next_address_to_write =
parser->current_address + line->byte_count;
break;
case EOF_RECORD:
if (parser->current_rom_index != 0) {
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
parser->current_rom_index,
parser->rom_start_address, parser->as);
}
return parser->total_size;
case EXT_SEG_ADDR_RECORD:
case EXT_LINEAR_ADDR_RECORD:
if (line->byte_count != 2 && line->address != 0) {
return -1;
}
if (parser->current_rom_index != 0) {
rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
parser->current_rom_index,
parser->rom_start_address, parser->as);
}
/* save next address to write,
* in case of non-contiguous block of memory */
parser->next_address_to_write = (line->data[0] << 12) |
(line->data[1] << 4);
if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
parser->next_address_to_write <<= 12;
}
parser->rom_start_address = parser->next_address_to_write;
parser->current_rom_index = 0;
break;
case START_SEG_ADDR_RECORD:
if (line->byte_count != 4 && line->address != 0) {
return -1;
}
/* x86 16-bit CS:IP segmented addressing */
*(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
((line->data[2] << 8) | line->data[3]);
break;
case START_LINEAR_ADDR_RECORD:
if (line->byte_count != 4 && line->address != 0) {
return -1;
}
*(parser->start_addr) = ldl_be_p(line->data);
break;
default:
return -1;
}
return parser->total_size;
}
/* return size or -1 if error */
static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
size_t hex_blob_size, AddressSpace *as)
{
bool in_process = false; /* avoid re-enter and
* check whether record begin with ':' */
uint8_t *end = hex_blob + hex_blob_size;
uint8_t our_checksum = 0;
uint32_t record_index = 0;
HexParser parser = {
.filename = filename,
.bin_buf = g_malloc(hex_blob_size),
.start_addr = addr,
.as = as,
};
rom_transaction_begin();
for (; hex_blob < end; ++hex_blob) {
switch (*hex_blob) {
case '\r':
case '\n':
if (!in_process) {
break;
}
in_process = false;
if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
record_index ||
our_checksum != 0) {
parser.total_size = -1;
goto out;
}
if (handle_record_type(&parser) == -1) {
parser.total_size = -1;
goto out;
}
break;
/* start of a new record. */
case ':':
memset(&parser.line, 0, sizeof(HexLine));
in_process = true;
record_index = 0;
break;
/* decoding lines */
default:
if (!parse_record(&parser.line, &our_checksum, *hex_blob,
&record_index, in_process)) {
parser.total_size = -1;
goto out;
}
break;
}
}
out:
g_free(parser.bin_buf);
rom_transaction_end(parser.total_size != -1);
return parser.total_size;
}
/* return size or -1 if error */
int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
{
gsize hex_blob_size;
gchar *hex_blob;
int total_size = 0;
if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
return -1;
}
total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
hex_blob_size, as);
g_free(hex_blob);
return total_size;
}