xemu/hw/milkymist-minimac.c
Michael Walle 0742454485 lm32: add Milkymist Minimac support
This patch adds support for Milkymist's minimal Ethernet MAC.

Signed-off-by: Michael Walle <michael@walle.cc>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
2011-04-04 10:26:53 +02:00

569 lines
14 KiB
C

/*
* QEMU model of the Milkymist minimac block.
*
* Copyright (c) 2010 Michael Walle <michael@walle.cc>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*
* Specification available at:
* http://www.milkymist.org/socdoc/minimac.pdf
*
*/
#include "hw.h"
#include "sysbus.h"
#include "trace.h"
#include "net.h"
#include "qemu-error.h"
#include <zlib.h>
enum {
R_SETUP = 0,
R_MDIO,
R_STATE0,
R_ADDR0,
R_COUNT0,
R_STATE1,
R_ADDR1,
R_COUNT1,
R_STATE2,
R_ADDR2,
R_COUNT2,
R_STATE3,
R_ADDR3,
R_COUNT3,
R_TXADDR,
R_TXCOUNT,
R_MAX
};
enum {
SETUP_RX_RST = (1<<0),
SETUP_TX_RST = (1<<2),
};
enum {
MDIO_DO = (1<<0),
MDIO_DI = (1<<1),
MDIO_OE = (1<<2),
MDIO_CLK = (1<<3),
};
enum {
STATE_EMPTY = 0,
STATE_LOADED = 1,
STATE_PENDING = 2,
};
enum {
MDIO_OP_WRITE = 1,
MDIO_OP_READ = 2,
};
enum mdio_state {
MDIO_STATE_IDLE,
MDIO_STATE_READING,
MDIO_STATE_WRITING,
};
enum {
R_PHY_ID1 = 2,
R_PHY_ID2 = 3,
R_PHY_MAX = 32
};
#define MINIMAC_MTU 1530
struct MilkymistMinimacMdioState {
int last_clk;
int count;
uint32_t data;
uint16_t data_out;
int state;
uint8_t phy_addr;
uint8_t reg_addr;
};
typedef struct MilkymistMinimacMdioState MilkymistMinimacMdioState;
struct MilkymistMinimacState {
SysBusDevice busdev;
NICState *nic;
NICConf conf;
char *phy_model;
qemu_irq rx_irq;
qemu_irq tx_irq;
uint32_t regs[R_MAX];
MilkymistMinimacMdioState mdio;
uint16_t phy_regs[R_PHY_MAX];
};
typedef struct MilkymistMinimacState MilkymistMinimacState;
static const uint8_t preamble_sfd[] = {
0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0xd5
};
static void minimac_mdio_write_reg(MilkymistMinimacState *s,
uint8_t phy_addr, uint8_t reg_addr, uint16_t value)
{
trace_milkymist_minimac_mdio_write(phy_addr, reg_addr, value);
/* nop */
}
static uint16_t minimac_mdio_read_reg(MilkymistMinimacState *s,
uint8_t phy_addr, uint8_t reg_addr)
{
uint16_t r = s->phy_regs[reg_addr];
trace_milkymist_minimac_mdio_read(phy_addr, reg_addr, r);
return r;
}
static void minimac_update_mdio(MilkymistMinimacState *s)
{
MilkymistMinimacMdioState *m = &s->mdio;
/* detect rising clk edge */
if (m->last_clk == 0 && (s->regs[R_MDIO] & MDIO_CLK)) {
/* shift data in */
int bit = ((s->regs[R_MDIO] & MDIO_DO)
&& (s->regs[R_MDIO] & MDIO_OE)) ? 1 : 0;
m->data = (m->data << 1) | bit;
/* check for sync */
if (m->data == 0xffffffff) {
m->count = 32;
}
if (m->count == 16) {
uint8_t start = (m->data >> 14) & 0x3;
uint8_t op = (m->data >> 12) & 0x3;
uint8_t ta = (m->data) & 0x3;
if (start == 1 && op == MDIO_OP_WRITE && ta == 2) {
m->state = MDIO_STATE_WRITING;
} else if (start == 1 && op == MDIO_OP_READ && (ta & 1) == 0) {
m->state = MDIO_STATE_READING;
} else {
m->state = MDIO_STATE_IDLE;
}
if (m->state != MDIO_STATE_IDLE) {
m->phy_addr = (m->data >> 7) & 0x1f;
m->reg_addr = (m->data >> 2) & 0x1f;
}
if (m->state == MDIO_STATE_READING) {
m->data_out = minimac_mdio_read_reg(s, m->phy_addr,
m->reg_addr);
}
}
if (m->count < 16 && m->state == MDIO_STATE_READING) {
int bit = (m->data_out & 0x8000) ? 1 : 0;
m->data_out <<= 1;
if (bit) {
s->regs[R_MDIO] |= MDIO_DI;
} else {
s->regs[R_MDIO] &= ~MDIO_DI;
}
}
if (m->count == 0 && m->state) {
if (m->state == MDIO_STATE_WRITING) {
uint16_t data = m->data & 0xffff;
minimac_mdio_write_reg(s, m->phy_addr, m->reg_addr, data);
}
m->state = MDIO_STATE_IDLE;
}
m->count--;
}
m->last_clk = (s->regs[R_MDIO] & MDIO_CLK) ? 1 : 0;
}
static size_t assemble_frame(uint8_t *buf, size_t size,
const uint8_t *payload, size_t payload_size)
{
uint32_t crc;
if (size < payload_size + 12) {
error_report("milkymist_minimac: received too big ethernet frame");
return 0;
}
/* prepend preamble and sfd */
memcpy(buf, preamble_sfd, 8);
/* now copy the payload */
memcpy(buf + 8, payload, payload_size);
/* pad frame if needed */
if (payload_size < 60) {
memset(buf + payload_size + 8, 0, 60 - payload_size);
payload_size = 60;
}
/* append fcs */
crc = cpu_to_le32(crc32(0, buf + 8, payload_size));
memcpy(buf + payload_size + 8, &crc, 4);
return payload_size + 12;
}
static void minimac_tx(MilkymistMinimacState *s)
{
uint8_t buf[MINIMAC_MTU];
uint32_t txcount = s->regs[R_TXCOUNT];
/* do nothing if transmission logic is in reset */
if (s->regs[R_SETUP] & SETUP_TX_RST) {
return;
}
if (txcount < 64) {
error_report("milkymist_minimac: ethernet frame too small (%u < %u)\n",
txcount, 64);
return;
}
if (txcount > MINIMAC_MTU) {
error_report("milkymist_minimac: MTU exceeded (%u > %u)\n",
txcount, MINIMAC_MTU);
return;
}
/* dma */
cpu_physical_memory_read(s->regs[R_TXADDR], buf, txcount);
if (memcmp(buf, preamble_sfd, 8) != 0) {
error_report("milkymist_minimac: frame doesn't contain the preamble "
"and/or the SFD (%02x %02x %02x %02x %02x %02x %02x %02x)\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
return;
}
trace_milkymist_minimac_tx_frame(txcount - 12);
/* send packet, skipping preamble and sfd */
qemu_send_packet_raw(&s->nic->nc, buf + 8, txcount - 12);
s->regs[R_TXCOUNT] = 0;
trace_milkymist_minimac_pulse_irq_tx();
qemu_irq_pulse(s->tx_irq);
}
static ssize_t minimac_rx(VLANClientState *nc, const uint8_t *buf, size_t size)
{
MilkymistMinimacState *s = DO_UPCAST(NICState, nc, nc)->opaque;
uint32_t r_addr;
uint32_t r_count;
uint32_t r_state;
uint8_t frame_buf[MINIMAC_MTU];
size_t frame_size;
trace_milkymist_minimac_rx_frame(buf, size);
/* discard frames if nic is in reset */
if (s->regs[R_SETUP] & SETUP_RX_RST) {
return size;
}
/* choose appropriate slot */
if (s->regs[R_STATE0] == STATE_LOADED) {
r_addr = R_ADDR0;
r_count = R_COUNT0;
r_state = R_STATE0;
} else if (s->regs[R_STATE1] == STATE_LOADED) {
r_addr = R_ADDR1;
r_count = R_COUNT1;
r_state = R_STATE1;
} else if (s->regs[R_STATE2] == STATE_LOADED) {
r_addr = R_ADDR2;
r_count = R_COUNT2;
r_state = R_STATE2;
} else if (s->regs[R_STATE3] == STATE_LOADED) {
r_addr = R_ADDR3;
r_count = R_COUNT3;
r_state = R_STATE3;
} else {
trace_milkymist_minimac_drop_rx_frame(buf);
return size;
}
/* assemble frame */
frame_size = assemble_frame(frame_buf, sizeof(frame_buf), buf, size);
if (frame_size == 0) {
return size;
}
trace_milkymist_minimac_rx_transfer(buf, frame_size);
/* do dma */
cpu_physical_memory_write(s->regs[r_addr], frame_buf, frame_size);
/* update slot */
s->regs[r_count] = frame_size;
s->regs[r_state] = STATE_PENDING;
trace_milkymist_minimac_pulse_irq_rx();
qemu_irq_pulse(s->rx_irq);
return size;
}
static uint32_t
minimac_read(void *opaque, target_phys_addr_t addr)
{
MilkymistMinimacState *s = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr) {
case R_SETUP:
case R_MDIO:
case R_STATE0:
case R_ADDR0:
case R_COUNT0:
case R_STATE1:
case R_ADDR1:
case R_COUNT1:
case R_STATE2:
case R_ADDR2:
case R_COUNT2:
case R_STATE3:
case R_ADDR3:
case R_COUNT3:
case R_TXADDR:
case R_TXCOUNT:
r = s->regs[addr];
break;
default:
error_report("milkymist_minimac: read access to unknown register 0x"
TARGET_FMT_plx, addr << 2);
break;
}
trace_milkymist_minimac_memory_read(addr << 2, r);
return r;
}
static void
minimac_write(void *opaque, target_phys_addr_t addr, uint32_t value)
{
MilkymistMinimacState *s = opaque;
trace_milkymist_minimac_memory_read(addr, value);
addr >>= 2;
switch (addr) {
case R_MDIO:
{
/* MDIO_DI is read only */
int mdio_di = (s->regs[R_MDIO] & MDIO_DI);
s->regs[R_MDIO] = value;
if (mdio_di) {
s->regs[R_MDIO] |= mdio_di;
} else {
s->regs[R_MDIO] &= ~mdio_di;
}
minimac_update_mdio(s);
} break;
case R_TXCOUNT:
s->regs[addr] = value;
if (value > 0) {
minimac_tx(s);
}
break;
case R_SETUP:
case R_STATE0:
case R_ADDR0:
case R_COUNT0:
case R_STATE1:
case R_ADDR1:
case R_COUNT1:
case R_STATE2:
case R_ADDR2:
case R_COUNT2:
case R_STATE3:
case R_ADDR3:
case R_COUNT3:
case R_TXADDR:
s->regs[addr] = value;
break;
default:
error_report("milkymist_minimac: write access to unknown register 0x"
TARGET_FMT_plx, addr << 2);
break;
}
}
static CPUReadMemoryFunc * const minimac_read_fn[] = {
NULL,
NULL,
&minimac_read,
};
static CPUWriteMemoryFunc * const minimac_write_fn[] = {
NULL,
NULL,
&minimac_write,
};
static int minimac_can_rx(VLANClientState *nc)
{
MilkymistMinimacState *s = DO_UPCAST(NICState, nc, nc)->opaque;
/* discard frames if nic is in reset */
if (s->regs[R_SETUP] & SETUP_RX_RST) {
return 1;
}
if (s->regs[R_STATE0] == STATE_LOADED) {
return 1;
}
if (s->regs[R_STATE1] == STATE_LOADED) {
return 1;
}
if (s->regs[R_STATE2] == STATE_LOADED) {
return 1;
}
if (s->regs[R_STATE3] == STATE_LOADED) {
return 1;
}
return 0;
}
static void minimac_cleanup(VLANClientState *nc)
{
MilkymistMinimacState *s = DO_UPCAST(NICState, nc, nc)->opaque;
s->nic = NULL;
}
static void milkymist_minimac_reset(DeviceState *d)
{
MilkymistMinimacState *s =
container_of(d, MilkymistMinimacState, busdev.qdev);
int i;
for (i = 0; i < R_MAX; i++) {
s->regs[i] = 0;
}
for (i = 0; i < R_PHY_MAX; i++) {
s->phy_regs[i] = 0;
}
/* defaults */
s->phy_regs[R_PHY_ID1] = 0x0022; /* Micrel KSZ8001L */
s->phy_regs[R_PHY_ID2] = 0x161a;
}
static NetClientInfo net_milkymist_minimac_info = {
.type = NET_CLIENT_TYPE_NIC,
.size = sizeof(NICState),
.can_receive = minimac_can_rx,
.receive = minimac_rx,
.cleanup = minimac_cleanup,
};
static int milkymist_minimac_init(SysBusDevice *dev)
{
MilkymistMinimacState *s = FROM_SYSBUS(typeof(*s), dev);
int regs;
sysbus_init_irq(dev, &s->rx_irq);
sysbus_init_irq(dev, &s->tx_irq);
regs = cpu_register_io_memory(minimac_read_fn, minimac_write_fn, s,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, R_MAX * 4, regs);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_milkymist_minimac_info, &s->conf,
dev->qdev.info->name, dev->qdev.id, s);
qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
return 0;
}
static const VMStateDescription vmstate_milkymist_minimac_mdio = {
.name = "milkymist_minimac_mdio",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_INT32(last_clk, MilkymistMinimacMdioState),
VMSTATE_INT32(count, MilkymistMinimacMdioState),
VMSTATE_UINT32(data, MilkymistMinimacMdioState),
VMSTATE_UINT16(data_out, MilkymistMinimacMdioState),
VMSTATE_INT32(state, MilkymistMinimacMdioState),
VMSTATE_UINT8(phy_addr, MilkymistMinimacMdioState),
VMSTATE_UINT8(reg_addr, MilkymistMinimacMdioState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_milkymist_minimac = {
.name = "milkymist-minimac",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, MilkymistMinimacState, R_MAX),
VMSTATE_UINT16_ARRAY(phy_regs, MilkymistMinimacState, R_PHY_MAX),
VMSTATE_STRUCT(mdio, MilkymistMinimacState, 0,
vmstate_milkymist_minimac_mdio, MilkymistMinimacMdioState),
VMSTATE_END_OF_LIST()
}
};
static SysBusDeviceInfo milkymist_minimac_info = {
.init = milkymist_minimac_init,
.qdev.name = "milkymist-minimac",
.qdev.size = sizeof(MilkymistMinimacState),
.qdev.vmsd = &vmstate_milkymist_minimac,
.qdev.reset = milkymist_minimac_reset,
.qdev.props = (Property[]) {
DEFINE_NIC_PROPERTIES(MilkymistMinimacState, conf),
DEFINE_PROP_STRING("phy_model", MilkymistMinimacState, phy_model),
DEFINE_PROP_END_OF_LIST(),
}
};
static void milkymist_minimac_register(void)
{
sysbus_register_withprop(&milkymist_minimac_info);
}
device_init(milkymist_minimac_register)